<< c2dd en_US darobsv96 >>

DeCaToKi >> en_US > darobsv95

darobsv95

This function find the gains of Full-Order Darouach Observer of 1995 paper [1]

Calling Sequence

[N,K,L1,L2,G,test]=darobsv95(E,A,B,C,poles)

Parameters

E, A, B,C:

Continuos matrices of descriptor system. E singular

Poles:

Desired poles of the observer

N, K, L1, L2, G:

Gains matrices of Darouach Observer

test:

test if the observer condition is true

Description

Given a Descriptor system in the form
dxEdt=Ax+Bu
y   =Cx+Du
if the conditions in [1] are satisfied, then exist a full order observer
dzdt=Nz +L1y + L2y +Gu
xhat=z +by +Kdy
where b and d are founded with abccoeff function

Examples

// Descriptor system
E=[1 0 0 0 ; 0 1 0 0; 0 0 0 0; 0 0 0 0];
A=[0 0 1 0 ; 1 0 0 0; -1 0 0 1; 0 1 1 1];
B=[0 0 0 -1]';
C=[0 1 0 0];
// Observer Gains
poles=[-4,-3,-2,-1] // Desired poles 

[N,K,L1,L2,G,test]=darobsv95(E,A,B,C,poles)

See also

Author

Bibliography

[1] M. Darouach and M. Boutayeb, (1995). Design of Observer for Descriptor Form. IEEE Transactions on Automatic Control. Vol. 70, pp. 1323-1327

<< c2dd en_US darobsv96 >>