builds an array of QD numbers
a = qd(a0) a = qd(a0,a1) a = qd(a0,a1,a2) a = qd(a0,a1,a2,a3)
arrays of decimal numbers, of same sizes
array of QD numbers, of size(a0)
Generate QD number using double precision numbers. The author applied overloading to basic arithmetic operations and several Scilab functions.
// define qd variables a = qd(1) b = qdrand(1,1) //// random value generator c = 3 d = qd(c) A = [1,2;3,4] B = qd(A) // --------------------------------------------- // four basic arithmetic for qd a + b b + 1 2 + b C = qdrand(2,2) A + C -b a - b b - 4 c - b C - A b * d // scalar * scalar 2 * b 3 * A // scalar * matrix A * C // matrix * matrix a / b a / 3 5 / b A / 3 // --------------------------------------------- // relational operators for qd a == b a ~= b a <> b a > b a < b a >= b a <= b a == 1 b ~= 2 a <> 1 b < 2 b <= 3 b > 3 b >= -1 5 < b 2.2 <= b 2.1 > b 2 >= b // --------------------------------------------- // available functions for qd // square root a = qd(2) b = sqrt(a) //n-th root: not yet implemented //b = qdnrt(a,3) //absolute value c = -b abs(c) // cealing,floor d = b*10 ceil(d) floor(d) //sin,cos,tan sin(d) cos(d) tan(d) // matrix functions A = qdrand(3,3) A(2,1) //extraction v = A(:,2) A(2,1) = qd(5) // insertion A(3,:) = qdrand(1,3) norm(v,2) B = qdrand(3,3) [L,U] = lu(B) [Q,R] = qr(B) | ![]() | ![]() |