this function compute the inverse restricted system equivalence of a descriptor system (E, A, B)
[Ee, Ae, Be]=invrse(E,A,B) [Ee, Ae, Be]=invrse(E,A,B, lambda)
Matrices of descriptor system, E singular and pair (E, A) regular.
Matrices of equivalent inverse r.s.e system
Escalar that multiplies lamda*E
Consider the descriptor linear system (E, A, B) with pair (E, A) regular, then exist a matrix Q satisfying
Q=(lamdaE-A)^{-1}
lamda is a scalar, then
Ee=QE
Ae=QA
Be=QB
Ce=C
Duan, G.-R. Gao, D. Y. adn R. W. Ogden, (210). Analysis and Desing of Descriptor Linear Systems. Edit. Springer.