Name

CL_man_hohmann — Delta V for a hohmann transfer

Calling Sequence

   [delta_v,dv1,dv2,anv1,anv2] = CL_man_hohmann(ai,af,[mu])
   
   

Description

  • This function computes the maneuvers of a Hohmann transfer from a circular orbit of semi major axis ai to one of semi major axis af.

    The output delta_v is the sum of the |delta-v| required (dv1 + dv2).

    Velocity increments are given in spherical coordinates in the QSW frame : first parameter lambda is the in plane component (pi ~= towards planet and pi/2 = along velocity) second parameter phi is the out of plane component, positive towards the kinetic moment, third parameter is the norm

  • Last update : 13/2/2008

Parameters

ai :

radius of initial circular orbit (semi major axis). [m] (1xN)

af :

radius of final cirular orbit (semi major axis). [m] (1xN)

mu :

(optionnal) gravitational constant. [m^3/s^2] (default value is %CL_mu)

delta_v :

total delta-v required = |dv1| + |dv2|. [m/s] (1xN)

dv1:

First velocity increment, given in spherical coordinates in the QSW frame [lambda;phi;|dv|] [rad,rad,m/s] (3xN)

dv2:

Second velocity increment, given in spherical coordinates in the QSW frame [lambda;phi;|dv|] [rad,rad,m/s] (3xN)

anv1:

true anomaly of first impulse : as the initial orbit is circular, anv1 is set to 0 arbitrarily (1xN)

anv2:

true anomaly of second impulse (either 0 or %pi) [rad] (1xN)

Authors

CNES - DCT/SB

See also

CL_man_biElliptic

Examples

// 7200km to 7000km :
ai = 7200.e3;
af = 7000.e3;
[delta_v,dv1,dv2,anv1,anv2] = CL_man_hohmann(ai,af);
// Check results :
kep = [ai ; 0 ; %pi/2 ; 0 ; 0 ; anv1];
kep1 = CL_man_applyDv(kep,dv1);
kep1(6) = anv2;
kep2 = CL_man_applyDv(kep1,dv2)