<< pcaapply (X) One matrix of observations/variables (X) One matrix of contingency >>

fact >> (X) One matrix of observations/variables > pcana

pcana

principal component analysis

Calling sequence

model=pcana(x,(centering))

Arguments

x:

a matrix (n x q) or a Div structure

(centering):

0=not to be centered (by default); 1=to be centered

model:

model.scores.d: scores of the observations onto the eigenvectors

model.eigenvec.d: eigenvectors = loadings

model.var_scores.d: scores of the variables onto the eigenvectors

model.eigenval.d: eigenvalues

model.ev_pcent.d: eigenvalues, percentage

model.x_mean.d: mean of the column vectors of x, of dimensions (q x 1)

model.x_stdev.d: standard deviation of the column vectors of x, of dimensions (q x 1)

model.centered: applied centering option; 1 = centred, 0 = not centred

model.std: standardisation option = 0

Examples

[model]=pcana(x)
[model]=pcana(x,1)

Bibliography

Authors


Report an issue
<< pcaapply (X) One matrix of observations/variables (X) One matrix of contingency >>