<< distfun_gampdf Gamma distfun_gamstat >>

distfun >> distfun > Gamma > distfun_gamrnd

distfun_gamrnd

Gamma random numbers

Calling Sequence

x = distfun_gamrnd ( a , b )
x = distfun_gamrnd ( a , b , [m,n] )
x = distfun_gamrnd ( a , b , m , n )

Parameters

a :

a matrix of doubles, the shape parameter, a>0.

b :

a matrix of doubles, the scale parameter, b>0.

m :

a 1-by-1 matrix of floating point integers, the number of rows of x

n :

a 1-by-1 matrix of floating point integers, the number of columns of x

x:

a matrix of doubles, the random numbers, x>=0.

Description

Generates random variablesfrom the Gamma distribution function.

Any scalar input argument is expanded to a matrix of doubles of the same size as the other input arguments.

Examples

// Use x = distfun_gamrnd ( a , b )
x=distfun_gamrnd(1:6,(1:6)^-1)
x=distfun_gamrnd(1:6,1)
x=distfun_gamrnd(1,(1:6)^-1)

// Check x = distfun_gamrnd ( a , b , v )
x = distfun_gamrnd(2,1,[1 5])
x = distfun_gamrnd(2,1,[3 2])

// Check x = distfun_gamrnd ( a , b , m , n )
x = distfun_gamrnd([1 2 3;4 5 6],0.1,2,3)
x = distfun_gamrnd(2,1,2,3)
x = distfun_gamrnd(1,[1 2 3;4 5 6],2,3)

// Check mean and variance for x = distfun_gamrnd ( a , b )
N = 1000;
a = 2;
b = 3;
[M,V] = distfun_gamstat ( a , b )
x = distfun_gamrnd(2,3,[1 N]);
Mc = mean(x)
Mv = variance(x)

// Make a plot of the actual distribution of the numbers
scf();
a = 2;
b = 3;
x = distfun_gamrnd(a,b,1,1000);
histplot(10,x)
x = linspace(0,30,1000);
y = distfun_gampdf(x,a,b);
plot(x,y)
xtitle("Gamma Random Numbers","X","Density")
legend(["Empirical","PDF"]);

Authors


Report an issue
<< distfun_gampdf Gamma distfun_gamstat >>