CL_ex_eckHech — Eckstein Hechler orbit extrapolation analytic model
[mean_cir_t2, osc_cir_t2] = CL_ex_eckHech ( t1, mean_cir_t1, t2 [,er[,mu[,zonals]]])
Zonals coefficients up to J6 are taken into account
This function is vectorized for mean_cir_t1 or t2; but not for both at same time. When size(mean_cir_t1)=6xN and size(t2)=1xM, M or N must be 1.
- This function does not work for inclinations close (0.0022918 deg) to the critical inclinations (63.43494882 deg and 116.5650512 deg)
- This function nominally works for eccentricities lower than 5e-3
- This function works with a lesser precision for eccentricities between 5e-3 and 0.1
- This function does not work for eccentricities greater than 0.1
CNES julian date of initial parameter (1xN)
circular adapted mean parameters at date t1 [sma,ex,ey,inc,gom,pom+anm]' (6xN)
CNES julian date (1xM)
(optional) equatorial radius [m] (default is %CL_eqRad)
(optional) geocentric gravitational constant [m^3/s^2] (default value is %CL_mu)
(optional) vector of zonals coefficients J1 to Jn (troncated to J6) to be used (default is %CL_j1jn(1:6)) (1 x N)
circular adapted mean parameters at date t2 [sma,ex,ey,inc,gom,pom+anm]' (6 x max(N,M))
circular adapted osculatory parameters at date t2 [sma,ex,ey,inc,gom,pom+anm]' (6 x max(N,M))
// Example 1 : one orbit extrapolated at several dates : t1 = 12584 mean_cir_t1 = [42166712,2.9e-3,1.2e-3,CL_deg2rad(97.2),CL_deg2rad(125),CL_deg2rad(0)]' t2 = 12587:0.2:12588; [mean_cir_t2,osc_cir_t2] = CL_ex_eckHech(t1,mean_cir_t1,t2) // Example 2 : several orbits extrapolated at one date : t1 = 12584 mean_cir_t1 = [42166712,2.9e-3,1.2e-3,CL_deg2rad(97.2),CL_deg2rad(125),CL_deg2rad(0)]' mean_cir_t1 = [mean_cir_t1,mean_cir_t1*0.95] t2 = 12587; [mean_cir_t2,osc_cir_t2] = CL_ex_eckHech(t1,mean_cir_t1,t2)