Perform the morphological erosion operation on a binary image in respect with a defined neighborhood size.
[E] = NL_V_ErosionW(I,W)
binary matrix.
Kernel width.
Erosion matrix.
NL_V_ErosionW performs the morphological erosion operation on the binary image I (WIKIPEDIA). The output matrix is stored in E. For each vertex I(i,j), its direct neighborhood (no center) N=[I(i-(w-1)/2:i+(w-1)/2,j-(w-1)/2:j+(w-1)/2)] is analysed. E(i,j) is equal to the minimal of I(N).
dt=getdate(); seed=dt(10); rand('seed',seed);//initialization of the random values generator no=4;//quantity of obstacles (rectangle) L=1000;//squared area side hm=100;//minimal height hM=250;//maximal height wm=100;//minimal width wM=250;//maximal width Al=[0 %pi/2 %pi -%pi/2];//available angles for obstacles [Xs,Ys,X,Y,H,W,A]=NL_V_RectanglesCorners(no,L,hm,hM,wm,wM);//generation of obstacles [P]=NL_V_PotentialRectangles(X,Y,H,W,A,L);//generation of obstacle matrix z=10;//zoom factor o=2;// 1=mean, 2=max, 3=min, 4=median Pz=NL_V_MRA(P,z,o);//scale modification [Pzx,Pzy]=size(Pz);//image size w1=1;//window index w2=2;//window index scf(w1); clf(w1); grayplot(1:Pzx,1:Pzy,Pz);//graph visualization xset("colormap",graycolormap(128)); scf(w2); clf(w2); [PEz]=NL_V_Erosion(Pz);//application of NL_V_Erosion w=5;//kernel width [PEzw]=NL_V_ErosionW(Pz,w);//application of NL_V_ErosionW Cont=Pz-PEz;//contour 1 [Contx,Conty]=size(Cont);//image size Contw=Pz-PEzw; [Contwx,Contwy]=size(Contw);//image size grayplot(1:Contx,1:Conty,Cont);//graph visualization xset("colormap",graycolormap(128)); w3=3;//window index scf(w3); clf(w3); grayplot(1:Contwx,1:Contwy,Contw);//graph visualization xset("colormap",graycolormap(128)); | ![]() | ![]() |