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Resumen— In this paper we present the summary of
a series of methodologies for the analysis of descriptor
systems in the open source software SCILAB. The properties
of regularity, solvability, C-controllability (observability),
R-controllability (observability), I-controllability and stability
are analyzed. The Karampetakis method for discretized
continuous systems in descriptor form is presented and an
algorithm of solution is proposed. Unlike the state-space
systems, in non-singulars determining these properties is not
always a trivial task, and on occasion can be mean a difficult
task because there is not a specialized toolbox. Therefore, in
this paper we propose a series of functions that complement
those of SCILAB to analyze descriptor systems and can be
used in control applications such as design of observers or
fault detection systems. c© UNAM-AMCA.
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I. INTRODUCTION

Linear Time Invariant Descriptor System have the form

Eẋ(t) = Ax(t) +Bu(t) (1)
y(t) = Cx(t) +Du(t) (2)

for continuous time

Eẋ(t+ 1) = Ax(t) +Bu(t) (3)
y(t) = Cx(t) +Du(t) (4)

for discrete, with t ∈ Z, where A, E ∈ Rn×n, B ∈
Rn×m, C ∈ Rp×n and D ∈ Rp×m. E is singular and
not necessarily diagonal, the behavior relationships are not
necessarily dynamics.

The main difference between typical state-space systems
and descriptors systems, is that the matrix E of (1-3)
is singular and therefore not invertible, because of this
descriptors method must meet certain conditions for its
analysis and management in the design of systems for
monitoring and control.

Two of the most important properties that descriptors
systems must meet are solvability and regularity. If these
properties hold, a singular system can be converted to an

equivalent form and investigate other properties such as
controllability, observability and stability. If the system does
not meet with the regularly property, then the system must
be regularized.

Property of regularity is related to the invertibility of
matrix pencil pair (E, A),in (Gantmacher, 1959) is defined
as:

Definition 1: The system (1) is called regular if there
exists a constant scalar γ such that det(γE − A) 6= 0 or
equivalently, the polynomial det(sE−A) is not identically
zero. In this case, we also say that the matrix pair (E, A),
or the matrix pencil sE −A; is regular.
Solvability should be defined as the existence of a unique
solution for any given sufficiently differentiable u(t)and any
given admissible initial condition corresponding to the given
u(t).

Definition 2: (A, E) is solvable if the matrix pencil
E+λA is regular. In other words the matricial relationship
(E,A) is solvable if and only if |sE − A| 6= 0, or
equivalently if there exist an scalar λ ∈ C such that |λE −
A| 6= 0.where |�| is the determinant (Yip y Sincovec, 1981).

Other important property related with the regularity of the
pair pencil (E, A) is the existence of an equivalent form.
This forms are know like Restricted Systems Equivalent
Forms or simply r.s.e forms.

Theorem 1: We call two systems (E; A, B, C, D) and
(Ê; Â, B̂, Ĉ, D̂) restricted system equivalent (r.s.e.) if
their order, number of inputs and outputs are equal and
there exist two non singular matrices P and Q such that
Ê = PEQ, Â = PAQ, B̂ = PB, B̂ = CQ, D̂ = D
(Voigt, 2010; Gantmacher, 1959). Where

PEQ =

[
In 0
0 N

]
(5)

PAQ =

[
A1 0
0 Ir

]
(6)

when A1 ∈ Rn1×n1 is a matrix whose elements are the
finite eigenvalues, Ik ∈ Rk×k is the identity matrix and
N ∈ Rk×k is a nilpotent matrix also in Jordan form. A1

and N are unique up to permutation of Jordan blocks .
The equivalent system is (Sokolov, 2006):



ẋ1 = A1x1(t) +B1u(t) (7)
y1(t) = C1x1(t)

Nx2 = x2(t) +B2u(t) (8)
y2(t) = C2x2(t)

y = y1(t) + y2(t) = C1x1(t) + C2x2(t) (9)

where:

[
x1(t)
x2(t)

]
= Q−1x(t),

[
B1

B2

]
= PB, [C1 C2] = CQ

Subsystem (7) represents the slow response and subsys-
tem (8) represents the fast response

A. Laurent expansion coefficients

Considering a regular descriptor system in the form
of (1) , then the Laurent Expansion of (sE − A)−1 is
(Karampetakis, 2003):

Φ(s) = (sE −A)−1 = Φ−ks
k−1 + · · ·+ Φ−2s+ Φ0s

0

+Φ1s
−1 + . . .Φks

−k−1 (10)

=

∞∑
k=h

Φk (E,A) s−k−1

whit k = 1, 2, ...h, where h is the nilpotence index of
(sE − A), and Φ are the fundamental matrix defined in
(Lewis, 1985; Lewis, 1990). The fundamental matrices Φ0

and Φ−1 are obtained by the Drazin inverse of the matrix
A (Bernstein, 2009; Stykel, 2006; Ji, 2002):

AD = S

[
J−1

1 0
0 0

]
S−1 (11)

In
this is modified using the the transformations matrix P

and Q, then :

Φk = P

[
Ak1 0
0 0

]
Q k ≥ 0 (12)

Φ−1 = P

[
0 0
0 −Nk−1

]
Q k > 0 (13)

II. PROPERTIES OF DESCRIPTOR SYSTEMS

1) Controllability and observability: In descriptors sys-
tems there exists principally three kinds of controllability
this are: C-Controllability. C- Controllability is related with
the fact that the system can controlled with any initial
conditions. R-Controllability means that the system only
could controlled by a reduced set of initial conditions and I-
Controllability means that the system can control impulsive
signals in the start up.

The controllability in Descriptor systems can be found of
different ways, e.g. using Laurent expansion, r.s.e or direct

form approaches. In Laurent expansion approach, the con-
trollability is related with the dimension of (E, A) and rank
of matrices Φ0 and Φ−2. In r.s.e approach the controllability
can be found by the analysis of controllability of subsystems
slow (7) and fast (8) like is analyzed in (Duan, 2010, cap. 4,
pp. 131). While in direct form approach the controllability
is found by analysis of matrices (E, A, B) in singular form
(see (Yip y Sincovec, 1981; Duan, 2010, cap. 4, pp. 156)).

Like controllability there exist different forms of
observability (C- Observability, R-Observability and
I-Observability). C- Observability means for any initial
conditions, we can always observer the states. R-
Observability meas that only by a reduced set of initial
conditions the states can be observed. I-Observability
is concerned with observing the impulse terms in the
system state response from the output data of the system
(Duan, 2010). Observability principally can be found in
three different forms: Laurent expansion (Koumboulis y
Mertzios, 1999), r.s.e (Duan, 2010, cap. 4, pp. 142) and
direct approaches (Yip y Sincovec, 1981; Duan, 2010,
cap. 4, pp. 157). This forms can be selected with the next
function:

2) Stability: In typical state-space system we say that a
system is stable if the eigenvalues of (sE − A) ∈ C−, for
descriptor system the criterion is basically the same and is
resumed in the next theorem:

Theorem 2: A regular descriptor system is stable if and
only if

eig(E, A) =⊂ C− = {s| s ∈ C, Re(s) < 0} (14)

From the theorem is deducible that stability is defined be
the position of the eigenvalues. If the system has negative
real part then, is stable. If the system has zero real part
then is critically stable and if has positive real part, then is
unstable.

On the other hand, the stability can be determined using
the following generalized Lyapunov equation (GLE)

ETXA+ATXE = −PTr Y Pr (15)

for continuous system, and for discrete system:

ATXA−ETXE = −PTr Y P −(I−Pr)TY (I−Pr) (16)

where Pl and Pr are the spectral projections onto the left
and right finite deflating subspaces of the pencil λE − A
along the left and right infinite deflating subspaces, respec-
tively, then (Stykel, 2002)

Pl = Q−1

[
In1 0
0 0

]
Q Pr = Q

[
In1 0
0 0

]
Q−1 (17)

The deflating subspaces of λE−A corresponding to the
finite (infinite) eigenvalues we will call the finite (infinite)
deflating subspaces. Like a result of GLE (15) the next
theorem is defined



Theorem 3: (Stykel, 2002) Let Pr be the spectral pro-
jection onto the right finite deflating subspace of a regular
pair
• If there exist a positive definite matrixY and a positive

semidefinite matrix X satisfying (15), then the matrix
pair (E, A) is stable.

• If the matrix pair (E, A) is stable, then for every posi-
tive definite matrix Y , (15) has a positive semidefinite
solution X .

Note that Pr can be computed using the results of com-
mand pencan, while the LMI’s of the Theorem (3) can be
programed using a LMI tool. Although scilab has its own
tool to analyze LMI, in this work the SciYalmip was used
(Lofberg, 2011).

A. Discretization

Using the Laurent expansion coefficients, the continuous
system (1), can be rewritten as (Karampetakis, 2003):

[
ρIn − Φ0A 0

0 In + ρΦ−1E

]
︸ ︷︷ ︸

ρẼ−A

[
x1(t)
x2(t)

]
︸ ︷︷ ︸

x̃(t)

=

[
Φ0B

Φ−1B

]
︸ ︷︷ ︸

B̃

u(t)

(18)
then, instead of discretize system (1), we may discretize

the system (18), giving rise to the following theorem:
Theorem 4: (Karampetakis, 2003) Using a zero-order

hold approximation of the inputu(t) and first-order hold ap-
proximation of the derivatives of the inputu(t), the contin-
uous time nonhomogeneous singular system is discretized
to yield the singular state space system:{

x1((k + 1)T ) = Ãx1(kT ) + B̃1u(kT )

Ẽ1x2((k + 1)T ) = x2(kT ) + B̃2u(kT )

}
(19)

x(kT ) =
[
In In

] [ x−1(kT )
x2(kT )

]
where:

Ã = eΦoAT (20)

B̃1 =

[ˆ T

0

eΦ0Aτdτ

]
Φ0B (21)

Ẽ1 = (Φ−1E − T × In)−1Φ−1E (22)
B̃2 = T (Φ−1E − T × In)−1Φ−1B (23)

Based in this, the next algorithm is proposed to find the
corresponding discrete system of (1):

III. DESCRIPTOR PACKAGE FOR SCILAB

Scilab has a very useful set of commands for the manage-
ment of system descriptors and pecils. The most important
functions are:

However, there has not special tools for descriptors
system management , such as controllability, observability,
stability, discretization and others.

It should be noted that currently there are few works
about it. For example, in (Varga, 2000) a toolbox for

Algorithm 1 Given a continuous system in the form (1),
find the corresponding discrete system in the form of (19).

Step 1 Check if the pair (E,A) is regular, if det(γE −
A) 6= 0, then continue.

Step 2 Find the matrices (P, Q) of r.s.e form
Step 3 Compute the Drazin inverse, then find Φ0 and Φ−1

Step 4 Compute Φ−k = −Φ−1EΦ−k+1 =
Φ−1 (−EΦ−1)

k, for k = 2, 3, ..., h and
Φk = Φ0 (AΦ0)

k
= Φ0AΦk−1, k = 1, 2, ...

Step 5 Compute Ã, B̃1, Ẽ1, B̃2 from (20, 21, 22) and
(23) respectively.

Step 6 Rewrite equations in the form of (19)

function Description
pencan compute matrices P and Q

spec eigenvalues of pencil and matrices
tf2des transfer function to descriptor
ss2des transfer function to descriptor
des2tf descriptor to transfer function conversion

sm2des system matrix to descriptor
pol2des polynomial matrix to descriptor form

MATLAB is proposed, however, this work is not available.
The other work that was done for Mathematica (Vardulakis
et al., 2008).

Due to the lack of adequate tools for descriptors system
management, in this work have been scheduled a set of
functions that complement the scilab package. This func-
tions are showed in the next table.

Command Description
funmatrix compute the Laurent expansion coefficients (12)

and (13)
dcontr computation of C, R and I controllability matrices

with tree different methods
dobsv Computation of C, R and I observability matrices

with tree different methods
abcdcoeff a,b,c and d coefficients for Darouach observer

(Darouach y Boutayeb, 1995)
kwrse Compute the Kronecker-Weistrauss r.s.e
qrrse Compute the QR r.s.e
invrse compute the inverse r.s.e form
c2dd transform continuous to discrete using the

algorithm 1

IV. NUMERICAL EXAMPLE

Considering the following descriptor system.



E =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0



A =


−0.8775 0 0.526 −0.0274
−5.85 −0.5 0.1481 0.0026

0 0.5 −1 0.2
0 2.6522 −0.274 −2



B =


0 0

−0.0856 0.01
0 0
0 1

 C =

1 1 0 1
0 0 1 1
0 0 1 0


is easily verifiable that pair (E, A) is regular, then exist

two matrices

P =


−0.05 −1.31 −0.22 −0.02
0.94 −0.12 0.47 0.03

0 0 −0.99 −0.04
0 0 −0.03 0.70



Q =


−0.09 1.06 0 0
−0.76 −0.04 0 0
−0.57 −0.03 0.98 −0.08
−0.93 −0.05 −0.11 −0.70


that permit convert the system into the r.s.e form (7) and

(8)

ẋ1(t) =

(
−1.09 8.13
−0.28 −0.17

)
x1(t) +

(
0.11 −0.04
0.01 0.03

)
u(t)

0 = x2(t) +

(
0 −0.04
0 0.70

)
u(t)

y =

−1.78 0.96
−1.49 −0.08
−0.57 −0.03

x1 +

−0.11 −0.70
0.87 −0.78
0.98 −0.08

x2

then the controllability can be computed using the func-
tion «dcontr» and selecting a method (Direct, Laurent or
r.s.e approach). Selecting direct approach the controllability
C-matrices are 1:

Cs =


1.88 0 −0.53 0.03 0 0
5.85 1.5 −0.15 −0.00 −0.09 0.01

0 −0.5 1 −0.2 0 0
0 −2.65 0.27 2 0 1



Cf =


1 0 0 0 0 0
0 1 0 0 −0.09 0.01
0 0 0 0 0 0
0 0 0 0 0 1


1Because the main objective with regard to the analysis of controllability,

is to show the great potential of «dcontr» function, the mathematical
support is not presented, however this can be consulted in the references
(Duan, 2010; Koumboulis y Mertzios, 1999; Yip y Sincovec, 1981)

for slow (7) and fast (8) subsystems respectively, then using
the criteria presented in (Duan, 2010)

rankCs = 4 = n

rankCf = 3 6= n

Due to that the rank of Cs is 4 and Cf is 3, the slow
subsystem is C-controllable, but the fast subsytem is not,
thenn the system is not C-Controllable. However the system
is R-Controllable and I-Controllable. All these conclusions
are obtained automatically with the function «dcontr» for
the three methods mentioned.

Similarly, using the function «dobsv» the C-Observability
matrices are:

Os =



1.88 0 −0.53 0.03
5.85 1.5 −0.15 −0.00

0 −0.5 1 −0.2
0 −2.65 0.27 2
1 1 0 1
0 0 1 1
0 0 1 0



Of =



1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
1 1 0 1
0 0 1 1
0 0 1 0



for slow and fast subsystems respectively, when

rankOs = 4 = n

rankOf = 4 = n

due that slow-subsystem and fast-subsystem are C-
Observable, the system is C-Observable and therefore, the
system is R and I- Observable.

The stability analysis is not implemented in a function,
but this can be done by the LMITOOL or SCIYALMIP
toolboxes. While the discretization of the continuous system
can be done with the algorithm proposed and implemented
in the function «c2dd».

First, for discretized the systems is necessary compute
the Laurent expansions coefficients, this can be done with
the function «fundmatrix», then



Φ(s) =


0 0 0 0
0 0 0 0
0 0 0.97 0.10
0 0 −0.13 0.49


︸ ︷︷ ︸

Φ−1

s0

+


1 0 0.52 0.04
0 1 0.14 0.02
0 0.74 0.11 0.01
0 1.22 0.18 0.02


︸ ︷︷ ︸

Φ0

s−1

+


−0.88 0.36 −0.40 −0.03
−5.85 −0.39 −3.07 −0.23
−4.36 −0.29 −2.29 −0.17
−7.16 −0.47 −3.76 −0.28


︸ ︷︷ ︸

Φ1

s−2

+


−1.33 −0.45 −0.75 −0.06
7.39 −1.95 3.53 0.25
5.51 −1.45 2.63 0.19
9.05 −2.38 4.32 0.31


︸ ︷︷ ︸

Φ2

s−3

considering a sample time Ts = 0.1s the discrete system
in the form of (19) is:

x1((k + 1)T ) =


0.91 0.03 −0.00 −0.00
−0.55 0.95 −0.00 −0.00
−0.41 −0.04 1 −0.00
−0.67 −0.06 0 1

x1(kT )

+


−0.00 0.00
−0.01 0.00
−0.01 0.00
−0.01 0.00

u(Tk)

0 = x2(kT ) +


0 0
0 0
0 −0.10
0 −0.49

u(kT )

V. CONCLUSIONS

In this paper has been presented a set of tools to an-
alyze systems in descriptor form, this tool includes the
implementation of different methods to study the con-
trollability and observability of descriptor systems, each
of them to determine the C-controllability (observability),
R-controllability (observability), the I-controllability (ob-
servability) and hence the S-Controllability (observability).
Each of these methods is aimed at solving the problem
from a very particular case, so that you can work using the
Laurent expansion (which do more easy the discretization),
in a canonical form or analyzing the system directly. The
Laurent expansion approach is used by discretize continu-
ous systems, two methods were analyzed based in the work
of Karampetakis and is proposed a algorithm of solution. .

Due that no exist a Descriptor Toolbox available for
Scilab, a set of functions have been written with the

intention to create a Descriptor Scilab toolbox available to
the community.
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