Min-plus algebra the power of A
[Z] = minpluspwr(A,n)
This function returns Z = A⊗'n and, Z is an maxplus identity if n = 0. If A is a square matrix, n must be non-negative integers. If A is not a square matrix or n is not nonnegative integers the operation is not defined.
a=[%inf %inf %inf 17; 4. 7. %inf %inf; %inf %inf %inf 14; 15. 13. 13. %inf]; z=minpluspwr(a,0) z=minpluspwr(a,4) // Since ℝmax ≅ ℝmin // we get minpluspwr(a,7)=-maxpluspwr(-a,7) isequal(minpluspwr(a,7),-maxpluspwr(-a,7)) // An error output if n < 0 z=minpluspwr(a,-4) // The dimension of matrix is not square ( 4 x 3), // returns error a=[%inf %inf 13; 18. 11. %inf; %inf %inf %inf; 1. %inf %inf]; z=minpluspwr(a,4) | ![]() | ![]() |