<< pl_lft_direct CCA (Computational Convex Analysis) pl_lft_direct_d >>

CCA (Computational Convex Analysis) >> CCA (Computational Convex Analysis) > pl_lft_direct_2d

pl_lft_direct_2d

[For comparison only] 2D Legendre-Fenchel conjugate, direct computation

Calling Sequence

Conj = pl_lft_direct_2d (Xr, Xc, f, Sr, Sc)

Parameters

Xr

column vector of length n.

Xc

column vector of length m.

f

matrix of size nxm. The function f is sampled on a grid Xr x Xc so f(i,j)=ff(Xr(i),Xc(j)) for some function ff.

Sr

column vector of size m1.

Sc

column vector of size m2. The Conjugate is computed on a grid SrxSc.

Conj

matrix of size m1xm2 containing the Conjugate of the function f.

Description

Warning: This function is provided only for comparison purposes and unit testing, use the more efficient pl_lft_llt_2d for faster computation.

Numerically compute the discrete Legendre transform on the grid Sr x Sc, given a function f(x,y) defined on a grid Xr x Xc, using the pl_lft_direct algorithm to compute the conjugate in one dimension, then to compute it in the other dimension. If n==length(Xr)==length(Xc)==length(Sr)==length(Sc) and N=n^2, this function calls pl_lft_direct n times in one dimension and then n times in the other dimension (2*n^3), giving a O(N^(3/2)) running time with respect to the O(n^2) input size.

The conjugate of a function in R^2 can be factored to several conjugates which are elements of R.

f*(s(1),s(2)) = Sup [x(1)y(1) + x(2)y(2) - f(x(1),x(2))]
             x(1),x(2)

              = Sup [s(1)x(1) + Sup[s(2)x(2) - f(x(1),x(2))]]
                x(1)            x(2)

Examples

Xr=(-2:0.1:2)'; 
Xc=(-2:0.1:2)'; 
Sr=(-2:0.1:2)';
Sc=(-2:0.1:2)';
deff('[z]=f(Xr,Xc)',['z= Xr^2 + Xc^2']);
z=eval3d(f,Xr,Xc);
result_llt = pl_lft_llt_2d (Xr, Xc, z, Sr, Sc, 0); //llt method
result_direct = pl_lft_direct_2d (Xr, Xc, z, Sr, Sc, 1); //direct method

See Also

Authors

Mike Trienis, University of British Columbia, BC, Canada

<< pl_lft_direct CCA (Computational Convex Analysis) pl_lft_direct_d >>