Max-plus algebra the power of A
[Z] = maxpluspwr(A,n)
This function returns Z = A⊗n and, Z is an maxplus identity if n = 0. If A is a square matrix, n must be non-negative integers. If A is not a square matrix or n is not nonnegative integers the operation is not defined.
a=[-%inf -%inf -%inf 17; 4. 7. -%inf -%inf; -%inf -%inf -%inf 14; 15. 13. 13. -%inf]; z=maxpluspwr(a,0) z=maxpluspwr(a,4) // Due to ℝmax ≅ ℝmin // this one is true that maxpluspwr(a,5)=-minpluspwr(-a,5) isequal(maxpluspwr(a,5),-minpluspwr(-a,5)) // An error output if n < 0 z=maxpluspwr(a,-4) // The dimension of matrix is not square ( 4 x 3), // returns error a=[-%inf -%inf 13; 18. 11. -%inf; -%inf -%inf -%inf; 1. -%inf -%inf]; z=maxpluspwr(a,4) | ![]() | ![]() |