<< ann_COMPET_visualize3d Neural_Network_Functions ann_FFBP_gda >>

NeuralNet >> Neural_Network_Functions > ann_FFBP_gd

ann_FFBP_gd

ANN FeedForward Backpropagation Gradient Decent training function.

Calling Sequence

W = ann_FFBP_gd(P,T,N)
W = ann_FFBP_gd(P,T,N,af,lr,itermax,mse_min,gd_min)

Parameters

P :

Training input

T :

Training target

N :

Number of Neurons in each layer, incluing Input and output layer

af :

Activation Function from 1st hidden layer to the output layer

lr :

learning rate

itermax :

Maximum epoch for training

mse_min :

Minumum Error (Performance Goal)

gd_min :

Minimum Gradient

W :

Output Weight and bias

Description

This function perform FeedForward Backpropagation with Gradient Decent training algorithm, the most basic training function for FFBP series

Examples

P = [1 2 3 4; 1 2 3 4];
T = [1 2 3 4];
W = ann_FFBP_gd(P,T,[2 3 1]);
y = ann_FFBP_run(P,W)

See also

Authors


Report an issue
<< ann_COMPET_visualize3d Neural_Network_Functions ann_FFBP_gda >>