<< puiobsv en_US qrrse >>

DeCaToKi >> en_US > puiobsv

puiobsv

This function compute the gains for a full order observer with unknown inputs [1]

Calling Sequence

[N,G1,L,H2,B1]=puiobsv(E,A,B,C,R,alpha)

Parameters

E, A, B, C, R:

Continuos matrices of descriptor system. E singular

alpha:

For the stabilize the observer in a stable LMI region (see [1])

N, G1 L, H2:

Gains matrices of the observer

Bo1

Auxiliar matrices for simulation, this can be obtained from qrrse transformation

Description

Given a Descriptor system in the form
dxEdt=A x(t) + B u(t) +R d (t)
y   =C x(t) + D u(t) 
This compute the observer gains for 
dz/dt= Nz(t) + G1u(t) + L(yo(t))
xe(t)= z(t) +H2(yo(t))

where yo(t) results from QR r.s.e transformation
yo(t)=[-B1u(t); y(t)];  y(t)= C x(t)
alpha put the observer in the stability LMI region

Examples

Descriptor System
E=[1 0 0 0 ; 0 1 0 0; 0 0 1 0; 0 0 0 0];
A=[-1 1 0 0 ; -1 0 0 1; 0 -1 -1 0; 0 0 0 1];
B=[1 0 0 1]';
C=[1 0 0 0; 0 0 1 1];

R=[-1 0 0 0]';

// Observer Gains

[N,G1,L,H2,B1]=puiobsv(E,A,B,C,R,1);

See also

Author

Bibliography

[1] M., Hamdi., Rodrigues, M., Mechmeche, C., Theilliol, D., Braiek, N. B., & Tunisie, E. P. D. (2009). State Estimation for Polytopic LPV Descriptor Systems : Application to Fault Diagnosis. Convergence (pp. 438-443).

<< puiobsv en_US qrrse >>