Name

qd — generate QD value

Calling Sequence

a = qd(a0)
a = qd(a0,a1)
a = qd(a0,a1,a2)
a = qd(a0,a1,a2,a3)

Parameters

a0,a1,a2,a3

double numberd

a

QD number

Description

  • Generate QD number using double precision numbers. The author applied overloading to basic arithmetic operations and several Scilab functions.

Examples

	
// define qd variables
a = qd(1)
b = qdrand(1,1) //// random value generator
c = 3
d = qd(c)
A = [1,2;3,4]
B = qd(A)
// ---------------------------------------------
// four basic arithmetic for qd
a + b
b + 1
2 + b
C = qdrand(2,2) 
A + C
-b
a - b
b - 4
c - b
C - A
b * d // scalar * scalar
2 * b
3 * A // scalar * matrix
A * C // matrix * matrix
a / b
a / 3
5 / b
A / 3
// ---------------------------------------------
// relational operators for qd
a == b
a ~= b
a <> b
a > b
a < b
a >= b
a <= b
a == 1
b ~= 2
a <> 1
b < 2
b <= 3
b > 3
b >= -1
5 < b
2.2 <= b
2.1 > b
2 >= b

// ---------------------------------------------
// available functions for qd

// square root
a = qd(2)
b = sqrt(a)

//n-th root
b = nrt(a,3)

//absolute value
c = -b
abs(c)

// cealing,floor
d = b*10
ceil(d)
floor(d)

//sin,cos,tan
sin(d)
cos(d)
tan(d)

// matrix functions
A = qdrand(3,3)
A(2,1) //extraction
v = A(:,2)
A(2,1) = qd(5) // insertion
A(3,:) = qdrand(1,3)

norm(v,2)

B = qdrand(3,3)
[L,U] = lu(B)
[Q,R] = qd(B)

	
	

See Also

dd

Authors

Copyright (C) 2011 - Tsubasa Saito