Min-plus algebra multiplication
[X] = minplusotimes(A,B)
Multiplication of two matrices in minplus algebra with appropriate size.
This function returns Xi,j= ⊕'k(ai,k⊗bk,j) = mink {ai,k+ bk,j}.
If A or B is a scalar then: X = A + B.
A = [1 2;3 4]; B = [2 3;5 7]; X = minplusotimes(A,B) // The fact that ℝmax ≅ ℝmin // as a consequence we get // minplusotimes(A,B) = -maxplusotimes(-A,-B) isequal(minplusotimes(A,B),-maxplusotimes(-A,-B)) // Next we compute 10⊗'B X = minplusotimes(10,B) // And check that // minplusotimes(10,B) = -maxplusotimes(-10,-B) isequal(minplusotimes(10,B),-maxplusotimes(-10,-B)) | ![]() | ![]() |