
Andreas Geissler geisslea@web.de 1/7

Huffcomp Toolbox for SciLab

This small toolbox shows the principles of huffman coding. It consists of 4 routines and 
the corresponding help files. The Aim of the toolbox is to demonstrate the principles. By 
the way, the coding functions are quite fast, the decoding function could be optimized.

Installation of the Toolbox
● The toolbox is contained in a ZIP file. Unpack the ZIP file directly in your Scilab 

directory. Please activate the option in your Unzip program „with subdirectories“ or 
„recursivly“.
You will get a new directory called „huffcomp“.

● In order to have a proper installation, delete the files with extension *.bin.
● Start your SciLab program
● In the command window execute the command 

„genlib('Huffcomp','SCI/huffcomp');“
● Exit SciLab
● Edit the file SciLab.star (contained in the main scilab directory) and add the lines

● load('SCI/huffcomp/lib');
● add_help_chapter('Huffman Coding','SCI/huffcomp/man');

The line with „add_help_chapter“ should be written to the last line in the file 
scilab.star

● Now you can start Scilab again, the toolbox will be loaded on startup

Content of the toolbox
4 routines are contained. These routines are

● fasthist
● huffman
● huffcode
● huffdeco

The documentation is only available in English language.
There is no explicit demo file. Please use the example code in the SciLab Help files.

mailto:geisslea@web.de


Andreas Geissler geisslea@web.de 2/7

fasthist - fast calculation of histogram

Calling Sequence 
H = fasthist(A) 

Parameters 
• H : sparse vector, containing the number of entries of the matrix/vector A. A is 

converted inside the function to INT. 
• A : A is a vector or matrix with positive numbers. The number of occurences of 

numbers is counted. 

Description 
The function fasthist uses sparse functions to calculate the histogram in a single 
step. No while loops are needed. The matrix A may contain positive numbers larger 
or equal 1.

The result vector h (sparse) represents the histogram, that means the number of 
occurences of elements of the vector A. H has the length max(int(a)).

Examples 
// Generate a Testmatrix
A=testmatrix('frk',10)+1;
H1=fasthist(A);
// Now, we add a constant to A...
// let us see, what happens
H2=fasthist(A+6);
disp(H1);
disp(H2);
// End of Example

See Also 
huffman, huffcode

mailto:geisslea@web.de


Andreas Geissler geisslea@web.de 3/7

huffman - Huffman Coding based upon a histogram vector

Calling Sequence 
[SB,h,L,QM]=huffman(H) 

Parameters 
• H : a histogram vector (also sparse input possible) 
• SB : a vector, representing symbols 
• h : the normalized histogram vector 
• L : number of bits used for coding the corresponding symbol 
• QM : the complete code table as string vector. The symbol, the bit sequence and 

the number of bits are contained. 

Description 
This function creates the coding tree based upon a given histogram.

Examples 
// Generate a Testmatrix
A=testmatrix('frk',10)+1;
H1=fasthist(A);
//
[SB,h,L,QM]=huffman(H1);
//SB contains the symbols
disp(SB);
// h is the normalized histogram
disp(h);
// L contains the number of bits used for the symbols
disp(L);
// QM is the complete code table,
// containing symbol, bits and no. of bits
disp(QM);
// End of demo

See Also 
Huffcode, fasthist

mailto:geisslea@web.de


Andreas Geissler geisslea@web.de 4/7

huffcode - huffman coding of a sequence

Calling Sequence 
[QT,QM]=huffcode(A) 

Parameters 
• A : vector representing a input sequence. A is converted in the function to type 

INT. The elements of A must be greater or equal 1. 
• QT : A string containing 1s and 0s. QT represents the binary output sequence of 

the huffman coded signal. QT can be converted into a scalar vector with str2code. 
• QM : the huffman code table, containg symbols, bit sequences and number of bits 

of a symbol 

Description 
The function converts the scalar input sequence (vector or matrix) into a compressed 
bit sequence. The bit sequence is represented by a string containing 1s and 0s.

huffcode requires the function "fasthist" and "huffman". The reverse operation is 
performed by the scilab function "huffdeco".

Examples 
// Generate a Testmatrix
A=testmatrix('frk',10)+1;
A=A(:).';
[QT,QM]=huffcode(A);
disp('compressed Bit sequence:');
disp(QT);
disp('Code Table:');
disp(QM);
// End of Demo

See Also 
fasthist, huffman, huffdeco

mailto:geisslea@web.de


Andreas Geissler geisslea@web.de 5/7

huffdeco - Decoding of a compressed bit sequence.

Calling Sequence 
B=huffdeco(QT,QM); 

Parameters 
• QT : the compressed bit sequence, represented by a string containing 1s and 0s 
• QM : The huffman code table, containing symbols, bit sequence of a symbol and 

number of bits per symbol 
• B : the decoded (uncompressed) sequence. 

Description 
huffdeco is the reverse operation to huffcode. The output arguments of huffcode can 
directly be used as input arguments for huffdeco

Examples 
// Generate a Testmatrix
A=testmatrix('frk',10)+1;
A=A(:).';
[QT,QM]=huffcode(A);
disp('compressed Bit sequence:');
disp(QT);
disp('Code Table:');
disp(QM);
// Now, the reverse operation
B=huffdeco(QT,QM);
disp('Original:');
disp(A);
disp('Result after Uncompress:');
disp(B);
plot2d(B-A);  // A line with y=0 should appear !
// End of Demo

See Also 
huffcode, huffman

mailto:geisslea@web.de


Andreas Geissler geisslea@web.de 6/7

Performance
The routines are quite fast. On my system (Laptop Dell Latitude 800), the performance 
values below have been achieved.

Example 1:

Histogram of a vector with 10000 elements, value range [1,...,255]
-->A=(rand(1,10000) .^2)*255+1; A=int(A);
-->tic(); H=fasthist(A); toc()
 ans  = 0.02
Coding the vector
-->tic(); [QT,QM]=huffcode(A); toc()
 ans  = 1.647
Decoding the vector
-->tic(); B=huffdeco(QT,QM); toc()
 ans = 7.249
Show the differences (hopefully 0 everywhere !)

-->plot2d(B-A);

mailto:geisslea@web.de


Andreas Geissler geisslea@web.de 7/7

Example 2

Histogram of an image (640 x 480 pixels)
-->A=(rand(640,480) .^2)*255+1; A=int(A); 
-->tic(); H=fasthist(A); toc()
 ans  =  1.265

Huffman Coding of this image
-->tic(); [QT,QM]=huffcode(A); toc()
 ans  = 4.156
-->QM
 QM  =
!1:0111:4         !
!2:10111:5        !
!3:001000:6       !
!4:011000:6       !
!5:100100:6       !
!6:101011:6       !
!7:111000:6       !
!8:111110:6       !
...
[More (y or n ) ?]

Decoding the image

Decoding is much slower. May be, you have some ideas to improve the functions. One 
improvement could be the implementation of a waitbar. Here, the routine was interrupted 
by me after 1 minute.

Have much fun !

mailto:geisslea@web.de

	Huffcomp Toolbox for SciLab
	Installation of the Toolbox
	Content of the toolbox
	fasthist -fast calculation of histogram
	huffman -Huffman Coding based upon a histogram vector
	huffcode -huffman coding of a sequence
	huffdeco -Decoding of a compressed bit sequence.

	Performance
	Example 1:
	Example 2


