Perform the morphological erosion operation on a binary image.
[E] = NL_V_Erosion(I)
Binary matrix.
Erosion matrix.
NL_V_Erosion performs the morphological erosion operation on the binary image I (WIKIPEDIA). The output matrix is stored in E. For each vertex I(i,j), its direct 1-pixel neighborhood (no diagonal) N=[I(i,j-1:j+1) im(i-1:i+1,j)'] is analysed. E(i,j) is equal to the minimal of I(N).
dt=getdate(); seed=dt(10); rand('seed',seed);//initialization of the random values generator no=4;//quantity of obstacles (rectangle) L=1000;//squared area side hm=100;//minimal height hM=250;//maximal height wm=100;//minimal width wM=250;//maximal width Al=[0 %pi/2 %pi -%pi/2];//available angles for obstacles [Xs,Ys,X,Y,H,W,A]=NL_V_RectanglesCorners(no,L,hm,hM,wm,wM);//generation of obstacles [P]=NL_V_PotentialRectangles(X,Y,H,W,A,L);//generation of obstacle matrix z=10;//zoom factor o=2;// 1=mean, 2=max, 3=min, 4=median Pz=NL_V_MRA(P,z,o);//scale modification [Pzx,Pzy]=size(Pz);//image size w1=1;//window index w2=2;//window index scf(w1); clf(w1); grayplot(1:Pzx,1:Pzy,Pz);//graph visualization xset("colormap",graycolormap(128)); scf(w2); clf(w2); [PEz]=NL_V_Erosion(Pz);//application of NL_V_Erosion Cont=Pz-PEz;//contour 1 [Contx,Conty]=size(Cont);//image size grayplot(1:L/z,1:L/z,Cont);//graph visualization xset("colormap",graycolormap(128)); | ![]() | ![]() |