DSP Library

User Manual (draft)

AIMEL

I 7

AIMEL

Y %)

DSP Library User Guide

Table of Contents

Section 1
10T (3T ox 1o o [P 1-1
1.1 MAQIC DSP PrOCESSOI .. ciiiiiiiiieiiicecctiieier et e e e e e s e eer e e e e e e e e e s nanneeeees 1-2
I I R @0 = o o o =T SO 1-2
1.1.2 Internal Memories, External Memories and DMA..........ccccooveeeernnne. 1-4
1.1.3 ARM INtEIACE....ccc oo e 1-5
1.2.4 VLIW Program WOIAooeeiiiiaiiiiiiiiiiieiee e e e e 1-5
1.1.5 INSHIUCHION SEL....e e 1-6
Section 2
List of the DSP Library FUNCHONuvuuiiiiiiiieee 2-1
2.1 General RESIHCHONS.uuuiiiiiiiiieaie ettt a e e 2-1
.. 2-2
2.2 Alphabetical DSP FUNCtion LiSt.........ccccociiiiiiiiiiiiiii e 2-2
Section 3
DSP FUNCtioNS DESCHPLIONccevveiiiiiiiiieieeee e e e e ee e 3-1
R 700 o) 1 |03 () YRR 3-1
3.2 CIMUICXY ettt e e e e e e e e e a e e e e e e e as 3-2
Bi3 CIMUIXY e a e e e e 3-3
Bi4 CONV it e et e e eaa e e 3-4
G TR T o011 177 o S 3-5
I I 01V (o J TP PPTPTTRRPRPRN 3-6
L7 CVIMA ettt e e e e e e 3-7
R T V] (o [3-8
3.9 FD_REAIFIR _Palil.....uuiiiiiiiiiiiie ittt ettt e et a e e e e e 3-9
3.9.1 Ciinitialization for realFIR function...................cccccirrriiiiccc, 3-10
0 O T 114102 U PRRRPRPN 3-11
0 5 11 1 52 ST PRRRPRPN 3-12
N D 117221 TP RPP PPN 3-13
N T 1172251 T U PRRR PSRN 3-14
T 11 5 U RRR PSRN 3-15
I ST 117 PO PRPPPPRR 3-16
0 T | = PR SRSR 3-17
.17 FIFNIMSIL .o 3-18
.18 FIFNIMSV .ottt 3-20
T8 R o 11 Ao [P PP PTPTOTPRRRN 3-22
3.20 QEIVO 26 oo ——————————————— 3-22
321 eIV I2f oo —————————— 3-23
i

DRAFT-DPS-04/05

DSP Library User Guide

Table of Contents

3.22 QEIVOCIEIM ..o 3-24
3.23 QEIVOITEE e —————————— 3-24
324 NIIDEIT ..o as 3-25

3.24.1 Cinitialization for hilbert function.ooocviiiviiee e, 3-26
3.25 11024 ..o e ————————————— 3-27
B.26 MH128 oo aaaaas 3-28
327 HE256 it a e e e aaaaas 3-29
T T 11924 < 3-30
B.29 512 oo e e aas 3-31
B.30 B4 oo e e e e aaaaeas 3-32
G 20 1 I 11 3 P 3-33
B.32 IR e e e e 3-36
3.33 TNt HRL _SIUCE.....cc o e e e e e e e e ae e raaaees 3-38
IR 1o 11 1 2= 1 o 3-39
3.35 NNIFIR e e 3-40
TR | 1 1Yo DU PP TR TP 3-40
TR A - 1= 15 - o 3-41
3,38 LBVINSON ... e ————— 3-42
TS T [o Tov2d o =T o F TP 3-44
G 2 0 T 31T To [3-44
341 MCRNOL e e ————— 3-45
I 4o 11 (=Y 1 o 3-46
I 41T [T (T o 2 3-47
T R 0 To 11 (=T 1 o 1 TSSO 3-47
L 4111 7= o S 3-48
R G I 011 10 P 3-49
I TRy 0 011 = (o = PSR 3-50
R G I 01172 | 3-50
L T 4 1Y 1 0 U] 3 S 3-51
350 MVMUIAXA ... e reeranaees 3-52
351 MVMUIBXB..... e e e r e e e e e e e s s s e ereeeeeeas 3-53
IR o T Tt 0 (o 1 3-54
3.53 PACKADLOLOIN ..ot 3-55
TR o T Tt 0 (o 1 o 3-56
IR o - 11 0 (o 1 ¢ 3-57
IR S 010 1Yo [P P PP PPPTPPTRRRN 3-58
IR o101 1Yo 1 22 PP 3-59
TR T S T o1 01 1Yo 2 S 3-59
359 V2MAgNIrl ..o 3-60
G 7T Y224 =T | YOO 3-61
361 VACOSKII ..o ——————————— 3-62
3.62 VACOSKIN. .o e ——— 3-63
B TG T 7= oo 11 o | P 3-64
TG V7= oo 1] | 3-65
3,65 VACOSKV ... e ——————— 3-66
366 VACOSI ..o 3-67

DRAFT-DPS-04/05

DSP Library User Guide

Table of Contents

I S AV~ oo 1= | TN 3-68
BTG T S Y 7= oo 1] o 3-69
G I LS Y 7= Yo 1 1 USSP 3-70
T O Y 7= Yol 1 VU 3-71
R T R V7= o o [o | Y 3-72
372 VaddIll... ..o 3-73
B3 VAN e e ———————— 3-74
374 vaddirl .. ————————— 3-75
B75 VAN e e ———————— 3-76
G T STV Vo o [5 o P 3-77
R T A - o [| SRR 3-78
T V- Vo o YU 3-79
BT VAT e e —————— 3-79
3.80 VASINNIL ... ——————————— 3-80
3.8 VASINNI.... e ————— 3-81
3.82 VASINNI...oeieii e 3-82
383 VASINNIT .o ————————— 3-83
384 VASINNV ...uuiiiii e ————— 3-84
385 VASINI ..o e ————— 3-85
386 VASINIT ..o ———————————— 3-86
B.87 VASINI e e ————— 3-87
R C 1 V7= 1 o o P 3-88
GRS T 7= T 1 3-89
3.90 VALANZ ...t 3-90
391 vatanhll. ... ———————— 3-91
3.92 VataNNIr ..o ——————— 3-92
3.93 vatanhrl ... —————— 3-93
394 VAIANNIT ... e ————————— 3-94
3.95 VALANNV ..o ————————— 3-95
396 VOYVMUIV ..ot e e e 3-96
3.7 VCHPIl e ———————————— 3-97
IR TS T o 1 o P 3-98
3199 VIV e e e e eeeaaas 3-99
3100 VCOSIL ... —————————————— 3-100
B L0L VCOSHIT .. ——————————————— 3-101
G 70 0 2V oo T~ o o U 3-102
B T8 0 Vo 1= o SR 3-103
B 104 VCOSNV ... ———————————————— 3-104
BLLOB VCOSI e e —————— 3-105
B L0B VCOSI ..ttt e 3-106
G 7000 20 Vo 1= o SR 3-107
G T 01 Yoo 11 1 PSPPSR 3-108
G T80 0 12 IV o 1 3-109
R 00 0 o [S 3-110
BULLLVAIVOIL. ... e e e e e e ereaeae s 3-111
8 200 I R Y o Y7 S 3-112
R 0 I o 1Y 7 10 [S 3-113

&El@ iii

DRAFT-DPS-04/05

DSP Library User Guide

Table of Contents

BLLLAVAIVAOIIL ... e e e e 3-114
G 200 I S o 177 0 o SR 3-115
BULLBVAIVIL .. 3-116
BULLTVAIVIT .o 3-117
G 200 S o 1Y | SRR 3-118
G 700 I R Yo 1Y/ ¢ P 3-119
BLL20 VAIVV et e e aaaae s 3-120
3121 VEXPLOIL ..t —————————— 3-121
3122 VEXPLOIE ettt e e ea e e e e as 3-122
BL2B VEXPLOI et e e 3-123
TR 102 Y = o 1 1 3-124
B 25 VEXPLOV ..o e e e e e e 3-125
BLL268 VEXPIL .. a e 3-126
G 0 2 A0 V= | SR 3-127
BLL2B VEXPI e e a e 3-128
T 240 Y2 (o] ST PP PP TR PR TP 3-129
T80 G {0 Y= 1 3-130
BULBL VA oo 3-131
BULB2 VAN e 3-132
BULBB VAT e e ———————————— 3-132
BULBA VAT oo a e 3-133
BULBS VAV e 3-134
BLLBB VEIXLI e e 3-135
BLLB7 VEIXLIr e a e 3-136
B 001 N) ¢ SR 3-137
B T T N)& o SR 3-138
BLLAO VEIXLV ettt a e e e e e e r e aaaaeas 3-139
BLLALVEIX2IL e 3-140
B A2 VEIX 2l e e ——————————————— 3-141
BLLABVEIX2I. et a e e e 3-142
B TN e o SR 3-143
B4 VEIX2V et e e aaan 3-144
BLLAB VEIXSIL . e 3-145
B TN A 1 e | SO 3-146
B TN e o R 3-147
LA VEIXBIT .ttt e e e e e e e e e e e e e e e —raaaaaaaaas 3-148
B 0 T 0 Y e SR 3-149
BUABLVFIOALLIL. ... 3-151
BUAB2 VEIOALLIT o 3-152
BB VFIOALLIT oo —————————— 3-153
G TN Y [- L o 4 S 3-154
BLAB5 VEIOALAV ...t a s 3-155
B 0 TG [= L 2 | SR 3-156
B AST7 VEIOAL2IN e ——————— 3-157
BUABBVEIOAL2IT ... 3-158
B A5 VEIO@L2IT . —————————————— 3-159
B T 10 Y [7= L w2 SR 3-160

ATMEL

DRAFT-DPS-04/05

DSP Library User Guide

Table of Contents

L3 R oo i 0 U RPPR RPN 3-161
1 T8 G 720 V] T To i 0 S 3-162
BLB3VIOGLON <. 3-163
BT G V] (oo K0 P PP PO 3-164
B T8 G To 1 0 YOS 3-165
BLLBB VIOGILeeeeee ettt e e a e arrraeaaan 3-166
BLLBT7 VIOGIT e a e 3-167
BLLBBVIOGIT e —————————— 3-168
BT I C3e R (oo | T TP PP 3-169
I TN I 0 Y [To |V ST TP 3-170
BL7LVMAGNII] e ————————— 3-171
I I 7Y 4 1 F=To [Y PP TP PP PT TR PPN 3-172
I TR AR 0 - LY PSPPSR 3-173
TRt I Y 0 = o 3-173
BT S VIMAX2V ..ttt e et e e e e e a e r e 3-174
G 70 I STV 2 11 0P 3-175
TN I Y 4 1 T0 Y o O 3-176
B.A78 VMOVEZCXINT ...t et e e e s 3-177
BLLTOVIMOVEZV .ottt ettt e e et e et e e aa b r e e e e e e tab e e e e e eeraaas 3-178
3. 180 VIMOVE2VINTeviiiiieeiieeee e e e e sttt e e e e e e e s s e e e e e e e e e e s ennnnrenrenneeeaeeas 3-179
BLLBL VIMOVEZX et eieeeiiie ettt e ettt e e e ettt e e e e e s e e e aa e e e e e et a e ae 3-180
T R AV 001y o | 3-181
B LB VMOVEIL.... e 3-182
G TS 7 AV 4 o Y= 1 3-182
B LBS VIMOVEI et e e e e e 3-183
G T = 1AV 0 T YT o U 3-184
TR A 0 10)Y PSPPSR 3-185
BULBBVMVEIL ...t 3-186
B LB VIMVEIN <.t e e e e e e e e e e e aee s 3-187
G T e 10V 2117 o 3-187
G T80 I 0 Y 0 1= o 3-188
G TR AV 0 1Y 3-189
T RS I Y0 1A o PP PP PP TP TR PR 3-190
B TR V] - oo | P 3-191
B T8 e S - o | SRR 3-192
G T K LGV, = T T A P 3-193
B 0 A V7 1 4 1= | SR 3-195
3198 VIMVESIT . ettt e e e e e e e e e e e e e e s e aaeeeae s 3-196
B L9 VIMIVESI .ttt e e 3-197
G T2 010V 1 012 | 3-198
T2 0 RV 1 412 | 3-199
3,202 VIOTALE32V ... ittt 3-199
B T2 01 Y] = U o YU 3-200
B.204 VSTtV .. ———————— 3-201
B.205VSINNIL....oo e —————— 3-202
3,206 VSINNIT ..o —————— 3-203
B.207 VSINNIL....cc e ——————————— 3-204

ATMEL

DRAFT-DPS-04/05

DSP Library User Guide

Table of Contents

G T2 01 RV ET 12 o o 3-205
B.209 VSINNV ... e 3-206
B.2L0VSINI ..o 3-207
I T2 I VT o || 3-208
G 372 I V1o o SRR 3-209
T2 e VT o o P 3-210
I T2 I Y10 L 3-211
3215 VSOOIl . ——————————————— 3-212
BL2LB VSOITOIN et a e e e e 3-213
I I A V<o | £ (0] o TP PPPRUPRT 3-214
I T2 = Vo | L0 S 3-215
I R VAo | £ L0V PSPPSR P PP PTTR PR 3-216
3220 VS e 3-217
B 22 VS OIIr e e ———————————————— 3-218
BL222 VSO ettt e e e e e e e 3-219
I G Vo | 4L TP P PTUTRPRTRTRRN 3-220
G T Y o | Y 3-221
B.225 VSUDIL. ...t a e 3-222
G T SRV o] S 3-223
B T A= | Y SO 3-224
BL228B VSUIMV ...ttt ettt e e e et e e e e e e e e e e et n e e e e e e tab e e e e e eeraans 3-225
B.229VEANNIL....co e 3-226
3,230 VEANNIE e —————————————— 3-227
B.23LVEANNTT (e 3-228
B T2 78 - 2| o1 PSSP 3-229
B.233VEANNV oo e 3-230
B.234VEANIL....co i aaa s 3-231
B 72 1 - | SO 3-232
B.230B VEANTT oo 3-233
I A 7= 1] £ SO URPP 3-234
G T2 1 TV - 0 YOS 3-234
G T2 12 I (oo] oSS 3-236
G T2 L I (oo 1 || P 3-237
B T2 5 B (o 1 1 | SR 3-238
G I 2 (o7 1 1 [S 3-239
T B (oo | 1 | U 3-240
G oo] 1 1 1 1 PR 3-241
G T (oo | 1 1 3-242
G I LG (o]0] o YA SR 3-243
Section 4
Related DOCUMENTSieiiiiiiiceeeeee e 4-1

ATMEL

I)

DRAFT-DPS-04/05

Table of Contents

DSP Library User Guide Alm l vii

I)

DRAFT-DPS-04/05

Table of Contents

DSP Library User Guide Alm l viii

I)

DRAFT-DPS-04/05

AIMEL

Y %)

DSP Library User Manual (draft)

Section 1

Introduction

This document describes the functions contained in the basic DSP function library for
mAgic.

Notes: 1. All the number of cycles given in each function description includes the C-
calling protocol (register push-pop and stack management as appropriate).

2. Some further optimization can be obtained by appropriately modifying the
code at micro assembler level.

The functions are C-callable and respect the C-calling protocol (refer to [4] in Section
“Related Documents” on page 4-1).

An overview of mAgic DSP is given in the next paragraphs. For details refer to [2] in
Section “Related Documents” on page 4-1.

1-1

DRAFT-DPS-04/05

Introduction

Figure 1-1. mAgic DSP Block Diagram

mAgic - ARM /F
VLIW Program Memory

Local Controller and VLIW Decoder PARM Memory | PARM Memory
Instr uction Condition Status Program Left 512x40 Right 512x40
Decoder Generation Register Counter

Multiple

Data Register Addres_s
File Genltjr'c_mon Data Memory | Data Memory
nit Left 6Kx40 Right 6Kx40
Address
Register File
Operator Block
DMA

Controller
Buffer Data Buffer Data

Memory Left | Memory Right
2Kx40 2Kx40

External Memory I/F

1.1 mAgic DSP
Processor

111 Core processor

1-2

The mAgic DSP is the VLIW numeric processor of the D740. It operates on IEEE 754
40-bit extended precision floating-point and 32-bit integer numeric format. The main
components of the DSP subsystem are the core processor, the on-chip memories and
the interfaces to and from the ARM subsystem. The operators block, the register file, the
address generation unit and the program decoding and sequencing unit compose the
core processor. In the following paragraphs a short description of each block is given.
For detailed information refer to the specific section in document [2] in Section “Related
Documents” on page 3-1.

mAgic is a VLIW engine but, from an user point of view, it works like a RISC machine,
implementing triadic computing operations on data coming from the register file, and
data move operations between the local memories and the register file. The operators
are pipe-lined for maximum performance. The pipe-line depth depends on the operator
used. The operations scheduling and parallelism are automatically defined and man-
aged at compile time by the assembler-optimizer, allowing efficient code execution. To
give the best support to the RISC-like programming model, mAgic is equipped with a
complex 256-entry register file. It can be used as a complex register file (real and imagi-
nary part), or as dual register file for vectorial operations. When performing single
instructions the register file can be used as an ordinary 512 register file. Both the left
and right side of the register file are 8-ported, making a total of 16 1/0O port available for
the data move to and from the operator block and the memory. The total data bandwidth
between the register file and the operator block is 70 bytes per clock cycle, avoiding bot-
tlenecks in the data flow between the two units.The operators' block, the register file, the
address generation unit and the program-sequencing unit compose the core proces-
sor.The hardware that performs arithmetical operations is contained in the Operators
Block. It works on 32-bit integers and IEEE 754 extended precision 40-bit floating-point

AIMEL

— DSP Library User Manual (draft)

DRAFT-DPS-04/05

Introduction

Figure 1-2. Register Files and Operators Block.

; L l L Memory } i + R Memory
4 5 6 7 4 5 6 7
LEFT RIGHT
01 2 3 01 2 3
b L S J

ST [T 24

Mult FP/I Mul2 FP/l Mul3 FP/l Muld [Conv
Div2

FP/l
* *

Sh/Log2
! S . S

5 5 |
He= =1y
4.ﬂ,_

The Operator Block is composed of four integer/floating point multipliers: an adder, a
subtractor and two add-subtract integer/floating point units. It has two shift/logic units, a
Min/Max operator and two seed generators for efficient division and inverse square root
computation also. The operator block is arranged to support complex arithmetic (single
cycle complex multiply or multiply and add), fast FFT (single cycle butterfly computation)
and vectorial computations. The mAgic peak performance is achieved during single
cycle FFT butterfly execution, when it delivers 10 floating-point operations per clock
cycle.

mAgic is equipped with two independent address generation units. It is able to generate
up to two couple of addresses, one to access the left and right memory for reading and
one to access the left and right memory for writing. It is also used in the loop control to
test if the end of a loop is reached. The Multiple Address Generation Unit (MAGU) sup-
ports indexed addressing, linear addressing with stride, circular addressing and bit
reversed addressing. The address generation unit is composed by 16 registers.

The Program Address Generation Unit is devoted to manage the correct Program
Counter generation according to the program flow. It generates addresses for linear
code execution as well as for non-sequential program flow. The Condition Generation
Unit combines the flags generated by the operators to produce complex conditions flags
used to control the program execution. Predicated instruction execution is supported for
different groups of instructions: arithmetical instructions, memory write, immediate load,
or all of them. The Program Address Generation Unit allows also to perform conditioned
and unconditioned branch instructions, loops, call to subroutines and return from
subroutines.

DSP Library User Manual (draft) Alm l 1-3

I)

DRAFT-DPS-04/05

Introduction

1.1.2 Internal Memories,
External Memories
and DMA

1-4

mAgic has four on chip memory blocks: the Program Memory, the Data Memory, the
Data Buffer, and the dual ported memory shared with the ARM processor. An External
Memory Interface multiplexes the Data accesses and the Program accesses to and
from the External Memory.The Program Memory stores the VLIW program to be exe-
cuted by mAgic. It is 8K words by 128-hit single port memory. When mAgic is in System
mode ARM can modify the content of the mAgic Program Memory in two different ways.
ARM can directly write a Program Memory location by accessing the memory address
space assigned to the mAgic Program Memory in the ARM memory map. In this access
mode ARM writes four 32-bit words to four consecutive addresses at correct address
boundaries, in order to properly complete a single VLIW word write cycle. ARM can also
modify the content of the mAgic Program Memory by initiating a DMA transfer from the
external memory to the mAgic Program Memory. In this access mode a single VLIW
word is transferred from the mAgic external memory to the mAgic Program Memory
64-bit per cycle, that is one complete word every two clock cycles. Due to the program
compression scheme used (see later), allowing average program compression between
2 and 3, the code accessing capability of mAgic from its external memory is greater then
one instruction per clock cycle. When mAgic is in Run mode, ARM can't get access to
the mAgic Program Memory. When in Run mode mAgic can initiate a DMA transfer from
the external memory to the mAgic Program Memory to load a new code segment.

In order to optimize the internal Program Memory usage and the code bandwidth from
the external Program Memory to the internal Program Memory, a code compression
mechanism has been implemented. The code for mAgic can be generated and exe-
cuted in compressed or encompassed form. When the code stored in Program Memory
is compressed, the decompression is done "on flight" just after the Instruction Fetch.
The current code compression scheme allows getting compression factors between 2
and 3, depending on the code structure without performance loss.

Anyway the classic DSP execution determinism is maintained: only the amount of pro-
gram memory used can change, as function of the compression factor achieved, not the
program execution timing. Thanks to the code compression, the code density obtained
for mAgic is similar to the code density available on other non VLIW DSP, while main-
taining the advantage in terms of instruction level parallelism.

The mAgic internal Data Memory is made of three memory pages, 2K words by 40-bit
for the left data memory and 2K words by 40-bit for the right data memory, giving a total
of 6K word left and right memory banks (12 Kword total). Each Data Memory bank is a
dual port memory that allows four simultaneous accesses, two accesses in reading
mode and two in writing. The core can access vectorial and single data stored in data
memory. Accessing a complex data is equivalent to accessing a vectorial data. During
simultaneous read and write memory accesses, the MAGU generates two independent
read and write addresses common to the left and right memory banks. The total avail-
able bandwidth between the register file and the data memory is 20 bytes per clock
cycle, allowing full speed implementation of numerically intensive algorithms (e.g. com-
plex FFT and FIR).

The Buffer Memory is 2K words by 40-bit for both the left and right memory. The Buffer
Memory is a dual port memory. One port is connected to the core processor. The MAGU
generates the Buffer Memory addresses for transferring data to and from the core. The
second port of the Buffer Memory is connected to the External Memory Interface. The
Buffer Memory doesn't support dual read and write accesses neither from the core nor
from the External Memory Interface. The available bandwidth between the core proces-
sor and the Buffer Memory is equal to the available bandwidth between the External
Memory Interface and the Buffer Memory: 10 bytes per clock cycle. The maximum
external memory size of mAgic is 16 Mword Left and Right (equivalent to 32 Mword or
160 Mbytes; 24-bit address bus). A DMA controller manages the data transfer between

AImEl DSP Library User Manual (draft)

I)

DRAFT-DPS-04/05

1.1.3 ARM Interface

1.1.4 VLIW Program Word

DSP Library User Manual (draft)

Introduction

the external memory and the Buffer Memory. The DMA controller can generate
accesses with stride both for the External Memory and the Buffer Memory. The DMA
transfers to and from the Buffer Memory can be executed in parallel with the full speed
core instructions execution with zero-overhead and without the intervention of the core
processor used only to initiate it.

Two kind of DMA transfer are allowed: non-blocking transfers and blocking transfers.
The first type (non-blocking transfers) consists of a transfer that is immediately launched
if the DMA machine is idle. If the DMA machine is busy, the transfer request is queued
into a FIFO. The second type of transfers (blocking transfers) consists of a transfer that
is immediately launched if the DMA machine is idle. If the DMA machine is busy, the end
of the current transfer is waited and then the burst is started. In this case the execution
of core instruction is suspended until the requested transfer is started. The core can be
synchronized with the DMA engine through the usage of specific synchronization
instructions.

The last memory block in the address space of mAgic DSP is the memory shared
(PARM) between mAgic and the ARM processor. It is a dual port memory 512 words by
40-bit for the left and right banks (total 1K by 40-bit). This memory can be used to effi-
ciently transfer data between the two processors. The available bandwidth between the
core processor and the shared memory is 10 bytes per clock cycle. On the ARM side
the available bandwidth is limited by the bus size of the ARM processor (32 bits) giving a
bandwidth of 4 bytes per ARM clock cycle.

The DIOPSIS 740 master is the ARM7 RISC processor. mAgic behaves as standard
AMBA ASB slave device, allowing access to different resources depending on the oper-
ating mode (Run or System).

In System Mode, mAgic halts its execution and ARM takes control on it. When mAgic is
in System mode ARM can access many mAgic internal devices. The ability of ARM to
access internal mAgic resources in System Mode can be used for initialization and
debugging purposes. Accessing the Command Register, ARM can change the operat-
ing status of the DSP (Run/System Mode), initiate DMA transactions, force single or
multiple step execution, or simply read the DSP operating status.

In Run Mode, mAgic works under direct control of its own VLIW program and ARM has
access only to the 1K x 40-bit dual ported shared memory (PARM) and to the mAgic
Command Register.

In order to allow a tight coupling between the operations of mAgic and ARM at run time,
they can exchange synchronization signals, based on interrupts.

The mAgic VLIW program word can assume different configurations according to the
kind of instructions it contains.

In the first configuration, that is also the most typical one, the VLIW is divided in four
fields, corresponding to the building blocks of the VLIW core: Flow Control Unit, Multiple
Address Generation Unit, Data Register File Addresses, and Operators Block. In this
configuration each field directly drives the architectural blocks to which it's connected.

A second kind of mAgic instruction uses all the bits in the long instruction word to per-
form a single cycle, multiple loading of immediate data, multiple addressing initialization
and looping set up.

A third kind of instruction contains the parameters for launching DMAs between the
external memory interface and the local buffers. This instruction is passed to the DMA
engine and is executed in complete parallelism with the activities of the VLIW core.

AIMEL s

I)

DRAFT-DPS-04/05

Introduction

1.1.5 Instruction Set

1-6

The operands supported in the instruction set are different for the different kind of
instruction. The available operands types are summarized in Table 1-1.

Table 1-1. Operands Data Type

Complex (Float or Integer)

Complex Conjugated (Float or Integer)

Complex Double Conjugated (Float or Integer)

Complex with Real (Float or Integer)

Vectorial (Float or Integer)

Single Operand (Float or Integer)

mAgic treats complex numbers as couples of 40-bit floating-point. The real part is stored
in the left (L) memory bank and the imaginary part is stored at the same address of the
right (R) memory bank. The Register File is also divided in real (L) and imaginary parts

(R).

mAgic instruction set supports the kind of instruction summarized in Table 1-2.

Table 1-2. Instructions Summary

Add-Sub Instructions

Address Register File Management Instructions

Branch Instructions

DMA (Burst Transfer) Instructions

Compare Instructions

Condition Code and Loop Instructions

Control and Miscellaneous Instructions

Convertion Instructions

Interrupt Management Instructions

Logical and Shift Instructions

Mathematical Seed Generation Instructions

Miscellaneous Arithmetic Instructions

Move Instructions

Multiply Instructions

Repeat Instructions

Some assembly instructions operate on complex conjugated numbers. They can be of
two types: the CJ ones in which the first operand is a complex number while the second
is conjugated before its use and the CJJ in which both operands are conjugated.

It is also possible the execution of additions and multiplications between a complex
number and a real number (40-bit floating point or 32-bit integer). This kind of instruc-
tions are obtained with a complex additions or products in which the second complex
operand has the imaginary part masked with zero.

The vectorial numbers are couple of data of the same type (40-bit floating point, or 32-bit
integer). The first element of the couple must be in the L memory or registers; the sec-
ond element must be in the R memory or registers. On vectorial numbers, two

Alm l DSP Library User Manual (draft)

I)

DRAFT-DPS-04/05

DSP Library User Manual (draft)

Introduction

operations of the same type (two additions, two products, etc.) are performed (Vectorial
Operations). The operands for vectorial instructions are couple of registers. Real num-
bers (40-bit floating point and 32-bit integer) can be placed either in the L or R space.
The single arithmetical operations are performed exclusively on one path (L or R
depending on the destination register). The input and destination registers can be in any
bank.

The combination of the available computing operations and the different kind of oper-
ands for the complex domain operations allows implementing in a very natural way
many common signal-processing operations (e.g. a sampled correlation computation is
simply a multiply with conjugate and add; Inverse FFT is a scaled FFT with conjugate
coefficients). The operations scheduling and parallelization is automatically defined and
managed at compile time by the assembler-optimizer, allowing efficient code execution
and substantially simplifying the code development.

AIMEL .

I)

DRAFT-DPS-04/05

Introduction

1-8 Alm l DSP Library User Manual (draft)

I F)

DRAFT-DPS-04/05

AIMEL

Section 2
List of the DSP Library Function
2.1 General The library functions are designed to work with the mAgic C compiler mcc. The functions

Restrictions

DSP Library User Manual (draft)

make use of the C stack to push the used registers when appropriate. In the chapter 3
are listed for each function the number of locations of the stack used. The library func-
tions can also be called from an assembly code using the same conventions used by the
C compiler to pass the parameters. In this case, it is advisable to copy the registers with
the passed parameters of the function who calls the leaf function, in not scratch regis-
ters and push them.

Sometime the functions rely on the value of the C initialized registers (e.g. the register
already initialized to 1.0f or to 1 or to 0). Thus to correctly execute a function from the
library the mcc runtime initialization code must be executed to appropriately initialize the
constant register values and to initialize a stack. Moreover the mcc register usage con-
ventions are adopted. Refer to the mcc manual for all the details.

The vectorial functions operates on arrays that have a size less or equal to 2K locations,
independently if they are of type int, float, _ vector__ float, _vector__int, complex__
float or __complex__int. Arrays defined in Parm Memory must have a maximum of 512
elements. The arrays used in the DSP library functions can be allocated in Internal
Memory. It is also possible to declare an array in Buffer Memory or in Parm Memory, but
the simultaneous access in reading and writing mode to input/temporary/output arrays
must be granted. For example, if the user defines an input array in Parm Memory, any
other array of that function can’'t be defined in the same Parm Memory. As a general
rule, for each function it is possible to allocate a maximum of one array in Parm Memory,
a maximum of one array in Buffer Memory and as many arrays as required in Internal
Memory.

Note that the Internal Memory and the Buffer Memory corrispond respectively to the
Data Memory and Buffer Data Memory indicated in the Figure 1-1 on page 2. The mAgic
C compiler mcc refers to the Internal Memory with: PO, P1, P2, to the Buffer Memory
with P3 and to the Parm Memory with P4,

The _ vector__ int value returned by some functions described in the chaper 3 has the
following meaning: it stores the content of the two Sticky Status registers in the return
registers (498 and 499) of the Register File after the computation. If an operation has
happened on invalid values or arithmetic operation has resulted in an exception, the rel-
evant bits of these registers are set. For more details on the Status Flags and
Exceptions refer to the DIOPSIS 740 Data Sheet (doc7001.pdf).

2-1

DRAFT-DPS-04/05

2.2
Function List

Table 2-1. DSP Function List

Alphabetical DSP The DSP functions are all C-callable and comply with the mAgic C Compiler (MCC) pro-

tocol. The execution cycles listed include the C-calling protocol overhead.

Code Size
Function name Execution Cycles (in VLIW) Notes
cmulcxey 24 + 2 x Nelements 20 Complex cqmyga}e element by
element multiplication
Complex element by element
cmulxy 25 + 2 x Nelements 21 multiplication with the first input
conjugate
cmulxy 25 + 2 x Nelements 21 Cornplgx . element by element
multiplication
Initialization: 25
Input transient: 14 +34 x (M-1)+6 xM/ 2
x (M-1)
conv Steady state: 38 +44 x L/2+13xM /4 x L 123 Convolution with complex vectors
/2 ->L=N-M+1
Output transient: 6 + 35 x (M-1)+6xM /2
x(M-1)
171 +4xK+3x(M-K+1)x(N-K+ 1)+ 2-dimensional convolution of
conv2d (((9xK/2+30)x(N-K+1)+7xK/2+ 165 complex matrix A with complex
25)x K/2+28) % (M- K+1) kernel matrix H
cvexp 137 + 23.5 x Nelements 67 Complex exponentlal of an input
array stored in left memory
Product of 2 complex input arrays
cvma 37 + 3 x Nelements 33 and sum with the third complex
input array
Division of a complex array by a real
cvrdiv 83 + 8 x Nelements 51 array stored in left memory element
by element
FD_RealFIR_Pair 268 + 20 x (N / 4 - 5) + fft cycles + ifft cycles 164 FIR f|_|ter on t.WO real signals using
two different filter sequences
fft1024 6405 230 Complex FFT on 1024 points
fft128 1053 183 Complex FFT on 128 points
fft256 1729 175 Complex FFT on 256 points
fft288 2623 193 Complex FFT on 288 points
fft512 3251 178 Complex FFT on 512 points
ffté4 769 148 Complex FFT on 64 points
FIR 136 + (79 +13x(M/4-3))xL/2 99 Complex FIR filter
FirNImsll 77+ (94+ 4.25 x (P-4)) x (N-P+1) +8.0 x P 130 | Fir filter using Least Mean Square
Algorithm
2-2 Alm l DSP Library User Manual (draft)

I)

DRAFT-DPS-04/05

Table 2-1. DSP Function List (Continued)

. 78 + (94+4.25 x (P-4)) x (N-P+1) +8.0 x P - Pair of FIR filters using Least Mean
FirNImsv 7 135 .
Square Algorithm
Extraction of vectorial data from a
getvq 65 + 1x Nelements 39 vector queue to the destination
vector
Extraction of vectorial data from a
getvq_f2i 60 + 1 x Nelements 36 vector queue to the destllnatlon
vector and float to integer
conversion
Extraction of vectorial data from a
getvq_i2f 71 + 1 x Nelements 40 vector queue to the destination
vector and integer to
floatconversion
Number of unread elements in a
getvgelem 12 4
vector queue
getvgfree 12 4 Number of free positions in a vector
queue
hilbert 174 + 2.6875 x N + fft cycles + ifft cycles 113 Discrete _tlme hilbert function on a
complex input vector of N elements
ifft1024 6527 233 Cqmplex inverse FFT on 1024
points
ifft128 1112 176 Complex inverse FFT on 128 points
ifft256 1829 183 Complex inverse FFT on 256 points
ifft288 2836 179 Complex inverse FFT on 288 points
ifft512 3487 181 Complex inverse FFT on 512 points
ifft64 767 151 Complex inverse FFT on 64 points
189 + [47 + 14 x (Stages_Nr - 2)] x Ch_Nr x Cascaded vectorial IIR biquad
IIR1 109 - L .
Samples_Nr/2 section with pipeline on sections
187 + [66 + 20 x (Stages_Nr x Ch_Nr -4)/ 2] Cascaded vectorial 1IR biquad
IIR2 122 . .
x Samples_Nr section on input sequences
Init_IIR1_struct 277 + 6 x Stages_Nr x Ch_Nr x 2 49 In|t|a|_|zat|on procedure for lIR1
function
Init_IIR2_struct 204 + 6 x Stages_Nr x Ch_Nr x 2 g4 | Initialization procedure for IIR2
function
initEIR 3543 %M 23 Inltlal_lzatlon procedure for FIR
function
Initialization of the data structure
initvq 45 22 used to manage a vector circular
buffer
LastStage 137 +3.25x N 71 Plain radix two butterfly
levinson 3297 (P =11) 131 Levinson-Durbin recursion
Ipc2cep 5074 (N = 11 and M = 32) 122 Cepstral coefficients of a real float
array in left memory
madd 35+7x(MxN/2-1) 25 Sum of two complex matrices
L-U decomposition of a positive
mchol 0.4166 x + 23.75 x +47.84 x N + 138 212 definite square matrix using
Cholesky algorithm

DSP Library User Manual (draft)

ATMEL

I)

2-3

DRAFT-DPS-04/05

Table 2-1. DSP Function List (Continued)

mdeterm

28 +1.33 x +23 x +36.5 x N + Cycles for
swap operation, which is data dependent

195

Determinant of a complex matrix of
the order N x N

mdeterm2

29

Determinant of a complex matrix of
the order 2 x 2

mdeterm3

22

22

Determinant of a complex matrix of
the order 3 x 3

minvert

466 x + 685 x - N x 18.17 - 44 + 130 +
Cycles for swap operation which is data
dependent

400

Inverse of a complex square matrix
of the order N x N

mmul

112+ (((((6 x (N-1)+13) x M)+11) x P)

56

Product of 2 complex matrices

mtrace

35+5xN/2

22

Trace of N x N complex matrix

mvmul

46 + ((((6 x (N-1)) + 17) x M) + 11) x P

48

Product of a complex matrix with a
set of complex vectors

mvmul3x3

59 + 9 x Nelements

44

Product of a complex 3x3 matrix
with a set of complex vectors of size
3

mvmul4x4

125 + 16 x Nelements

68

Product of a complex 4x4 matrix
with a set of complex vectors of size
4

mvmul8x8

461 + 69 x Nelements

203

Product of a complex 8x8 matrix
with a set of complex vectors of size
8

pack40tol6ll

39 + 6 x Nelements

40

Multiplication by a float value,
addition of a float offset, clipping in
a float range of a pair of data in left
memory and conversion of the
results in a 16 bit integer arranged
in a 32 bit word in left memory

pack40to16lr

39 + 6 x Nelements

41

Multiplication by a float value,
addition of a float offset, clipping in
a float range of a pair of data in left
memory and conversion of the
results in a 16 bit integer arranged
in a 32 bit word in right memory

pack40to16rl

42 + 6 x Nelements

41

Multiplication by a float value,
addition of a float offset, clipping in
a float range of a pair of data in right
memory and conversion of the
results in a 16 bit integer arranged
in a 32 bit word in left memory

pack40tol16rr

41 + 6 x Nelements

42

Multiplication by a float value,
addition of a float offset, clipping in
a float range of a pair of data in right
memory and conversion of the
results in a 16 bit integer arranged
in a 32 bit word in right memory

putvq

64 + 1x Nelements

37

Filing of a vector queue with
vectorial data

putvg_f2i

72 + 1 x Nelements

38

Filing of a vector queue with
vectorial data converted from float
to integer

2-4

ATMEL

I)

DSP Library User Manual (draft)

DRAFT-DPS-04/05

Table 2-1. DSP Function List (Continued)

Filing of a vector queue with
putvq_i2f 72 + 1 x Nelements 38 vectorial data converted from
integer to float
v2magnirl 24 + 14 x Nelements 18 Vector squared magnitude
v2magnv 26 + 2.75 x Nelements 24 VeCtO.”al complex squared
magnitude
vacoshll 400 + 27.75 x Nelements 251 _Inverse hyperbolic cosine of a float
input array and left to left move
vacoshlr 389 + 27.75 x Nelements 254 !nverse hyperbolic cosine of a float
input array and left to right move
vacoshrl 400 + 27.75 x Nelements 252 _Inverse hyperbol_|c cosine of a float
input array and right to left move
vacoshrr 391 + 27.75 x Nelements 254 !nverse hyperbo!lc cosine of a float
input array and right to right move
vacoshv 354 + 50.5 x Nelements 220 Invers_e _hyperbohc cosine of a
vectorial input array
vacosl| 310 + 26.25 x Nelements 232 Inverse cosine of a float input array
and left to left move
vacoslr 300 + 26.75 x Nelements 232 Inverse cosine of a float input array
and left to right move
vacost| 308 + 26 x Nelements 233 Inver;e cosine of a float input array
and right to left move
vacosIr 298 + 26.5 x Nelements 232 Inver_se cosw_\e of a float input array
and right to right move
VACOSY 292 + 52 x Nelements 208 inverse cosine of vectorial input
array
vaddintv 39 + 2 x Nelements 34 Sum of 2 vectorial integer arrays
Sum of 2 input float array stored in
vaddlll 31+ 2 x Nelements 24 left memory and output in left
memory
Sum of 2 input float array stored in
vaddllr 32 + 2.25 x Nelements 36 left memory and output in right
memory
Sum of 2 input float array : the first
vaddirl 314 2 x Nelements o5 is storegl in left memory while the
second in right memory. The output
is written in left memory
Sum of 2 input float array: the first is
vaddlrr 31+ 2 x Nelements 25 stored n !eft memory while the
second in right memory. The result
is written in right memory
Sum of 2 input float array stored in
vaddrrl 40 + 2 x Nelements 36 right memory and output in left
memory
Sum of 2 input float array stored in
vaddrrr 35 + 2 x Nelements 25 right memory and output in right
memory
vaddv 32 +2.75 x Nelements 27 Sum of 2 vectorial float array

DSP Library User Manual (draft) Alm l 2-5

I)

DRAFT-DPS-04/05

Table 2-1. DSP Function List (Continued)

varll 53 + 1.75 x Nelements 33 Variance of a float array
vasinhll 400 + 27.75 x Nelements 249 !nverse hyperbolic sine of a float
input array and left to left move
vasinhlr 389 + 27.75 x Nelements 252 !nverse hyperbolic sine of a float
input array and left to right move
vasinhrl 400 + 27.75 x Nelements 250 !nverse hyperbqllc sine of a float
input array and right to left move
vasinhrr 390 + 27.75 x Nelements 252 _Inverse hyperbqllc sine of a float
input array and right to right move
vasinhv 354 + 50.5 x Nelements 219 Inversg .hyperbohc sine of - a
vectorial input array
vasinll 310 + 26.25 x Nelements 233 Inverse sine of a float input array
and left to left move
vasinlr 299 + 26.75 x Nelements 231 Inverse sine of a float input array
and left to right move
vasinrl 200 + 26 x Nelements 232 Inver_se sine of a float input array
and right to left move
vasinrr 207 + 26.5 x Nelements 236 Inverge sine of a float input array
and right to right move
vasinv 290 + 51 x Nelements 210 Inverse sine of a vectorial input
array
argument (arctan2) of a complex
vatan2 339 + 26.5 x Nelements 224 input array and result in a float array
in left memory
vatanhll 323 +19.25 x Nelements 184 !nverse hyperbolic tangent of a float
input array and left to left move
vatanhlr 320 +19.25 x Nelements 186 _Inverse hyperbolic tangent of a float
input array and left to right move
vatanhrl 321 +19.25 x Nelements 182 !nverse hyperbolllc tangent of a float
input array and right to left move
vatanhrr 318 +19.25 x Nelements 184 I nverse hyperbol_lc tange_nt of a float
input array and right to right move
vatanhv 300 + 35 x Nelements 161 Inversg .hyperbohc tangent of a
vectorial input array
vbyvmulv 25 + 2 x Nelements 19 Vect_or!al . element by element
multiplication
Clipping of a float array in left
. memory between two float values
velipl 25 +2 x Nelements 26 ClipUp and ClipDown and left to left
move
Cipping of a float array in right
. memory between two float values
veliprr 31 +2 x Nelements 21 ClipUp and ClipDown and right to
right move
. Vectorial clipping between the two
velipv 36 + 2 x Nelements 30 values ClipUp and ClipDown
veoshll 307 + 19 x Nelements 165 Hyperbolic cosine of a float input
array and left to left move
2-6 Alm l DSP Library User Manual (draft)

I)

DRAFT-DPS-04/05

Table 2-1. DSP Function List (Continued)

Hyperbolic cosine of a float input

vcoshlir 306 +18.5 x Nelements 159 .
array and left to right move

Hyperbolic cosine of a float input

vcoshrl 304 +19 x Nelements 166 .
array and right to left move

Hyperbolic cosine of a float input

vcoshrr 306 + 18.5 x Nelements 161 . .
array and right to right move

Hyperbolic cosine of a vectorial

vcoshv 320 + 31x Nelements 156 .
input array

Cosine of a float input array and left

vcosll 125 + 13.25 x Nelements 65
to left move

Cosine of a float input array and left

vcoslr 124 + 13 x Nelements 66 .
to right move

Cosine of a float input array and

vcostl 125 + 13 x Nelements 67 .
right to left move

Cosine of a float input array and

veosrr 123 + 13 x Nelements 66 - .
right to right move

VCcosV 107 + 20.5 x Nelements 58 Cosine of a vectorial input array

Euclidean distance between two

vdist 173 + 10.5 x Nelements 109 .
input complex arrays

Float array division element by

vdivOrll 32 + 25 x Nelements 27
element

Float array division element by
element with Y and X il left memory
and precision equal to 31 bit of
mantissa

vdiv40lll 78 + 7.75 x Nelements 64

Float array division element by
element with Y in left memory and X
in right memory and precision equal
to 31 bit of mantissa

vdiv40Irl 79 + 7.75 x Nelements 68

Float array division element by
element with Y in right memory and
X in left memory and precision
equal to 31 bit of mantissa

vdiv40rll 78 + 7.75 x Nelements 66

Float array division element by
element with Y and X in right
memory and precision equal to 31
bit of mantissa

vdiv4O0rrl 80 + 7.75 x Nelements 65

Float array division element by
element with Y and X in left memory
and precision equal to 23 bit of
mantissa

vdivlll 96 + 3.75 x Nelements 59

Float array division division element
by element with Y in left memory
and X in right memory and precision
equal to 23 bit of mantissa

vdivirl 98 + 3.25 x Nelements 61

Float array division element by
element with Y in right memory and
X in left memory and precision
equal to 23 bit of mantissa

vdivrll 98 + 3.5 x Nelements 59

DSP Library User Manual (draft) Alm l 2-7

I)

DRAFT-DPS-04/05

Table 2-1. DSP Function List (Continued)

vdivrrl

93 + 3.75 x Nelements

59

Float array division element by
element with X and Y in right
memory and precision equal to 23
bit of mantissa

vdivvy

90 + 6.75 x Nelements

51

Vectorial float division element by
element

vexplOll

124 + 10 x Nelements

69

exponential to base 10 (10") of a
float input array and left to left move

vexplOlr

126 + 10 x Nelements

69

exponential to base 10 (10") of a
float input array and left to right
move

vexpl0rl

123 + 10 x Nelements

69

exponential to base 10 (10") of a
float input array and right to left
move

vexpl0rr

123 + 10 x Nelements

69

exponential to base 10 (10") of a
float input array and right to right
move

vexplOv

115 + 18.5 x Nelements

60

exponential to base 10 (10") of a
vectorial input array

vexpll

125 + 10 x Nelements

70

exponential to base e (¢") of a float
input array and left to left move

vexplr

124 + 9.75 x Nelements

66

exponential to base e (¢") of a float
input array and left to right move

vexprl

124 + 10 x Nelements

70

exponential to base e (¢") of a float
input array and right to left move

vexprr

123 + 9.75 x Nelements

66

exponential to base e (¢") of a float
input array and right to right move

vexpv

116 + 18.5 x Nelements

61

exponential to base e (¢') of a
vectorial input array

viillll

20 + 1.5 x Nelements

18

Filing of an array in left memory
with a constant stored in left
memory

Villlr

20 + 1.5 x Nelements

18

Filling of an array in right memory
with a constant stored in left
memory

Vfillrl

22 + 1.5 x Nelements

19

Filing of an array in left memory
with a constant stored in right
memory

Villrr

22 + 1.5 x Nelements

19

Filling of an array in right memory
with a constant stored in right
memory

Villv

22 + 1.5 x Nelements

19

Filing of a vectorial array with a
vectorial constant

viix1ll

42 + 1 x Nelements

29

Addition of a float offset, float to
integer conversion and left to left
move

vfixlr

42 + 1 x Nelements

29

Addition of a float offset, float to
integer conversion and left to right
move

2-8

ATMEL

I)

DSP Library User Manual (draft)

DRAFT-DPS-04/05

Table 2-1. DSP Function List (Continued)

Addition of a float offset, float to
vfixarl 43 + 1 x Nelements 29 integer conversion and right to left
move

Addition of a float offset, float to
vfixdrr 43 + 1 x Nelements 29 integer conversion and right to right
move

Addition of a vectorial float offset,
vfix1lv 53 + 1x Nelements 30 float to integer conversion and
vectorial move

Multiplication by a float value,
addition of a float offset, float to
integer conversion and left to left
move

vfix2ll 34 + 2 x Nelements 36

Multiplication by a float value,
addition of a float offset, float to
integer conversion and left to right
move

vfix2lr 34 + 2 x Nelements 36

Multiplication by a float value,
addition of a float offset, float to
integer conversion and right to left
move

vfix2rl 36 + 2 x Nelements 35

Multiplication by a float value,
addition of a float offset, float to
integer conversion and right to right
move

vfix2rr 36 + 2 x Nelements 35

Multiplication by a vectorial float
value, addition of a vectorial float
offset and float to integer
conversion

vfix2v 36 + 2 x Nelements 35

Multiplication by a float value,
addition of a float offset, clipping in
a float range, float to integer
conversion and left to left move

Vfix3ll 24 + 3.75 x Nelements 55

Multiplication by a float value,
addition of a float offset, clipping in
a float range, float to integer
conversion and left to right move

Vfix3lr 24 + 3.75 x Nelements 57

Multiplication by a float value,
addition of a float offset, clipping in
a float range, float to integer
conversion and right to left move

Vfix3rl 27 + 3.75 x Nelements 55

Multiplication by a float value,
addition of a float offset, clipping in
a float range, float to integer
conversion and right to right move

vFix3rr 27 + 3.75 x Nelements 57

Multiplication by a vectorial float
value, addition of a vectorial float
Vfix3v 44 + 3 x Nelements 61 offset, clipping in a vectorial float
range and float to integer
conversion

Integer to float conversion, addition
of a float offset and left to left move

DSP Library User Manual (draft) Alm l 2-9

I)

vfloatlll 36 + 1 x Nelements 28

DRAFT-DPS-04/05

Table 2-1. DSP Function List (Continued)

vfloatllr

36 + 1 x Nelements

28

Integer to float conversion, addition
of a float offset and left to right
move

vfloatlrl

39 + 1 x Nelements

29

Integer to float conversion, addition
of a float offset and right to left
move

vfloatlrr

39 + 1 x Nelements

29

Integer to float conversion, addition
of a float offset and right to right
move

vfloatlv

39 + 1 x Nelements

29

Vectorial integer to float conversion
and addition of a vectorial float
offset

vfloat2ll

37 + 2 x Nelements

33

Integer to float conversion,
multiplication by a float scale factor,
addition of a float offset and left to
left move

vfloat2Ir

37 + 2 x Nelements

33

Integer to float conversion,
multiplication by a float scale factor,
addition of a float offset and left to
right move

vfloat2rl

39 + 2 x Nelements

34

Integer to float conversion,
multiplication by a float scale factor,
addition of a float offset and right to
left move

vfloat2rr

39 + 2 x Nelements

34

Integer to float conversion,
multiplication by a float scale factor,
addition of a float offset and right to
right move

vfloat2v

39 + 2 x Nelements

34

Vectorial integer to vectorial float
conversion, multiplication by a
vectorial float scale factor and
addition of a vectorial float offset

viog10ll

156 + 13 x Nelements

85

Logarithm to base 10 of a float input
array and left to right move

viog10Ir

156 + 13 x Nelements

85

Logarithm to base 10 of a float input
array and right to left move

viog10rl

156 + 13 x Nelements

85

Logarithm to base 10 of a float input
array and right to left move

vliog10rr

154 + 13 x Nelements

86

Logarithm to base 10 of a float input
array and right to right move

viog10v

143 + 24.5 x Nelements

74

Logarithm to base 10 of a vectorial
input array

viogll

157 + 13 x Nelements

85

Natural logarithm of a float input
array and left to left move

vloglr

156 + 13 x Nelements

82

Natural logarithm of a float input
array and left to right move

viogrl

157 + 13 x Nelements

86

Natural logarithm of a float input
array and right to left move

viogrr

154 + 13 x Nelements

86

Natural logarithm of a float input
array and right to right move

2-10

ATMEL

I)

DSP Library User Manual (draft)

DRAFT-DPS-04/05

Table 2-1. DSP Function List (Continued)

viogv 143 + 24.5 x Nelements 74 Natural logarithm of a vectorial input
array

vmagnlrl 30 + 41 x Nelements 31 Vector magnitude

vmagnv 115 + 8.75 x Nelements 84 Complex magnitude

vmaxv 43 + 1 x Nelements 29 Vectorial maximum

vmax1y 54 + 725 x Nelements 63 _Plpellned vectc_mal maximum with
indexes extraction

Vmax2y 33 + 8 x Nelements 35 Vectorllal maximum with indexes
extraction

vmmul 50 + (6 x (M- 1)) + 18) x N 42 Product of a_complex vector with a
complex matrix

vmove2cx 30 + 1x Nelements 26 Cpmplex conjugate vector move
with scale factor and offset

vmove2cxint 32 + 2.25 x Nelements 31 Comple_x conjugate vector integer
move with scale factor and offset

vmove2y 28 + 1x Nelements o5 Vectorial move with scale factor and
offset

vmovevint 30 + 2 x Nelements 30 Vectorial integer move with scale
factor and offset

vmove2x 30 + 1x Nelements 27 Complex vector move with scale
factor and offset

vmove2xint 32 + 2.25 x Nelements 31 Complex integer vector move with
scale factor and offset

vmovell 20 + 1x Nelements 18 Left to left float array move

vmovelr 20 + 1 x Nelements 18 Left to right float array move

vmoverl 24 + 1 x Nelements 18 Right to left float array move

vmoverr 23 + 1x Nelements 19 Right to right float array move

vmovev 19 + 1x Nelements 18 Vectorial move
Mean stored in left memory of a

vmvell 54 + 1 x Nelements 29 float input array stored in left
memory
Mean stored in right memory of a

vmvelr 54 + 1 x Nelements 29 float input array stored in left
memory
Mean stored in left memory of a

vmverl 54 + 1 x Nelements 30 float input array stored in right
memory
Mean stored in right memory of a

vmverr 55 + 1 x Nelements 30 float input array stored in right
memory

vmvev 55 + 1 x Nelements 31 Mean of a vectorial input array

va2vg 132 + 1 x Nelements 56 Copy of vectorial data from the
vector queue 1 to vector queue 2

vrand| 37 + 2.5 x Nelements a1 Random numbers generator in left
memory

DSP Library User Manual (draft)

ATMEL

I)

2-11

DRAFT-DPS-04/05

Table 2-1. DSP Function List (Continued)

vrandr 41 + 2.25 x Nelements a1 Random numbers generator in right
memory
vrandv 35 + 4.5 x Nelements 37 Vectorial float array random
numbers generator
Root mean square stored in left
vrmvesqll 104 + 1 x Nelements 46 memory of an input array stored in
left memory
Root mean square stored in right
vrmvesqglr 104 + 1 x Nelements 46 memory of an input array stored in
left memory
Root mean square stored in left
vrmvesqrl 104 + 1 x Nelements 47 memory of an input array stored in
right memory
Root mean square stored in right
vrmvesqrr 105 + 1 x Nelements 47 memory of an input array stored in
right memory
vImvesqy 109 + 1x Nelements 47 Root mean square of a vectorial
input array
Vectorial integer array left or right
vrotate32v 47 + 1 x Nelements 31 shift mod.32 with number of shifts
(0to 31)
Vectorial integer array left or right
vshandv 57 + 1 x Nelements 33 shift with number of shifts (0 to 31)
and logical AND
. Vectorial integer array left or right
vshiftv 44 +1 x Nelements 30| shift with number of shifts (0 to 31)
vsinhll 307 + 19 x Nelements 164 Hyperbolic sine of a float input array
and left to left move
vsinhir 303 + 18.5 x Nelements 161 Hyperbolic sine of a float input array
and left to right move
vsinhrl 304 + 19 x Nelements 165 Hyperbollc sine of a float input array
and right memory to left move
vsinhrr 306 + 18.5 x Nelements 161 Hype_rbohc sine of a float input array
and right to right move
. Hyperbolic sine of a vectorial input
vsinhv 313 + 31 x Nelements 167
array
vsinll 117 + 11.25 x Nelements 63 Sine of a float input array and left to
left move
vsinlr 117 + 11.25 x Nelements 63 Slne of a float input array and left to
right move
vsinrl 119 + 11.25 x Nelements 64 Sine of a float input array and right
to left move
vsinrr 118 + 11.25 x Nelements 64 Sm.e of a float input array and right
to right move
vsinv 109 + 21.5 x Nelements 58 Sine of a vectorial input array
vsqrtOll 118 + 22 x Nelements 55 Single . vector square root
computation and left to left move
2-12 Alm l DSP Library User Manual (draft)

I)

DRAFT-DPS-04/05

Table 2-1. DSP Function List (Continued)

vsqrtOlr 118 + 22 x Nelements 55 Single . vector square root
computation and left to right move

vsqrtOrl 118 + 22 x Nelements 55 Single . vector _ square root
computation and right to left move

vsqrtorr 118 + 22 x Nelements 55 Single . vector | Square root
computation and right to right move

vsqrtOv 118 + 22 x Nelements 55 Vectorial square root computation

vsqrtl 130 + 7.75 x Nelements 74 Plpellned_ single vector square root
computation and left to left move

vsqrir 130 + 7.75 x Nelements 74 Plpellned. single vector square root
computation and left to right move

vsqrrl 122 + 7.75 x Nelements 74 Plpellned_ single v_ector square root
computation and right to left move

vsqrT 122 + 7.75 x Nelements 74 Plpellned. single vgctor square root
computation and right to right move

vsqriv 115 + 15.5 x Nelements 66 Plpellned_ vectorial square root
computation

vsubll 27 + 2 x Nelements 22 Subtraction of 2 float array in left
memory

vsubrr 32 + 2 x Nelements 20 Subtraction of 2 float array in right
memory

vsubv 29 + 2.75 x Nelements 24 Subtraction of 2 vectorial float array

vsumyv 44 + 1 x Nelements 27 Sum of vector elements

vtanhil 309 +19.75 x Nelements 165 Hyperbolic tan of a float input array
and left to left move

vtanhlr 304 + 18.75 x Nelements 161 Hyperbolic _tan of a float input array
and left to right move

vtanhrl 302 + 18.75 x Nelements 165 Hyperbollc tan of a float input array
and right to left move

vtanhrr 308 + 19 x Nelements 162 Hype_r bolic ta_m of a float input array
and right to right move

vtanhv 325 + 30 x Nelements 178 Hyperbolic tan of a vectorial input
array

vtanll 142 + 18 x Nelements 79 Tan of a float input array and left to
left move

vtanir 140 + 17.5 x Nelements 79 Tan of a float input array and left to
right move

vtanl 1414 17.5 x Nelements 79 Tan of a float input array and right to
left move

vitanrr 143 + 18 x Nelements 74 Tan of a float input array and right to
right move

vtanv 134 + 34.5 x Nelements 74 Tan of a vectorial input array

80 + (26 + 20) x NCorr / 4 + 11/ 8 x sum(N Cross-correlation between pomplex
Xcorrc 94 float array or auto-correlation of a
... (N-NCorr))

complex float array

DSP Library User Manual (draft) Alm l 2-13

I)

DRAFT-DPS-04/05

Table 2-1. DSP Function List (Continued)

Cross-correlation between 2 float
80 + (26 + 20) x NCorr / 4 + 11/ 8 x sum(N float array st.ored in left memory or
xcorrlll (N-NCorr)) 94 auto-correlation of a float array
stored in left memory. The result is
stored in left memory
Cross-correlation between 2 float
80 + (26 + 20) x NCorr / 4 + 11/ 8 x sum(N float array st.ored in left memory or
xcorrllr (N-NCorr)) 94 auto-correlation of a float array
stored in left memory. The result is
stored in right memory
Cross-correlation between 2 float
weorrlr] 80 + (26 + 20) x NCorr / 4 + 11/ 8 x sum(N 94 array: the first stored in left memory
... (N-NCorr)) and the second in right memory.
The result is stored in left memory
Cross-correlation between 2 float
weorrlrl 80 + (26 + 20) x NCorr /4 + 11/ 8 x sum(N 94 array: the first stored in left memory
... (N-NCorr)) and the second in right memory.
The result is stored in right memory
wcorrlrr 80 + (26 + 20) x NCorr /4 + 11/ 8 x sum(N 94
... (N-NCorr))
Cross-correlation between 2 float
80 + (26 + 20) x NCorr / 4 + 11/ 8 x sum(N array storeq in right memory or
xcorrrrl (N-NCorr)) 94 auto-correlation of a float array
stored in right memory. The result is
stored in left memory
Cross-correlation between 2 float
80 + (26 + 20) x NCorr / 4 + 11 / 8 x sum(N array stored in right memory or
xcorrrrr (N-NCorr)) 94 auto-correlation of a float array
stored in right memory. The result is
stored in right memory
80 + (26+20) x NCorr / 4 + 11/ 8 x sum(N ... Cross-correlation between yectonal
Xcorrv 94 float array or auto-correlation of a
(N-NCorr)) .
vectorial float array
2-14 Alm l DSP Library User Manual (draft)

I)

DRAFT-DPS-04/05

AIMEL

Y)
DSP Functions Description
3.1 cmulcxcy Function: complex conjugate element by element multiplication
Z(k) = conj(X(k)) x conj(Y(k)) k = 0...Nelements
Synopsis: __vector__ int cmulcxcy(*X, strideX, *Y, strideY, *Z, strideZ,
Nelements)
Include file: DSPlib.h.
X: pointer to the first input vector. Type: __complex__ float
strideX: stride to be used for the X data. Type: int
Y: pointer to the second input vector. Type: _ complex__ float
strideY: stride to be used for the Y data.Type: int
Z: pointer to the output vector. Type: _ complex__ float
strideZ: stride to be used for the Z data. Type: int
Nelements: number of elements to be computed.Type: int

DSP Library User Manual (draft)

The function cmulcxcy performs complex conjugate element-by-element multiplication
on complex vectors only.

Restrictions:

Number of cycles:

Number of VLIW:

Nelements must be greater or equal to 4 and multiple of 4

24 + 2 x Nelements

3-1

DRAFT-DPS-04/05

DSP Functions Description

20
File: cmulcxcy.mas
3.2 cmulcxy Function: complex element by element multiplication with the first input
conjugate

Z(k) = conj(X(k)) x Y(k) k = 0...Nelements

Synopsis: __vector__int cmulexy(*X, strideX, *Y, strideY, *Z, strideZ,
Nelements)

Include file: DSPlib.h.

X: pointer to the first input vector. Type: __complex__ float

strideX: stride to be used for the X data. Type: int

Y: pointer to the second input vector. Type: __complex___ float

strideY: stride to be used for the Y data.Type: int

Z: pointer to the output vector. Type: __complex__ float

strideZ: stride to be used for the Z data. Type: int

Nelements: number of elements to be computed.Type: int

The function cmulcxy performs complex element-by-element multiplication on complex
vectors with first vector conjugate.

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4
Number of cycles:

25 + 2 x Nelements
Number of VLIW:

21

File: cmulcxy.mas

3-2 AImEl DSP Library User Manual (draft)

I)

DRAFT-DPS-04/05

DSP Functions Description

3.3 cmulxy

DSP Library User Manual (draft)

Function:

Synopsis:

Include file:

*X:
strideX:
*Y:
strideY:
*Z:
strideZ:

Nelements:

complex element by element multiplication

Z(k) = X(k) x Y(k) k = 0...Nelements

__vector___intcmulxy(*X, strideX, *Y, strideY, *Z, strideZ, Nelements)

DSPIlib.h.

pointer to the first input vector. Type: __complex__ float*
stride to be used for the X data. Type: int

pointer to the second input vector. Type: _ complex__ float*
stride to be used for the Y data.Type: int

pointer to the output vector. Type: _ complex__ float*

stride to be used for the Z data. Type: int

number of elements to be computed.Type: int

The function cmulxy performs complex element-by-element multiplication on complex

vectors.

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

Number of cycles:

Number of VLIW:

File:

25 + 2 x Nelements
21

cmulxy.mas

AIMEL 33

I)

DRAFT-DPS-04/05

DSP Functions Description

3.4 conv

3-4

Function:

Synopsis:

Include file:

*X:
*H:

*Y:

N:
M:

Transient:

convolution with complex vectors

M-1
Y(h) = 3 X(n)x H(k=n) k =0..N+M-1
n=0

__vector___int conv(*X, *H, *Y, N, M, Transient)
DSPIib.h.

pointer to the input vector (size N). Type: __complex__ float *

pointer to the filter coefficients (size M). They must be stored in ordi-
nary sequence, i.e. starting from index 0 to M-1.Type: _ _complex___
float *

pointer to the output vector (size N + M - 1). After function call, Y con-
tains the result of the X vector convolved with the filter. Type:
__complex__ float *

input vectors length. Type: int
filter length. Type: int

integer value used to compute or not the transient codes of the con-
volution:if Transient=0 the transient isn't computed, otherwise it's
calculated. Type: int

The function conv is the implementation of the convolution of the input vector X with the
filter H. The function corresponds to the Matlab conv(a,b) function. The conv function
can compute or not the transient states, according to the value set with the Transient
parameter: if Transient = 0 the transient isn't computed, otherwise it's calculated. For
the continuous FIR filtering on an infinite stream of input data, see the function “FIR” on

page 3-17.

Restrictions:

N must be an odd value

M must be an even value multiple of 4

Number of cycles:

Number of VLIW:

Initialization: 25

Input transient: 14+34x(M-1)+6xM/2x(M-1)

Steady state: 38+44xL/2+13xM/4xL /2 -->L=
N--M+1

Output transient: 6+35x(M-1)+6xM/2x(M-1)

123

AImEl DSP Library User Manual (draft)

I)

DRAFT-DPS-04/05

DSP Functions Description

3.5 conv2d

DSP Library User Manual (draft)

File: conv.mas
Function: 2-dimensional convolution of complex matrix A with complex kernel
matrix H
K-1K-1
r=0.M-K+1
C(r,c) = H[K-1-il[K-1—j]xA[r+i]l[c+]
()= 3 3 Hl i J1xAlr +i]le +/] {c=o...zv_1<+1
i=0;=0
Synopsis: __vector__int conv2d(*A, M, N, *H, *C, K)
Include file: DSPIlib.h
A: pointer to the input complex matrix. Type: __complex__ float

number of rows of matrix AType: int

N: number of columns of matrix AType: int

H: pointer to the complex kernel matrix. Type: __complex___ float
C: pointer to the output complex matrix Type: __complex__ float
K: order of the complex kernel square matrix H. Type: int

The function conv2d performs 2-dimensional convolution of matrix A of the order M x N
with matrix H of the order K x K without the zero-padded edges. It is equivalent to the
Matlab function conv2(a,b,’valid). For this reason the output matrix C is of the
order,(M—-K+1)x(N—-K+1) andnot(M+K—-1)x(N+K-1).

Restrictions:

K must be multiple of 2
M must be greater or equal to K
N must be greater or equal to K

Number of cycles:

171 +4xK+3x (M-K+1)x (N-K+ 1)+ (((9x K /2 +30) x (N -
K+1)+7xK/2+25)xK/2+28)x (M-K+1)

Number of VLIW:
165

AIMEL 35

I)

DRAFT-DPS-04/05

DSP Functions Description

File: conv2d.mas

3.6 cvexp Function: complex exponential of an input array stored in left memory

Y(k) = PR k = 0...Nelements — 1

Synopsis: __vector___int cvexp (*X, strideX, *Y, strideY, Nelements)

Include file: DSPIlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array in vector memory space into which the
computed value is written.Type: __complex__ float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function cvexp computes the complex exponential. The complex value obtained is
written to a complex array.

Precision:
see Table 3-14 on page 211, Table 3-8 on page 109
Restrictions:
Nelements must be greater or equal to 2 and multiple of 2
X must be in memory left
Number of cycles:
137 + 23.5 x Nelements
Number of VLIW:
67

File: cvexp.mas, sinCosCoeff.mas

3-6 AImEl DSP Library User Manual (draft)

I)

DRAFT-DPS-04/05

DSP Functions Description

3.7 cvma Function: product of 2 complex input arrays and sum with the third complex
input array

W(k) = X(k)x Y(k)+Z(k) k = 0...Nelements — 1

Synopsis: __vector__intcvma (*X, strideX, *Y, strideY, *Z, strideZ,*W, strideW,
Nelements)

Include file: DSPIlib.h

*X: pointer to the input array . Type: __complex__ float *

strideX: stride to be used for input array X. Type: int

*Y: pointer to the input array . Type: __complex__ float *

strideY: stride to be used for input array Y. Type: int

*Z: pointer to the input array . Type: __complex__ float *

strideZ: stride to be used for input array Z. Type: int

*W: pointer to the output array . Type: __complex__ float *

strideW: stride to be used for output array W. Type: int

Nelements: Number of elements to be computed. Type: int

The function cvma computes the product of two complex arrays and the product
obtained is added with the third complex array.

Restrictions:

Nelements must be greater or equal to 4 and multiple of 2
Number of cycles:

37 + 3 x Nelements
Number of VLIW:

33

File: cvma.mas

DSP Library User Manual (draft) AImEl 3-7

I)

DRAFT-DPS-04/05

DSP Functions Description

3.8 cvrdiv

3-8

Function:

Synopsis:

Include file:

*X:
strideX:
*Y:
strideY:
*Z:
strideZ:

Nelements:

division of a complex array by a real array stored in left memory ele-
ment by element

Re(Z(k)) = ’ﬁ%@)

Im(Z(k)) = ’ﬂ;(ﬁk)@

__vector__ int cvrdiv (*X, strideX, *Y, strideY, *Z, strideZ,
Nelements)

DSPlib.h

pointer to the complex input array. Type: __complex__ float*
stride to be used for the input array. Type: int

pointer to the real input array. Type: float*

stride to be used for the real input array. Type: int

pointer to the complex output array. Type: __complex__ float*
stride to be used for the output array. Type: int

number of elements to be divided.Type: int

The function cvrdiv performs the division of a complex array by a real array, element by

element.

Restrictions:

Nelements must be multiple of 2

Y must be in left memory

Number of cycles:

Number of VLIW:

File:

83 + 8 x Nelements

51

cvrdiv.mas

AImEl DSP Library User Manual (draft)

I)

DRAFT-DPS-04/05

DSP Functions Description

3.9 FD_RealFIR_Pair

DSP Library User Manual (draft)

Function:

Synopsis:

Include file:

*W:

*X:

*data_temp:

*H1:

*H2:

*Y_ptr:
fft_ptr:

ifft_ptr:

Called files:

FIR filter on two real signals using two different filter sequences

M-1

Y(k) = z X(n) x H(k—n) k =0..N-1
n=0

__vector__ int FD_RealFIR_Pair(*W,*X,*data_temp, *Y, *H1, *H2,
fft_ptr, ifft_ptr, N)

DSPIlib.h

pointer to the ordinary trigonometric coefficients table exp(-i x 2 x pi x
n/N), with n=0..N/2-1. Type: __complex__ float*

pointer to the input vector (size N). Type: __complex__ float*
pointer to a temporary vector for FFT computation (size N).
Type: __complex__ float*

pointer to the first filter vector in the frequency domain (size N/2+1).
Type: __complex__ float*

pointer to the second filter vector in the frequency domain (size
N/2+1). Type: __complex__ float*

pointer to the output vector (size N). Type: __complex__ float*

memory address for the FFT function to be called. Note that the
function depends from the input vector length N. If N = 256, then the
called function will be ifft256, if N = 64, it will be fft64, etc. For the
fft_ptr initialization see Section 3.9.1 on page 3-10. Type: int

memory address for the IFFT function to be called. Note that the func-
tion depends from the input vector length N. If ¥ = 256, then the
called function will be ifft256, if N = 64, it will be ifft64, etc. For the
ifft_ptr initialization see Section 3.9.1 on page 3-10. Type: int

input vector length. Type: int

fft and ifft functions (with fft32M.mas and ifft32M.mas) of the required
length.

The function FD_RealFIR_Pair is a library routine used for the computation of couples of
real independent FIRs of length M using complex FFTs. This implementation is equiva-
lent to the FIR computation on two real input sequences sl and s2, both of length N,
with the filter coefficients respectively hl and h2. The difference from a linear convolu-
tion implementation is that the one using complex FFTs allows an increase of
performances whose amount depends from the length of the filter and from the number
of computed elements. It is responsibility of the caller to extract from the output
sequence the subsequence corresponding to the desired output (typically the part corre-

AIMEL 39

I)

DRAFT-DPS-04/05

DSP Functions Description

3.9.1 C initialization for
realFIR function.

3-10

sponding to the linear convolution discarding the part corresponding to the circular
convolution).

The processing follows the following steps:

1- compute the FFT of a pair of real signals (s1 and s2) using a single
complex FFT on s = s1+jxs2. The complex s signal is obtained
storing the s1 real vector in the left memory bank at the address X
and the s2 real vector in the right memory bank at the same address

of sl

2- FFT post-processing to extract the two complex sequences S1 and
S2

3- element by element (.*) product between the FFT of the signal and

the FFTs of the filters (01 = S1, x H1) and (02 = §2, x H2)

4- build a complex signal composed by the superposition of the two sig-
nals in the frequency domain (O = O1 +; x 02)

5- compute the IFFT of the signal O, obtaining the complex signal o. The
result of the FIR filtering of the two real sequences is available as the
real and the imaginary part of o:

real(0) = conv(sl,hl)
imag(0) = conv(s2,h2)

Due to the circular convolution implementation, only a subset of the output o data will be
equal to the one computed using linear convolution. Note that it is possible to exploit the
hermitianity of the FFT of a real signal in order to compute only % + 1 points of the post-
processed sequence O1 and O2; moreover, due to the same reason, it is possible to
store only %2 + 1 of the point of the transform of the filters H1 and H2 in the frequency
domain.

Before the FD_RealFIR_Pair call, the integer variables fft_ptr and ifft_ptr must be initial-
ized with the fft and ifft functions pointers. To do this, the following Macro must be used :

__GetFuncPtrMem__ (name,funchame)

where: name is the integerer variable (global or local) initialized with the func-
name function pointer

funcname is the function called.

In particular FD_RealFIR_Pair calls 2 functions: fft and ifft , so you need to use the pre-
vious Macro for both:

___GetFuncPtrMem__ (namel,funcnamel)
__GetFuncPtrMem__ (name2,funcname?)

AImEl DSP Library User Manual (draft)

I)

DRAFT-DPS-04/05

where:

Note:

Restrictions:

DSP Functions Description

namel is the seventh parameter passed to the FD_RealFIR_Pair
function (fft_ptr)

funcnamel is one of the following functions: fft1024, fft512, fft256,
fft288, fft128, fft64

name?2 is the eighth parameter passed to the FD_RealFIR_Pair func-
tion (ifft_ptr)

funcname2 is one of the following functions: ifft1024, ifft512, ifft256,
ifft228, ifft128, iffté4

the function FD_RealFIR_Pair uses 75 locations of the stack included
that utilized by the fft and ifft functions

N must be one of the following values: 1024, 128, 256, 288, 512, 64

see the restrictions for the fft and ifft functions

Number of cycles:

Number of VLIW:

File:

268 + 20 x (N / 4 - 5) + fft cycles + ifft cycles

164

FD_RealFIR_Pair.mas

3.10 fft1024

DSP Library User Manual (draft)

Function:

Synopsis:

Include file:

*W:

*X:

*data_temp:

*X:

complex FFT on 1024 points

1023
X(k) = 3 Wyops xx(n) k =0..1024
n=0

__vector__int fft1024(*W, *x, *data_temp, *X)
DSPIib.h.

pointer to the ordinary trigonometric coefficients table exp(-i2 x pi x
n/1024), with n=0..511. Type: __complex__ float*

pointer to the input vector (size 1024). Type: __complex__ float*
pointer to a temporary vector for FFT computation (size 1024).
Type: __complex__ float*

pointer to the output vector (size 1024). After function call X contains
the FFT of x vector. Type: __complex__ float*

AIMEL 311

I)

DRAFT-DPS-04/05

DSP Functions Description

The function fft1024 is the mixed radix implementation of the 1024 points FFT. The
fft32m assembly function is used as component block. If more than one fft size is used
in an application the module fft32m is shared among them.

Note:

Restrictions:

the function fft1024 uses 75 locations of the stack

only the following vectors combinations are allowed:
X # data_temp # X
x = data_temp # X
x = X # data_temp

x and X can be allocated in Internal Memory, in Buffer Memory or in
Parm memory

data_temp must be always in Internal Memory

Number of cycles:

6405
Number of VLIW:
230
File: fft1024.mas
3.11 fft128 Function: complex FFT on fft128 points
127
Xk =Y Wik xx(n) k =0..127
n=0
Synopsis: __vector___int fft128(*W, *x, *data_temp, *X)
Include file: DSPlib.h.
*W: pointer to the ordinary trigonometric coefficients table exp(-i x 2 x pi x
n/128),with n=0..63. Type: __complex__ float*
X: pointer to the input vector (size 128). Type: _ complex__ float
*data_temp: pointer to a temporary vector for FFT computation (size 128).
Type: __complex__ float*
3-12 AImEl DSP Library User Manual (draft)

I)

DRAFT-DPS-04/05

*X:

DSP Functions Description

pointer to the output vector (size 128). After function call X contains
the FFT of x vector. Type: __complex__ float*

The function fft128 is the mixed radix implementation of the 128 points FFT. The fft32m
assembly function is used as component block. If more than one fft size is used in an
application the module fft32m is shared among them.

Note:

Restrictions:

the function fft128 uses 75 locations of the stack

only the following vectors combinations are allowed:
X # data_temp # X
x = data_temp # X
x = X # data_temp

x and X can be allocated in Internal Memory, in Buffer Memory or in
Parm memory

data_temp must be always in Internal Memory

Number of cycles:

3.12 fft256

DSP Library User Manual (draft)

1053
Number of VLIW:
183
File: fft128.mas
Function: complex FFT on fft256 points

Synopsis:

Include file:

*W:

*X:

*data_temp:

255
X(k) = Y Wieg' xx(n) k =0..255
n=0

__vector___int fft256(*W, *x, *data_temp, *X)
DSPIib.h.

pointer to the ordinary trigonometric coefficients table exp(-i x 2 x pi x
n /256), with n=0...127. Type: __complex__ float*

pointer to the input vector (size 256). Type: __complex__ float*
pointer to a temporary vector for FFT computation (size 256).

Type: __complex__ float*

AIMEL 313

I)

DRAFT-DPS-04/05

DSP Functions Description

*X:

pointer to the output vector (size 256). After function call X contains
the FFT of x vector. Type: __complex__ float*

The function fft256 is the mixed radix implementation of the 256 points FFT. The fft32m
assembly function is used as component block. If more than one fft size is used in an
application the module fft32m is shared among them.

Note:

Restrictions.

the function fft256 uses 75 locations of the stack

only the following vectors combinations are allowed:
X # data_temp # X
x = data_temp # X
x = X # data_temp

x and X can be allocated in Internal Memory, in Buffer Memory or in
Parm memory

data_temp must be always in Internal Memory

Number of cycles:

1729
Number of VLIW:
175
File: fft256.mas
3.13 fft288 Function: complex FFT on 288 points
287
X(k) = Y Wyl xx(n) k =0..287
n=0
Synopsis: __vector___int fft288 (*W, *x, *data_temp, *X)
Include file: DSPlib.h.
*W: pointer to the ordinary trigonometric coefficients table exp(-
i*2*pi*n/288), with n=0..143. Type: __complex__ float*
X: pointer to the input vector (size 288). Type: _ complex__ float
*data_temp: pointer to a temporary vector for FFT computation (size 288).

3-14

Type: __complex__ float*

AImEl DSP Library User Manual (draft)

I)

DRAFT-DPS-04/05

*X:

DSP Functions Description

pointer to the output vector (size 288). After function call X contains
the FFT of x vector. Type: __complex__ float*

The function fft288 is the mixed radix implementation of the 288 points FFT. The fft32m
assembly function is used as component block. If more than one fft size is used in an
application the module fft32m is shared among them.

Note:

Restrictions.

the function fft288 uses 75 locations of the stack

only the following vectors combinations are allowed:
X # data_temp # X
x = data_temp # X
x = X # data_temp

x and X can be allocated in Internal Memory, in Buffer Memory or in
Parm memory

data_temp must be in always in Internal Memory

Number of cycles:

3.14 fft512

DSP Library User Manual (draft)

2623
Number of VLIW:
193
File: fft288.mas
Function: complex FFT on 512 points
511
Xy = % Wit xx(n) k =0..511
n=0
Synopsis: __vector___int fft512 (*W, *x, *data_temp, *X)
Include file: DSPlib.h.
*W: pointer to the ordinary trigonometric coefficients table exp(-i x 2 x pi x
n/512), with n=0..255. Type: __complex__ float*
X: pointer to the input vector (size 512). Type: __complex__ float
*data_temp: pointer to a temporary vector for FFT computation (size 512).Type:
__complex___float*
*X: pointer to the output vector (size 512). After function call X contains

the FFT of x vector. Type: __complex__ float*

AIMEL 315

I)

DRAFT-DPS-04/05

DSP Functions Description

The function fft512 is the mixed radix implementation of the 512 points FFT. The fft32m
assembly function is used as component block. If more than one fft size is used in an
application the module fft32m is shared among them.

Note:

Restrictions.

the function fft512 uses 75 locations of the stack

only the following vectors combinations are allowed:
X # data_temp # X
x = data_temp # X
x = X # data_temp

x and X can be allocated in Internal Memory, in Buffer Memory or in
Parm memory

data_temp must be always in Internal Memory

Number of cycles:

3251
Number of VLIW:
178
File: fft512.mas
3.15 ffte4 Function: complex FFT on 64 points
63
Xk = % wert xx(n)y k =0..31
n=0
Synopsis: __vector___int fft64(*W, *x, *data_temp, *X)
Include file: DSPlib.h.
*W: pointer to the ordinary trigonometric coefficients table exp(-i x 2 x pi x
n/64), with n=0.31. Type: __complex__ float*
X: pointer to the input vector (size 64). Type: __complex__ float
*data_temp: pointer to a temporary vector for FFT computation (size 64) Type:
__complex___float*
*X: pointer to the output vector (size 64). After function call X contains the
FFT of x vector. Type: __complex___ float*
3-16 AImEl DSP Library User Manual (draft)

I)

DRAFT-DPS-04/05

DSP Functions Description

The function fft64 is the mixed radix implementation of the 64 points FFT. The fft32m
assembly function is used as component block. If more than one fft size is used in an
application the module fft32m is shared among them.

Note:

Restrictions.

the function fft64 uses 75 locations of the stack

only the following vectors combinations are allowed:
X # data_temp # X
x = data_temp # X
x = X # data_temp

x and X can be allocated in Internal Memory, in Buffer Memory or in
Parm memory

data_temp must be always in Internal Memory

Number of cycles:

3.16 FIR

DSP Library User Manual (draft)

769
Number of VLIW:

148
File: fft64.mas
Function: complex FIR filter

Synopsis:

Include file:

*X:

**address_buffer:

*H:

*Y:

M-1
Y(k) = z X(n) x H(k—n) k =0..L-1
n=0

__vector___int FIR(*X, **address_buffer, *H, *Y, L, M)
DSPlib.h.

pointer to the input vector (size L). Type: __complex__ float*

pointer to the pointer to the delay_line (size M). Type: __complex___
float**

pointer to the FIR filter coefficients (size M). They must be stored in
ordinary sequence, i.e. starting from index 0 to M-1. Type:
__complex___ float*

pointer to the output vector (size L). After function call, Y contains the
filtered sequence of data input vector X. Type: __complex__float*

AIMEL 317

I)

DRAFT-DPS-04/05

DSP Functions Description

L: input and output vectors length. Type: int

M: filter length. Type: int

The function FIR is a FIR filter implementation able to filter complex input vectors of
length L with a filter of length M. A running filter can be obtained making infinite calls to
the FIR function. In this way it's allowed the computation of a complex vector of infinite
length. The input data pointed by "X" are copied in the circular delay-line during the
function execution: thus the delay-line is kept updated from function call to call. The
assembly function “initFIR” on page 3-40, is used to initialize the FIR computation. It
must be called only once, before the first FIR call.For the single execution of the FIR fil-
ter function see the function “conv” on page 3-4, which allows computing the FIR filter
without maintaining a delay-line (less memory occupation).

Note: the function FIR uses 3 locations of the stack

Restrictions:
L must be an even value
M must be an even value multiple of 4 and greater or equal to 16
L must be less-equal M
Number of cycles:
136 +(79+13x (M/4-3))xL/2

3.17 FirNImslI

3-18

Number of VLIW:
99
File: FIR.mas, initFIR.mas
Function: FIR filter computed using Least Mean Square Algorithm
Synopsis: __vector___int FirNImsll (*X, *H, *Y, *D, N, P, B)
Include file: DSPlib.h
X: pointer to the input buffer in vector memory space. Type: float
H: pointer to the buffer containing filter kernel coefficients. Type: float
Y: pointer to the buffer containing reference output. Type: float
D: pointer to the delay buffer of length P. Type: float

AImEl DSP Library User Manual (draft)

I)

DRAFT-DPS-04/05

DSP Functions Description

N: number of samples over which the fitler is adapted (adaptation time).
Type: int

filter kernel size. Type: int

adaption coefficient. Type: float*

The function FirNImsll computes a FIR filter using coefficients stored in the float array H
applied to the elements of the input float array X. The float array H has to be initialized to
zero or to meaningful values. The adapted filter coefficients are available in the same
buffer at the end of the execution of the function. The Algorithm for the filter is as given
below:

1. copy of 1 sample from the input buffer X into the delay buffer D
2. convolution of D by the filter kernel H to obtain the output value T

P-1
T[n] = Z D[n—k] x H[k]
k=0

3. compute of the difference between the obtained output and the desired
output

e = T[n]-Y[n]

4. compute of the energy of the previous P-1 samples stored in the delay buffer
P-1)
E = Z D[k]
k=0

5. compute of the correction factor by the expression

S
X

s

6. applying of the correction factor to the filter kernel according as follow

H[k] = H[k]+ Cx D[k]...k = 0...P—1

Restrictions:

DSP Library User Manual (draft) AImEl 3-19

I)

DRAFT-DPS-04/05

DSP Functions Description

Number of cycles:

Number of VLIW:

File:

P must be multiple of 4

X must be in left memory
H must be in left memory
Y must be in left memory

D must be in left memory

77+ (94+ 4.25 x (P-4)) x (N-P+1) +8.0 x P

130

FirNImsll.mas

3.18 FirNImsv

3-20

Function:

Synopsis:

Include file:

*X:

*H:

*Y:

*D:

pair of FIR filters computed using Least Mean Square Algorithm

__vector___int FirNImsv (*X, *H, *Y, *D, N, P, B)

DSPIib.h

pointer to the input buffer in vector memory space. Type: __ vector__
float*

pointer to the buffer containing filter kernel coefficients. Type:
__vector__ float*

pointer to the buffer containing reference output. Type: _ vector
float*

pointer to the delay buffer of length P. Type: __ vector__ float*

number of samples over which the fitler is adapted (adaptation time).
Type: int

filter kernel size. Type: int

adaption coefficient. Type: __ vector__ float*

The function FirNImsv computes a pair of FIR filters using coefficients stored in the vec-
torial float array H applied to the elements of the vectorial float input array X. The
vectorial float array H has to be initialized to zero or to meaningful values. The adapted
filter coefficients are available in the same buffer at the end of the execution of the func-
tion. The Algorithm for the filter is as given below:

ATMEL

— DSP Library User Manual (draft)

DRAFT-DPS-04/05

DSP Functions Description

1. copy of 1 sample from the input buffer X into the delay buffer D
2. convolution of D by the filter kernel H to obtain the output value T

P-1

T[n] = z D[n—k] x H[k]
k=0

3. compute of the difference between the obtained output and the desired
output

e = T[n]-Y[n]

4. compute of the energy of the previous P-1 samples stored in the delay buffer
P-1

E=Y D[k

k=0

5. compute of the correction factor by the expression

o
X
Q

t

6. applying of the correction factor to the filter kernel according as follow

HIk] = H[k]+Cx D[k]...k = 0...P—1

Restrictions:

P must be multiple of 4
Number of cycles:

78 + (94+ 4.25 x (P-4)) x (N-P+1) +8.0x P - 7
Number of VLIW:

135

File: FirNImsv.mas

DSP Library User Manual (draft) AImEl 3-21

I)

DRAFT-DPS-04/05

DSP Functions Description

3.19 getvq

Function: extraction of vectorial (left - right) data from a vector queue to the des-
tination vector X

Synopsis: int getvg(*q, *X, StrideX, Nelements)

*q: pointer to a queue structure defined using the vqdef macro. Type:
void *

*X: pointer to the destination vector where the data are copied. Type:
void *

StrideX: stride used to write data to the X vector. Type: int

Nelements: number of elements copied. Type: int

The function getvq copies the data from the vector queue (q) to the destination buffer
(X). If the number of elements in the vector queue is lower than Nelements a -1 is
returned (g underrun), but the copy is anyway done. This allows using the getvq also in
a non-strictly queued structure, but in structures where circular addressing is used over
a vector. A vector queue is a structure defined using the macro "vgdef" and explicitly
declared using that macro: see the function “initvq” on page 3-40. If the return code is
not checked the structure is simply a circular buffer and the user must guarantee
consistency.

Restrictions:

Nelement must be greater than 12 and multiple of 4
Recall:

Nelement can be 2047 elements max
Number of cycles:

65 + 1x Nelements

3.20 getvg_f2i

3-22

Number of VLIW:
39

File: getvg.mas

Function: extraction of vectorial (left - right) data from a vector queue to the des-
tination vector and float to integer conversion

Synopsis: int getvg_f2i(*q, *X, StrideX, Nelements)

*q: pointer to a vector queue structure defined using the vqdef macro.

Type: _ vector__ float *

Alm l DSP Library User Manual (draft)

I)

DRAFT-DPS-04/05

DSP Functions Description

*X: pointer to the destination vector where the data are copied. Type:
__vector__int*

StrideX: stride used to write data to the X vector. Type: int

Nelements: number of elements copied. Type: int

The function getvqg_f2i copies data from the vector queue to the destination buffer after
their conversion from float to integer. If the number of elements in the vector queue is
lower than Nelements a -1 is returned (g underrun), but the copy is anyway done. This
allows using the getvq_f2i also in a non-strictly queued structure, but in structures where
circular addressing is used over a vector. A vector queue is a structure defined using the
macro “vqdef” explicitly declared using that macro see the function: “initvq” on page 3-
40. If the return code is not checked the structure is simply a circular buffer and the user
must guarantee a consistency.

Restrictions:

Nelements must be greater than 12 and multiple of 4
Recall:

Nelements can be 2047 elements max
Number of cycles:

60 + 1 x Nelements

3.21 getvqg_i2f

DSP Library User Manual (draft)

Number of VLIW:
36

File: getvg_f2i.mas

Function: extraction of vectorial (left - right) data from a vector queue to the des-
tination vector and integer to float conversion

Synopsis: int getvqg_i2f (*q, *Z, StrideZ, Nelements)

*Qq: pointer to a vector queue structure defined using the vqdef macro.
Type: __vector__ int*

*Z: pointer to the destination vector where the data are copied. Type:
__vector__ float *

StrideZ: stride used to write data to the X vector. Type: int

Nelements: number of elements copied. Type: int

The function getvqg_i2f copies data from the vector queue to the destination buffer after
their conversion from integer to float. If the number of elements in the vector queue is
lower than Nelements a -1 is returned (g underrun), but the copy is anyway done. This
allows using the getvq_i2f also in a non-strictly queued structure, but in structures where

Alm l 3-23

I)

DRAFT-DPS-04/05

DSP Functions Description

circular addressing is used over a vector. A vector queue is a structure defined using the
macro “vgdef” explicitly declared using that macro see the function: “initvq” on page 3-
40. If the return code is not checked the structure is simply a circular buffer and the user
must guarantee consistency.

Restrictions:

Nelements must be greater than 12 and multiple of 4
Recall:

Nelements can be 2047 elements max
Number of cycles:

71 + 1 x Nelements

3.22 getvgelem

Number of VLIW:
40

File: getvg_i2f.mas

Function: number of unread elements in a vector queue

Synopsis: int getvgelem(*q)

*Qq: pointer to a vector queue structure defined using the vqdef macro:
Type: void *

A vector queue is a structure defined using the macro "vgdef" and explicitly declared
using that macro see the function: “initvq” on page 3-40.

Recall:
the vector queue length can be 2047 elements max

Number of cycles:

3.23 getvqgfree

3-24

12
Number of VLIW:
4
File: getvgelem.mas
Function: number of free positions in a vector queue

Alm l DSP Library User Manual (draft)

I)

DRAFT-DPS-04/05

3.24

DSP Library User Manual (draft)

DSP Functions Description

Synopsis: int getvgfree(*q)
*q: pointer to a vector queue structure defined using the vqdef macro:
Type: void *

A vector queue is a structure defined using the macro "vgdef" and explicitly declared
using that macro see the function: “initvq” on page 3-40.

Recall:
the vector queue length can be 2047 elements max

Number of cycles:

12
Number of VLIW:
4
File: getvgfree.mas
hilbert ® Function: discrete time Hilbert function on a complex input vector of N elements

Z(k) = ifftlfft(Re(X(k))) x z(k)] k=0..N-1

where z(k) is a sequence defined as:

1 for k=0
) = 2 for 1<k<N/2-1
1 for k=N/2
0 for N/2+1<k<N
Synopsis: __vector___int hilbert(*W, *X, *data_temp, *Y, *Z, fft_ptr, ifft_ptr, N)
Include file: DSPlib.h.
*W: pointer to the ordinary trigonometric coefficients table exp(-i x 2 x pi x

n/N), with n=0..N/2-1.Type: __complex__ float*

X: pointer to the input vector (size N). Type: __complex__ float

See S. Lawrence Marple, Jr. "Computing the Discrete-Time 'Analytic' Signal via FFT", IEEE Transactions on Signal Processing,
Vol 47, No 9, September 1999, page 2600.

Alm l 3-25

I)

DRAFT-DPS-04/05

DSP Functions Description

3.24.1 C initialization for
hilbert function.

3-26

*data_temp: pointer to a temporary vector for FFT computation (size N) Type:
__complex___float*

Y: pointer to the first output vector (size N). Type: __complex__ float

*Z: pointer to the second output vector (size N). Type: _ complex
float*

fft_ptr: integer containing the program memory address for the FFT function

to be called. Note that the function depends from the input vector
length N. If N = 256, then the called function will be fft256, if
N = 64, it will be fft64, etc.See "C initialization for hilbert function" in
the follow, for the fft_ptr initialization. Type: int

ifft_ptr: integer containing the program memory address for the IFFT function
to be called. Note that the function depends from the input vector
length N. If N = 256, then the called function will be ifft256, if
N = 64, it will be ifft64, etc. See "C initialization for hilbert function” in
the follow, for the ifft_ptr initialization. Type: int

N: input and output vectors length. Type: int

The function hilbert computes the Hilbert transform of the real part of a complex input
vector (X). It calls the function vmove2v to build a temporary complex vector input in
wich the real part is equal to the real part of X and the imaginary part is equal to 0. The
real part of the second complex output vector (Z) is the original data input, the imaginary
part contains the Hilbert transform.

Before the hilbert call, the integer variables fft_ptr and ifft_ptr must be initialized with the
fft and ifft functions pointers. To do this, the following Macro must be used:

__GetFuncPtrMem__ (name,funchame)

where:

name is the integerer variable (global or local) initialized with the func-
name function pointer

funcname is the function called.

In particular hilbert calls 2 functions: fft and ifft , so you need to use the previous Macro
for both:

___GetFuncPtrMem__ (namel,funcnamel)
__GetFuncPtrMem__ (name2,funcname?)

where:
namel is the fifth parameter passed to the hilbert function (fft_ptr)

funcnamel is one of the following functions: fft1024, fft512, fft256,
fft288, fft128, fft64

AImEl DSP Library User Manual (draft)

I)

DRAFT-DPS-04/05

DSP Functions Description

name?2 is the sixth parameter passed to the hilbert function (ifft_ptr)

funcname2 is one of the following functions: ifft1024, ifft512, ifft256,
ifft228, ifft128, iffté4

In order to use the previous Macro, the file “magic.h” must be included in your project.

Note: the function hilbert uses 75 locations of the stack included that utilized
by the fft and ifft functions

Restrictions:

can be 2 differents configuration of the parameter passed to the hil-
bert function:

1.hilbert(*W, *X, *data_temp, *Z, *Z, fft_ptr, ifft_ptr, N)
2.hilbert(*W, *X, *data_temp, *Y, *Z, fft_ptr, ifft_ptr, N)

the configuration 1 can be used only to store the output of the hilbert
function. In this case the output of the fft function is lost. The output of
the hilbert function is memorized in the data array Z.

the configuration 2 can be used to store both the output of the fft func-
tion and the output of the hilbert function . The first is saved in the
data array Y, the second in the data array Z.

N must be one of the following values: 1024, 128, 256, 288, 512, 64
see the restrictions for the fft and ifft functions
Number of cycles:

174 + 2.6875 x N + fft cycles + ifft cycles

Number of VLIW:
113

File: hilbert.mas, vmove2v.mas

3.25 ifft1024 Function: complex IFFT on 1024 points
| =
x(k) = 1074 Z W 1004 xX(n) k =0...1024

Synopsis: __vector___ intifft1024(*W, *X, *data_temp, *x)

Include file: DSPlib.h.
DSP Library User Manual (draft) A_ IIIIEL@ 3-27

DRAFT-DPS-04/05

DSP Functions Description

*W: pointer to the ordinary trigonometric coefficients table exp(-i x 2 x pi x
n/1024), with n=0..511. Type: _ complex__ float*

X: pointer to the input vector (size 1024). Type: __complex__ float

*data_temp: pointer to a temporary vector for IFFT computation (size 1024).

Type: __complex__ float*

*X: pointer to the output vector (size 1024). After function call x contains
the FFT of X vector. Type: __complex__ float*

The function ifft1024 is the mixed radix implementation of the 1024 points IFFT. The
ifft32m assembly function is used as component block. If more than one fft size is used
in an application the module ifft32m is shared among them.

Note: the function ifft1024 uses 75 locations of the stack

Restrictions: only the following vectors combinations are allowed:
X # data_temp # x
X = data_temp # x
X = x # data_temp

X and x can be allocated in Internal Memory, in Buffer Memory or in
Parm memory

data_temp must be always in Internal Memory

Number of Cycles:

6527
Number of VLIW:
233
File: ifft1024.mas
3.26 ifft128 Function: complex IFFT on 128 points
P
x(k)= o8 ZOWlZS x X(n) k = 0...1024
Synopsis: __vector___ intifft128(*W, *X, *data_temp, *x)
Include file: DSPIib.h.
3-28 AImEl DSP Library User Manual (draft)

I)

DRAFT-DPS-04/05

DSP Functions Description

*W: pointer to the ordinary trigonometric coefficients table exp(-i x 2 x pi x
n/128), with n=0..63.Type: __complex__ float*

X: pointer to the input vector (size 128). Type: __complex__ float

*data_temp: pointer to a temporary vector for IFFT computation (size 128).

Type: __complex__ float*

*X: pointer to the output vector (size 128). After function call x contains
the FFT of X vector. Type: __complex__ float*

The function ifft128 is the mixed radix implementation of the 128 points IFFT. The
ifft32m assembly function is used as component block. If more than one fft size is used
in an application the module ifft32m is shared among them.

Note: the function ifft128 uses 75 locations of the stack

Restrictions.
only the following vectors combinations are allowed:
X # data_temp # x
X = data_temp # x
X = x # data_temp

X and x can be allocated in Internal Memory, in Buffer Memory or in
Parm memory

data_temp must be always in Internal Memory

Number of cycles:

1112
Number of VLIW:

176
File: ifft128.mas

3.27 ifft256 Function: complex IFFT on 256 points
R
x(k)= ca Z Wose xX(n) k =0...255

Synopsis: __vector___ int ifft256(*W, *X, *data_temp, *x)
Include file: DSPlib.h.

DSP Library User Manual (draft) AImEl 3-29

I)

DRAFT-DPS-04/05

DSP Functions Description

*W: pointer to the ordinary trigonometric coefficients table exp(-i x 2 x pi x
n/256), with n=0..127. Type: _ complex__ float*

X: pointer to the input vector (size 256). Type: __complex__ float

*data_temp: pointer to a temporary vector for IFFT computation (size 256).

Type: __complex__ float*

*X: pointer to the output vector (size 256). After function call x contains
the FFT of X vector. Type: __complex__ float*

The function ifft256 is the mixed radix implementation of the 256 points IFFT. The
ifft32m assembly function is used as component block. If more than one fft size is used
in an application the module ifft32m is shared among them.

Note: the function ifft256 uses 75 locations of the stack

Restrictions.
only the following vectors combinations are allowed:
X # data_temp # x
X = data_temp # x
X = x # data_temp

X and x can be allocated in Internal Memory, in Buffer Memory or in
Parm memory

data_temp must be always in Internal Memory

Number of cycles:

1829
Number of VLIW:
183
File: ifft256.mas
3.28 ifft288 Function: complex IFFT on 288 points
. B’
x(k)= 588 ZOWZSS xX(n) k =0..287
Synopsis: __vector___ int ifft288 (*W, *X, *data_temp, *x)
Include file: DSPIib.h.
3-30 AImEl DSP Library User Manual (draft)

I)

DRAFT-DPS-04/05

DSP Functions Description

*W: pointer to the ordinary trigonometric coefficients table exp(-i x 2 x pi x
n/288), with n=0..143. Type: __complex__ float*

X: pointer to the input vector (size 288). Type: __complex__ float

*data_temp: pointer to a temporary vector for IFFT computation (size 288).

Type: __complex__ float*

*X: pointer to the output vector (size 288). After function call x contains
the FFT of X vector. Type: __complex__ float*

The function ifft288 is the mixed radix implementation of the 288 points FFT. The ifft32m
assembly function is used as component block. If more than one fft size is used in an
application the module ifft32m is shared among them.

Note: the function ifft288 uses 75 locations of the stack

Restrictions.
only the following vectors combinations are allowed:
X # data_temp # x
X = data_temp # x
X = x # data_temp

X and x can be allocated in Internal Memory, in Buffer Memory or in
Parm memory

data_temp must be always in Internal Memory

Number of cycles:

2836
Number of VLIW:

179
File: ifft288.mas

3.29 ifft512 Function: complex IFFT on 512 points
L
x(k)= 55 ZO Ws1s x X(n) k =0...512

Synopsis: __vector__ intifft512 (*W, *X, *data_temp, *x)
Include file: DSPlib.h.

DSP Library User Manual (draft) AImEl 3-31

I)

DRAFT-DPS-04/05

DSP Functions Description

*W:

*X:

*data_temp:

*X:

pointer to the ordinary trigonometric coefficients table exp(-i x 2 x pi x
n/512), with n=0..255. Type: __complex__ float*

pointer to the input vector (size 512). Type: __complex__ float*
pointer to a temporary vector for IFFT computation (size 512).
Type: __complex__ float*

pointer to the output vector (size 512). After function call x contains
the FFT of X vector. Type: __complex__ float*

The function ifft512 is the mixed radix implementation of the 512 points IFFT. The

ifft32m assembly

function is used as component block. If more than one fft size is used

in an application the module ifft32m is shared among them.

Note:

Restrictions.

the function ifft512 uses 75 locations of the stack

only the following vectors combinations are allowed:
X # data_temp # x
X = data_temp # x
X = x # data_temp

X and x can be allocated in Internal Memory, in Buffer Memory or in
Parm memory

data_temp must be always in Internal Memory

Number of cycles:

3487
Number of VLIW:
181
File: ifft512.mas
3.30 ifft64 Function: complex IFFT on 64 points
1 & k
x(k)= &4 ZOWM xX(ky k =o0..31
Synopsis: __vector___int ifft64(*W, *X, *data_temp, *x)
Include file: DSPIib.h.
3-32 AImEl DSP Library User Manual (draft)

I)

DRAFT-DPS-04/05

*W:

*X:

*data_temp:

*X:

DSP Functions Description

pointer to the ordinary