builds an animated GIF image from a series of png, jpg, or bmp images or from a live figure

Syntax

animaGIF(files, outgif)
animaGIF(files, outgif, delay)
animaGIF(files, outgif, delay, loops)

idGif = animaGIF(idFig, outgif)

idGif = animaGIF(idFig, outgif, delay)

idGif = animaGIF(idFig, outgif, delay, loops)
animaGIF(idFig, idGif)

animaGIF (idGif)

Arguments

files
provides the series of input images files. Two specifications are possible:

1. filesmask : If files is a single string including a * wildcard character, it represents the path
and filenames pattern of images files to be selected and processed. Usually * is used as the
generic index of images.

The corresponding vector of matching filenames is sorted in increasing numerical order.
Hence, the set im_1.png, im_02.png, im_10.png, im_11.png, im 21.png, image_100.png Will be
sorted as 1, 2, 10, 11, 21 and 100, while the alphabetical order would sort them as 02, 1, 10,
100, 11, 21.

@ The files pattern must be non-ambiguous to match numbering digits. If the pointed
directory contains only files named like ima3d_#.png where "#" stands for the numbering
digits, the trivial "*" pattern could match "3" as well as "12" and so would fail, while "_*"
would be OK to consider just "12" (or so) as numbering digits.

If the directory contains some other unrelated files, then the full explicit ima3d_*.png
mask will be mandatory.

2. filenames : If files is a vector of strings, it provides the explicit pathnames of files of images
to be stacked.

By default, images will be bundled in the order their file appears in the files vector.
However, if files(1) includes the ™" character, it is considered as the numbering mask and
this mask will be used to sort the files components in numerical order.

The set of input images can mix different image encodings: png with jpg etc, in any order.

Predefined TMPDIR, SCI, SCIHOME, home... constant paths are supported.

/\ The GIF encoding is poorly supported for input images.

idFig
Handle of the graphical figure whose snapshot must be added to the animated GIF.

delay
positive number: sleeping time after each image when the animated GIF will be played, in
milliseconds. The delay resolution is 10 ms. Default value = 200.

loops
integer in [2, 255], or 0: number of consecutive times the animated GIF will be played when
displayed. 0 stands for infinite looping, and is the default value.

/\ Some rendering softwares ignore this number and always play the GIF indefinitely.
outgif
Single string: Pathname of the animated GIF file to build. The predefined TMPDIR, SCI, SCIHOME,
home... constant paths are supported as part of outgif.
idGif
Handle of the opened animated GIF as returned by a (previous) call to animaGIF(..)

Description

(.} animaGIF() is a stand-alone Scilab function using only the JVM embedded in Scilab. It does not
require any external software like ImageMagic or Gimp. It does not involve any hard-coded part and
so is expected to be stable accross Scilab versions.

Since it uses the JVM, animaGIF() can be used in standard sto Scilab desktop and in No-Window nw
(advanced console) modes, but is not available in nwNI batch mode.

Animated GIF from existing images files
animaGlF(files, outgif)

» selects images files according to the given mask and sorts them in increasing numerical indices, or
considers given files and possibly sorts them in increasing numerical indices,

 builds the animated GIF image, setting a default pause of 200 ms after each image,

» sets the looping mode to infinite iterations,

» and records the animated GIF image in the file outgif.

animaGlF(files, outgif, delay) does the same, but sets the pause's duration as specified by delay.
animaGlIF(files, outgif, delay, loops) does the same, but sets the chosen number of times the GIF will

be played after each loading. To use the default delay value, just run animaGIF(files, outgif, , loops).

Animated GIF directly from a figure
This on-the-fly mode is incremental and avoids saving a series of snapshots in possibly numerous files.
idGif = animaGIF(idFig, outgif)

« initiates the animated GIF file outgif with the default inter-image pause of 200 ms value and the
default infinite looping mode.

* makes a snapshot of the given figure, and adds it to the animated GIF,

» keeps open the animated GIF,

« and returns the handle of the animated GIF image.

idGif = animaGIF(idFig, outgif, delay) and idGif = animaGIF(idFig, outgif, delay, loops) do the
same but use the specified delay (and 100ps number of iterations) instead of the default ones.

idGif = animaGIF(idFig, idGif)

» makes a snapshot of the given figure,

» adds the snapshot to the open animated GIF specified by its ideif handle as returned by a previous
call,

» and returns the handle of the updated animated GIF image.

animaGIF(idGif) closes the given animated GIF and concludes the job.

ey

¢ In the animated image, the size of each image is the size of the figure when it is snapshot.
Therefore, the figure must not be resized during the GIF stream.

» The figure may be hidden (gcf().visible = "off") when animaGIF(..) is called.

» Before building on-the-fly an animated GIF including many images, the delay must be carefully
chosen. For the time being, animaGIF(..) does not allow to change the delay of an existing
animated GIF.

/\ No variable named File must exist anywhere in the calling level of animaGIF() (and in the upper
callers, if any).

Examples

Using animaGIF() to bundle existing images files:

Dir = TMPDIR + "/animaGIF/"; > 5
mkdir(Dir);

// Example of images files selection with a mask:
outgif = Dir + "romanSurf.gif";
animaGIF (animaGIFpath()+"tests/images/romanSurt *.png", outgif, 300, 3);

// Play the animated GIF:
winopen(outgif); // in a dedicated image viewer
animaGIFinHTML (outgif); // .. and in our web browser. 3 revolutions are expected.

The Scilab help browser ignores the loops number and iterates indefinitely. Any web browser loops as
expected.

Using animaGIF() on-the-fly with a live figure:

// Creation of the surface data > 5
linspace(0,%pi,40);

linspace(0,2*%pi,40);

v] = meshgrid(u,v);

0.10;

= k*(2 + sin(2*u) + sin(4*u)/2);

sin(2*u)/2 - sin(4*u)/4 + r.*cos(v).*cos(u-sin(2*u))*1.5;

cos(2*u) - r.*cos(v).*sin(u-sin(2*u));

r.*sin(v);

-

u
v
[u
k
r
X
y
z

// Creation of the figure
f = scf();

scilab://mkdir
scilab://winopen
scilab://scilab.execexample/
scilab://scilab.editexample/
scilab://linspace
scilab://linspace
scilab://meshgrid
scilab://sin
scilab://sin
scilab://sin
scilab://sin
scilab://cos
scilab://cos
scilab://sin
scilab://cos
scilab://cos
scilab://sin
scilab://sin
scilab://sin
scilab://scf
scilab://scilab.execexample/
scilab://scilab.editexample/

drawlater

f. = jetcolormap(64);
f. = I 15
surf(x, z, y)
xtitle("","","","")

a = gca();
ﬂ(a) bl 3 3 3)[]))
a. = 1*e;

Q
L}
-

drawnow
// Creation of the animated GIF

// Creation and configuration of the GIF stream (default delay, 2 iterations)
outgif = g

idGif = animaGIF(gcf(), outgif, ,2);

// Animation of the figure

n = >

b = waitbar(1/n);

for i = n
gca(). (2) = gca(). (2) + /n;
idGif = animaGIF(gcf(), idGif); // Adds the current figure to the GIF stream
waitbar(i/n,b);

end

animaGIF (idGif); // Closes the GIF stream

close(b) // Closes the progression bar

// Play the animated GIF:
winopen(outgif);
animaGIFinHTML (outgif); // .. 2 revolutions expected

scilab://drawlater
scilab://jetcolormap
scilab://surf
scilab://xtitle
scilab://gca
scilab://set
scilab://drawnow
scilab://gcf
scilab://waitbar
scilab://gca
scilab://gca
scilab://gcf
scilab://waitbar
scilab://close
scilab://winopen

A mixed series of png, jpg and bmp images files can be processed.

The first image of the animation sets the standard size of the whole animated GIF. If some forthcoming
images are smaller, some margins are left and remain. In the opposite, wider images are clipped (in

web browsers. In image viewer softwares, this is software-dependent).

Dir = + ; mkdir(Dir);
outgif = Dir + 5
apath = animaGIFpath();
L1 listfiles(apath+)3
L2 = listfiles(apath+)8
L3 listfiles(apath+);
L = [L1(1:$/3) ; L2(2*$/3:%) ; L3];
(L)
animaGIF(L, outgif, 5)3
animaGIFinHTML (outgif); // in the web browser
(outgif); // in the dedicated image viewer software

.

A series of numbered files can be automatically resorted in numerical order, instead of alphabetical

order:

Dir = + ; mkdir(Dir);

outgif = Dir + ;

apath = animaGIFpath();

L1 = listfiles(apath+)5

L2 = listfiles(apath+);

L = [L1() 5 L2()15

((L,apath,))

// AS IS, this Llist of images files

// - Define 2 subsequences, one with the mesh, then the colored one.
// - Each sequence goes twice faster, since one angle step over 2
// is missed (20°/step).

animaGIF (L, outgif, 5> 3);
animaGIFinHTML (outgif); // in the web browser

il

scilab://mkdir
scilab://listfiles
scilab://listfiles
scilab://listfiles
scilab://size
scilab://winopen
scilab://scilab.execexample/
scilab://scilab.editexample/
scilab://mkdir
scilab://listfiles
scilab://listfiles
scilab://messagebox
scilab://strsubst
scilab://scilab.execexample/
scilab://scilab.editexample/

// according to the only index present in filenames:

// Now we force numerical ordering of files,

)5

animaGIFinHTML (outgif); // in the web browser

5 Ll

[

animaGIF(L, outgif,

L =

/

i

JIL T]

e Samuel GOUGEON

Author

e Xs2png
* Xs2jpg
e xs2bmp

See also

scilab://scilab.execexample/
scilab://scilab.editexample/
scilab://xs2png
scilab://xs2jpg
scilab://xs2bmp

