<< SampleSTAT SampleSTAT ST_strayarea >>

SampleSTAT >> SampleSTAT > Overview and Tutorial

Overview and Tutorial

An overview of the SampleSTAT toolbox.

Purpose

The goal of this document is to illustrate practical uses of the SampleSTAT toolbox.

Introduction

This toolbox provides elemantary tests for evaluation of measuring data. It calculates the range of dispersion of the values and the mean regarding a given statistical confidence level.

These functions are good to extend the built-in functions mean(), stdev(), max(), min(), median().

Functions

The toolbox SampleSTAT provide the following functions/macros (details refer example below

ST_strayarea:

Calculates the stray area (range of dispersion of the values)for a given vector and for a statistical confidence level (95%, 99%, 99.9%) and level of significance (0.5, 0.01, 0.001), resp.

ST_trustarea:

Calculates the trust area (range of dispersion of the mean) for a given vector and for a statistical confidence level (95%, 99%, 99.9%) and level of significance (0.5, 0.01, 0.001), resp.

ST_studentfactor:

Determines the student factor for an amount of numbers and for a statistical confidence level (95%, 99%, 99.9%) and level of significance (0.5, 0.01, 0.001), resp.- service function for ST_strayarea and ST_trustarea

// Sample data
v = [ ..
9.999; ..
9.998; ..
10.002; ..
10.000; ..
10.001; ..
10.000 ..
];

// Statistical confidence level
p = "95%";

// Calculate statistical results
n  = length(v);           // Number of values
x  = mean(v);             // Arithmetic mean
s  = stdev (v);           // Standard deviation (S.D.)
sa = ST_strayarea(v, p);  // Range of dispersion of the values (stray area)
ta = ST_trustarea(v, p);  // Range of dispersion of the mean (trust area)
mi = min(v);              // Minimal value
ma = max(v);              // Maximal value

// Output
clc;
mprintf("\nSampleStatDemo - Demo script for toolbox_samplestat\n\n");
mprintf("Values:\n");
disp(v); // Display data
mprintf("\n"); // blank line
mprintf(..
"Number of Values            : %i\n" + ..
"Arithmetic Mean             : %f\n" + ..
"Standard Deviation (S.D.)   : %f\n" + ..
"Confidence Level            : %s\n" + ..
"Range of Dispersion (values): %f\n" + ..
"Range of Dispersion (mean)  : %f\n" + ..
"Minimum                     : %f\n" + ..
"Maximum                     : %f\n", ..
n, x, s, p, sa, ta, mi, ma);
mprintf("\n"); // blank line

mprintf( ..
"68 percent of the values will stray arount %.3f +- %.3f (S.D.). %s of the values\n" + ..
"will be expected around %.3f +/- %.3f (Range of disp. of the values, stray area).\n" + ..
"With a propability of %s the mean of %.3f will stray around %.3f +/- %.3f (Rage of \n" + ..
"dispersion of the mean, trust area).\n", x, s, p, x, sa, p, x, x, ta);
SampleStatDemo - Demo script for toolbox_samplestat

Values:
 
    9.999   
    9.998   
    10.002  
    10.     
    10.001  
    10.     

Number of Values            : 6
Arithmetic Mean             : 10.000000
Standard Deviation (S.D.)   : 0.001414
Confidence Level            : 95%
Range of Dispersion (values): 0.003635
Range of Dispersion (mean)  : 0.001484
Minimum                     : 9.998000
Maximum                     : 10.002000

68 percent of the values will stray arount 10.000 +/- 0.001 (S.D.). 95% of the values
will be expected around 10.000 +/- 0.004 (Range of disp. of the values, stray area).
With a propability of 95% the mean of 10.000 will stray around 10.000 +/- 0.001 (Rage of 
dispersion of the mean, trust area). 
   

Bibliography

R. Kaiser, G. Gottschalk; "Elementare Tests zur Beurteilung von Meßdaten", BI Hochschultaschenbücher, Bd. 774, Mannheim 1972.

Authors

Hani A. Ibrahim - hani.ibrahim@gmx.de


Report an issue
<< SampleSTAT SampleSTAT ST_strayarea >>