<< pl_lft_plt pl pl_me_brute_2d >>

CCA (Computational Convex Analysis) >> pl > pl_ll

pl_ll

The Lasry-Lions double envelope approximation

Calling Sequence

L = pl_ll(X,Y,S,lambda,mu,algo)

Parameters

X

column vector. A grid of points on which the function is sampled.

Y

column vector. The value of the function on the grid X: usually f(i)=fu(X(i)) for some function fu.

S

column vector. The grid on which we want to compute the conjugate: f* is evaluated on S.

lambda

constant. This value determines how close the Lasry-Lions envelope will be to the original function.

mu

constant. This value determines the smoothness factor inside the nonconvex function (i.e. not on the convex hull). Note: mu > lambda.

algo

text. Name of the fast algorithm used to compute the Moreau envelope

Description

Compute numerically the Lasry-Lions double envelope of a set of planar points (X(i),Y(i)) at slopes S, i.e., (M is the Moreau envelope)

It has a complexity which is dependent on the type of algorithm used to compute the Moreau Envelope.

Examples

X=[-2:0.01:2]';
Y=abs(abs(X)-1);
S=X;
mu=0.7;
lambda=0.4;

scf(0);clf;
L = pl_ll(X,Y,S,mu,lambda,pl_me_direct);
plot2d([abs(abs(X)-1),L]); 
xtitle("Lasry Lions double envelope");

See Also

Authors

Yves Lucet, University of British Columbia, BC, Canada


Report an issue
<< pl_lft_plt pl pl_me_brute_2d >>