Name

CL_op_frozenOrbitDer — Eccentricity and perigee drift over time for an orbit close to a frozen orbit

Calling Sequence

   [d_ecc_dt,d_pom_dt] = CL_op_frozenOrbitDer(sma,ecc,inc,pom,[er,[mu,[zonals]]])
   
   

Description

  • This function computes eccentricity and periapsis argument derivatives with respect to time. These derivatives correspond to a frozen orbit in presence of perturbations coming from terms J2 to J3 of gravitational potential. Eccentricity and periapsis argument (that are close to the values for a frozen orbit) must be given as input.

    You can optionally give the zonal coefficients J1/J2/J3 to be used : default is %CL_j1jn(1:3).

  • Last update : 25/2/2008

Parameters

sma:

semi major axis [m] (1x1 : same semi major axis for all) or (1xM)

ecc:

eccentricity (1x1 : same eccentricity for all) or (1xM)

inc:

inclination [rad] (1x1 : same inclination for all) or (1xM)

pom:

argument of perigee (1x1 : same argument of perigee for all) or (1xM)

er:

(optional) equatorial radius [m] (default is %CL_eqRad)

mu:

(optional) geocentric gravitational constant [m^3/s^2] (default value is %CL_mu)

zonals:

(optional) vector of zonals coefficients J1 to Jn (troncated to J3) to be used (default is %CL_j1jn(1:3)) (1 x N)

d_ecc_dt:

(optional depending on model) eccentricity derivative with respect to time [s^-1] (1xM)

d_pom_dt:

(optional depending on model) periapsis argument derivative with respect to time [rad/s] (1xM)

Authors

CNES - DCT/SB

Examples

sma = [%CL_eqRad+350.e3 %CL_eqRad+700.e3];
inc = CL_deg2rad([51.6 91.6]);
[ecc,pom] = CL_op_frozenOrbit(sma,inc);
ecc = 0.999*ecc;
pom = 0.999*pom;
[d_ecc_dt,d_pom_dt] = CL_op_frozenOrbitDer(sma,ecc,inc,pom)