CL_man_biElliptic — Total delta V for a bi-elliptic Hohmann transfer
[delta_v,dv1,dv2,dv3,anv1,anv2,anv3]=CL_man_biElliptic(ai,af,rt,[mu])
Output delta-v is the sum of delta-v required to change from orbit 1 to 2, 3 and 4 consecutively. Delta-v impulsions are performed at points A, B and C.
Impulsions are given in spheric coordinates in the QSW frame : first parameter lambda is the in plane component (pi ~= towards planet and pi/2 = along velocity) second parameter phi is the out of plane component, positive towards the kinetic moment, third parameter is the norm
radius of initial circular orbit [m] (1xN)
radius of final circular orbit [m] (1xN)
radius at position of second maneuver [m] (1xN)
(optionnal) geocentric gravitational constant [m^3/s^2] (default value is %CL_mu)
total delta-v requirement [m/s] (1xN)
delta_v at first maneuver, given in spheric coordinates in QSW frame [lambda;phi;dv] [rad,rad,m/s] (3xN)
delta_v at second maneuver, given in spheric coordinates in QSW frame [lambda;phi;dv] [rad,rad,m/s] (3xN)
delta_v at third maneuver, given in spheric coordinates in QSW frame [lambda;phi;dv] [rad,rad,m/s] (3xN)
true anomaly at first maneuver : initial orbit is circular so this is an arbitrary value of 0 (1xN)
true anomaly at second maneuver (either 0 or %pi) [rad] (1xN)
true anomaly at third maneuver (either 0 or %pi) [rad] (1xN)
// 7000 km to 98 000km trough a 280 000 transfer orbit : ai = 7000.e3; af = 98000.e3; rt = 280000.e3; [delta_v,dv1,dv2,dv3,anv1,anv2,anv3]=CL_man_biElliptic(ai,af,rt) // Check results : kep = [ai ; 0 ; %pi/2 ; 0 ; 0 ; anv1]; kep1 = CL_man_applyDv(kep,dv1); kep1(6) = anv2; kep2 = CL_man_applyDv(kep1,dv2); kep2(6) = anv3; kep3 = CL_man_applyDv(kep2,dv3) // Same example with Hohmann transfer : [delta_v,dv1,dv2,anv1,anv2] = CL_man_hohmann(ai,af) // more expensive !