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For users

- It is strongly advised to read this document before using the Fact
functions, it is not very long! 

• The use of Fact implies to know a bit about Scilab.

• Almost all functions are associated to an help using :

help <fonction> 

which opens a html window with a browser.
To get a list of the main functions : 

help abc_fact
help fact

• If the result yielded by a function is not clear, it is possible to type the name of the output
argument, then check its fields. For example, a principal component analysis is obtained by : 
-->p=pcana(ble) ;  
But what is there into p ? 
-->p
   scores: [1x1 struct]
   eigenvec: [1x1 struct]
   var_scores: [1x1 struct]
   eigenval: [1x1 struct]
   x_mean: [1x1 struct]
   centred: 0
   std : 0

Then we can guess that  p.scores contains the scores,  p.eigenvec the eigenvectors, and so
on. 

How to install/remove Fact for Scilab :

Scilab is installed from:    www.scilab.org

1-  open Scilab, choose the console, open « Applications » then « Atoms modules »
      sort them by alphabetical with « all modules » ; choose Fact
      click on « install » :    
1bis : alternatively : open the Fact page (http://atoms.scilab.org/toolboxes/FACT)
          download the binary file  (ex : FACT_0.4-3.bin.zip) in a directory
         open the same directory with Scialb browser 
         verify the internet connection !
         type in the console:   atomsInstall('FACT_0.4-3.bin.zip')            
     
2- restart Scilab  Fact has been installed

- remove Fact with the « remove» button
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Introduction :
Issued  for  example  from  chromatography,  spectrometry  or  images,  data  suited  for
chemometric applications have very often hundreds or thousands of lines and/or columns, and
thus are very difficult to handle with the usual softwares, Excell or OpenOffice. To fix this
problem, we have developed toolboxes under Scilab et Matlab, easing the work of users and
giving a possibility for the chemometric community to contribute. Only the Scilab version is
presented here, for Matlab see at the last page of this document. 
A  first  toolbox  developed  by  Dominique  Bertrand  (INRA)  was  called  « SAISIR »
(Statistiques  Appliquées  à  l’Exploitation  des  Spectres  Infrarouge).  It  contains  tools  for
loading,  handling  and  saving  data,  graphical  interfaces  and  statistical  applications:
multivariate  analysis,  discrimination,  regression,  …Saisir  has  been  built  since  1998  for
Matlab.  One of its particular features is  to use a Div structure introduced before 1985 in
BASIC in order to keep informations about the observations and the variables along with the
data. 
The rewriting of Saisir for Scilab led to update the functions, some added, other removed or
replaced.  These  modifications  were  important  enough  for  the  resulting  toolbox  to  be
considered  different  from Saisir.  In  order  to  avoid confusion,  the  name was changed in :
« FACT »  (Free-Access Chemometric Toolbox ). Fact keeps many functions as well as the
spirit of Saisir. The use of Fact implies a basic knowledge of Scilab environment and of the
chemometric tools that are used. 

1. General principles

Both Saisir and Fact use structures. The basic principle is that the lines and columns contain
identifiers  or  labels  which  «     follow     »  the  processings. For  example,  the  following  table
contains notes of three apple cultivars named « GALA1 », « FUJI1 », « FUJI2 », for three
sensorial descriptors: global « OGLO », earth «OTER », cellar « OCAV » :

OGLO OTER OCAV
GALA1 2.8 1.2 0.3
FUJI1 2.6 0.5 0.4
FUJI2 7.5 0.3 0

(in this example the decimal separator is a dot)

The data contains 3 rows and 3 columns. The rows (or  observations) are identified by the
names of the cultivars : « GALA1 », « FUJI1 » and « FUJI2 » ) ; as well as the columns (or
variables)  are  identified  by  « OGLO »,  « OTER » et  « OCAV ».  Then the  data  form the
matrix:

2.8 1.2 0.3
2.6 0.5 0.4
7.5 0.3 0

This table will be processed with the three informations. The corresponding Fact format is a
DIV structure which contains the fields :
<> .d  for  « data/données »
<> .i   for  « individuals/individus » (rows) ;
<> .v  for  « variables » (columns ). 
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The Div structure is  necessarily built by the function  div or other functions into which this
function is embedded, according to two possibilities : 

a) build manually a structure with the fields .d,.i and .v, then apply div :
 
-->Pomme.d=[2.8 1.2 0.3;2.6 0.5 0.4;7.5 0.3 0];
-->Pomme.i=['gala1';'Fuji1';'Fuji2'];
-->Pomme.v=['oglo';'oter';'ocav'];
-->Pomme
 Pomme  =
   d: [3x3 constant]
   i: [3x1 string]
   v: [3x1 string]
-->Pomme=div(Pomme)
 Pomme  =
   d: [3x3 constant]   
   i: [3x1 string]   
   v: [3x1 string] 

b) apply div by giving the three fields .d, .i and .v in this order:

-->Pomme=div([2.8  1.2  0.3;2.6  0.5  0.4;7.5  0.3  0],['Gala1';'Fuji1';'Fuji2'],
['oglo';'oter';'ocav'])
 Pomme  =
  d: [3x3 constant]   
   i: [3x1 string]   
   v: [3x1 string] 

The Div structure Div is identified by the command typeof : 
-->typeof(Pomme)
 ans  =
 div 

On the screen, the baselinestrech between the fields .d, .v and .i is simple for usual structures,
double for Div structures.

Each field can be extracted, e.g.: 
--> Pomme.i
ans=
! Gala1 !
! Fuji1 !
! Fuji2 !

--> x=Pomme.d
x =
          2.80          1.20          0.30
          2.60          0.50          0.40
          7.50          0.30             0

Note that the fields « i » and  « v » are strings ; Scilab does not use cell arrays as Matlab. 
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An interesting case concerns data represented by curves (spectra, chromatograms,..).  They
form matrices with  rows as observations. The identifiers of the variables are thus numbers
converted inti strings and representing the scale marks of the curve. Here is an example from
infrared spectra :  

  1100 1102 1104 1106 1108
1br01 0.20541 0.20723 0.20908 0.21099 0.21293
1br51 0.21421 0.21611 0.21805 0.22002 0.22201
1fu21 0.17093 0.1725 0.1741 0.17574 0.17741
1fu71 0.17365 0.17514 0.17667 0.17823 0.17981
As previously   « 1br01 »,  « 1br51 »,  « 1fu21 »,  « 1fu71 »  identify  the  observations ;  and
« 1100 », « 1102 », « 1104 », « 1106 », « 1108 » identify the variables. Suppose that the Div
structure of these data is called spectra, then:

-->spectra
spectra=
d: [4x5 constant]
i:  [4x1 string]
v: [5x1 string]

--> spectra.v
ans=
! 1100  !  
! 1102 !
! 1104 !
! 1106 !
! 1108 !

The  numerical  origin  of  the  variable  labels  is  used  for  the  representation  of  the  curves
(functions curves and tcurves).  

2. Using the Fact environment

The help command opens a html window explaining the syntax of the function. The list of the
Fact commands classified by thematic is obtained by : 
-->help abc_fact
It allows to find quickly the searched command. In the upper left hand side of the window, is
printed: 

fact >> fact > abc_fact
Click onto one of the  fact and it opens an alphabetical list of the functions. Click onto the
desired function to get all the details.  
 
2.1 Getting started
The data compatible  with Fact  form matrices.  Missing values (NaN) are not handled and
generate an error message. 
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2.1.1 Loading, building and saving Div structures

Loading from Excel or OpenOffice
The  function  csv2div imports  data  from Excel  and  OpenOffice  if  they  are  organized  as
follow :  
<>the first row contains the identifiers of the columns;
<>the first column contains the identifiers of the rows;
<>the  other  cells  contain  numerical  values,  with  a dot « . »  or a comma « , » as  decimal
separator. 
The cell in position (1,1) is dropped during the importation process. 
Example of the data  « fruits » with Excel or OpenOffice: 

  OGLO OTER OCAV
GALA1 2,8 1,2 0,3
FUJI1 2,6 0,5 0,4
FUJI2 7,5 0,3 0

This file must be saved under the « .csv » format:
<> with Excel, click onto  save under then CSV (separator = « ; ») ;
<> with OpenOffice : click onto  save under then  csv / edit the parameters of the filter
then  filed separator:  « ; » and clear the default text separator. 

The loading into Scilab is obtained by the command: res = csv2div('filename') ;
where filename is a string, the name of the file to be loaded (and eventually with the path),
and res is the Div structure. For example :

--> essai=csv2div(‘fruits.csv') 

loads the file fruits.csv and puts the result into the Div structure essai. 

The  csv2div function imports the missing values replaced by NaN in the original file .csv.
But if missing values are represented by an empty field, then an error message is generated by
csv2div.    

Export of Div structures towards a .csv file (for re-use with Excel or OpenOffice)     :
The command div2csv exports a Div structure into a .csv file, with the identifiers of the rows
and the columns. The file is saved in the .csv format (field separator: “;”) with its row and
column identifiers. For example: 

-->div2csv(essai, 'tableau' , ',' )

saves the Div structure essai into the file TABLEAU.csv. Note that the last argument is the
decimal separator. Csv files are easily imported by Excel or OpenOffice. 
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2.1.2 Handling the data 

Simple operations  are possible  with Div structures because the basic functions have been
overloaded for Div; they are summerized into the following table. Of course the dimensions
must fit. 

Operation Scalars Matrices Div
Structures

Syntax Detail of the calculation

Transposition a,c c=a' c.d=a.d'
c.i=a.i
c.v=a.v

Addition a,b,c c=a+b c.d=a.d+b.d
c.i=a.i
c.v=a.v

Subtraction a,b,c c=a-b c.d=a.d-b.d
c.i=a.i
c.v=a.v

Multiplication
by a scalar

s a,c c=s*a c.d=n*a.d
c.i=a.i
c.v=a.v

Division by a 
scalar

s a,c c=a/s c.d=a.d/n
c.i=a.i
c.v=a.v

Multiplication
of Div 
structures

a,b,c c=a*b c.d=(a.d)*(b.d)
c.i=a.i
c.v=a.v

Element-wise 
multiplication

a,b,c c=a.*b c.d=(a.d).*(b.d)
c.i=a.i
c.v=b.v

Element-wise 
division 

a,b,c c=a./b c.d=a.d./b.d
c.i=a.i
c.v=a.v

Merging the 
row

a,b,c c=[a;b] c.d=[a.d;b.d]
c.i=[a.i;b.i] ;

c.v=a.v

Merging the 
columns

a,b,c c=[a b]  ou
c=[a,b]

c.d=[a.d b.d]
c.i=a.i

c.v=[a.v;b.v]

Extracting 
data

p,q,r,s a,c c=a(p :q,r:s) c.d=a.d(p:q,r:s)
c.i=a.i(p:q)
c.v=a.v(r:s)

Insertion of 
data

p,q,r,s m c c(p:q,r:s)=m c.d(p:q,r:s)=m

Tableau 1:  operations made possible for Div structures with the current operators ( ' + - * /
.* ./  [ ] [;] )
 
For the extraction or the insertion of data, the ranges p:q or r:s cannot be replaced by p or r.
Thus c=a(p,r) is valid but not c=a(p) even in the case of vectors.
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The following commands apply onto the indices and not onto the descriptors. So, the row
corresponding to Fuji2 is selected by:

--> Fuji2=spectre(3,:) ;   // and not: Fuji2=spectre(Fuji2,:)

It is sometimes boring with very big matrices to find the index of an observation or a variable
from its identifier. The command strseek can help:

--> index = strseek (Pomme.i, ‘Fuji’)
index= 
2.
3. 

It returns the indexes of all the observations of Pomme.i  which contain the string « FUJI »
within their names. Uppercase and lowercase characters are considered as different. 

With numerical data, the command indexseek returns a single value, the index whose value
is the closest of a given value. For example:

-->index=indexseek(spectre.v,1104);

Note that an exact fit is not necessary; this command will find the appropriate index even if
the variable « 1104 » is coded by « 1103.9996 ».  

Using identifiers as an extraction key
It is ofen useful and sometimes mandatory for big matrices to use the names as extraction key.
Numerous  procedures  (  discriminant  analysis,  principal  component  analysis,  analysis  of
variance, graphics) are simplified if the user abided to this principle. Let explain it with an
example.
Suppose that an experiment involves three cultivars of wheat flour (Camp Rémi,  Talent and
Arminda), cultivated in two location (Paris and  Montpellier), with 20 répétitions. A correct
identifier  for an observation could be:  CRPA09 which means :  Camp Rémi,  cultivated in
Paris, 9th répétition. Two letters are used for the cultivr (CR), two letters for the location (PA),
and  two  letters  for  the  repetition:  (‘09’ and  not  ‘9’)  which  adress  to  the  9th observation
between 1 and 99 répétitions !
Similarily TAMO19 means Talent, cultivated in Montpellier, 19th repetition.
The  dimensions  of  the  identifiers  must  remain  constant.   For  instance  CRMO12  and
ARMPA10 are not compatible because the CR code contains 2 characters while the ARM
code contains 3 characters! Also the same combinations of letters cannot be used for several
codes: si PA is used for the location, it cannot be remployed for a wheat cultivar. 

Such identifiers can be used to extract data. The extraction from the Div structure wheat of
all the flours from wheats cultivated in  Paris is obtained with the command: 

[indexofobs] = strseek(wheat.i,'PA')
[sel_obs] = wheat(indexofobs,:)

The  first  line  determines  the  indexes  of  the  observations  containing  PA,  the  second  line
extracts them and builds the corresponding Div structure. 
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2.1.3 Principal component analysis 
The principal component analysis is useful for a global observation of the data, before other
processings. Moreover this method presents several of the elements and the graphics used in
the Div environment. 

A first example concerns the data Olive oil  described in the article: 
M. Forina and C. Armanino, Eigenvector Projection and Simplified Non-Linear Mapping of
Fatty Acid Content of Italian Olive Oils, Annali di Chimica 72:127-141, (1987). 

For  a  characterization  of  the  olive  oils  from  several  regions  of  Italy,  the  authors  have
quantified 8 fatty acids (Palmitic, Palmitoleic, Stearic, Oleic, Linoleic, Eicosanoic, Linolenic,
Eicosenoic) into 572 samples of olive oils issued from 9 Italian regions. The file olives.csv
contains the data. The rows correspond to the 572 obervations. The columns correspond to the
concentrations of each of the 8 fat acids. Thus we get a matrix of dimensions (572 x 8).

The identifiers of the observations contain 2 characters for the region. For instance Ca005
means that the 5th sample was obtained in the region Ca for Calabria.

The data is loaded into Scilab :

--> olive1=csv2div('olives.csv')
olive1= 
   d: [572x8 constant]
   v: [8x20 string]
   i: [572x20 string]

The PCA is obtained with the commands pcana  or  cspcana onto a dataset without missing
or NaN values, containing only the row and columns to be processed. 
The difference between pcana and cspcana is that cspcana always centers and standardizes the
data,  while  by  default  pcana  does  not  center  nor  standardize.  Nevertheless  centering  and
standardization can be obtained manually with :  
centering:           centering the columns 
standardize:      normalisation or standardiaation of the columns (variance=1)
So the following options are equivalent:

option 1 :
--> olive2=centering(olive1);
--> olive3=standardize(olive2);
→ res=pcana(olive3)
 res  =
   scores: div
   var_scores: div
   eigenvec: div
   eigenval: div
   ev_pcent : div
   x_mean: div
   x_stdev: div
   centred: 0
   std : 0 
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option2 :
-->res=cspcana(olive1)
 res  =
   scores: div
   var_scores: div
   eigenvec: div
   eigenval: div
   ev_pcent : div
   x_mean: div
   x_stdev: div
   centred: 1
   std: 1

The  output  are  the  same,  except  for  the  options  centred and  std.  They  report  the
pretreatments processed by the functions pcana or cspcana, not the pretreatments processed
before. 
In those examples, res is a structure containing all the results of the PCA. The fields scores,
eigenvec, var_scores, eigenval et x_mean are  Div structures. 
A useful  field  is  res.scores.  Each  row  represents  an  observation  and  each  column  an
eigenvector ranked in the decreasing order of the eigenvalues. The identifiers of the rows of
res.scores are thus a copy of those of olive1.i  or olive3. The identifiers of the columns of
res.scores are built by the functions pcana or cspcana :

-->res.scores.v
 ans  =
!PC1  46.5 %  !
!PC2  22.1 %  !
!PC3  12.7 %  !
!PC4  9.9 %   !
!PC5  4.2 %   !
!PC6  3.1 %   !
!PC7  1.5 %   !
!PC8  0 %     !

The  factorial maps   represent pairs of columns chosen by the operator into  res.scores as
graphics X-Y. The command map and related commands are used.

--> map(res.scores, 1, 2)
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The previous figure represents the columns 1 and 2 of  res.scores. More information is added
to the captions of the abscissa and ordinate: the eigenvalues of axes 1 and 2, in percent. 

This figure is difficult to read. And we can wonder about the influence of the origin of the
oils. A colored map is easily obtained with coloredmap.
For example :

-->  coloredmap(res.scores, 1, 2, 1, 2 ) 

asks for a representation of the columns 1 and 2 (arguments 2 and 3) of the matrix res.scores
using  a  color  according  to  the  key  given  by  the  arguments  4  and  5.  These  arguments
determine the position (start/stop) of the selected region within  res.scores.i which will be
used to gather observations and to represent them with the same color.  In our example, the
function extracts the strings of res.scores.i which begin in the first position and end in the
second position :  Ca, Cs, El, Is, Na, Sa, Si, Um and Wl, and sets a color for each group. Each
observation is represented by these colored strings. 
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It is clear that the regions have an influence onto the composition in fatty acids of the olive
oils.The eigenvalues in percent, '46,5%' and '22,1%' are added automatically to PC1 and PC2
respectively. 

Other options are possible to represent the classes: 

each class with a different color:
scmap :        a symbol (<=7 classes) or a number (>7 classes) 
diacmap :     ' Δ ' 
dotcmap :     ' ٭  '  
starcmap :    ' * ' 

all classes in black and white :
kcmap :         the identifier of a class 
kscmap :       a symbol (<=7 classes) or a number (>7 classes) 

The  correlation  map  is  obtained  with  the  command  corrplot according  to  the  syntax :
corrplot(scores,col1,col2, fact1,fact2, …).  The first argument is a matrix whose columns
are orthogonal together, for example the score of a PCA or a PLS; col1 and col2 are the rank
of the components from score to be plotted; the last arguments are Div structures for which
we wish to visualize the correlation with the scores. For example: 

--> corrplot(res.scores,1,2,olive1) ;

represents the correlation of the variables of olive1with the factors 1 and 2. 
Supplementary variables (not involved in the process of calculation of the scores) can be
added as supplementary arguments. 

Second exemple : PCA onto spectra 
This second example is based on a collection of 140 visible and infrared spectra of wheat
flours. Observations are described by a code which gives successively the year of harvest (3 :
1993 ; 4 : 1994 ; the type durum (D) or soft (T) of the wheat, the number of the cultivar and
the agronomical conditions  H1,  H2,  A1,  A2. Spectra have been recorded between 400 and
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2500 nanometers by 2 nanometers, yielding 1050 spectral variables for each spectra. The Div
structure is the field nir.x from the file nir.dat:

--> nir.x
ans = 
       d: [140x1050 constant]
       i: [140x1 string]
       v: [1050x1 string]

Spectra can be plotted with the command curves which was designed for column vectors. For
row spectra, a transposition is necessary. For exemple :

--> curves(nir.x(3,:),'','Longueur d''onde (nanomètre)','Absorbance')

represents the 3rd spectra. Note that nir.x(3,:) is a vector, so it is represneted by a column; for
nir.x(3:4,:) which is a matrix the spectra form the rows and the transposed form is used: 

--> curves(nir.x(3:4,:)','','Longueur d''onde (nanomètre)','Absorbance')

The second argument allows to choose how the curves are represented. It was set here to the
default value '' but it is also possible to choose the color or the style of the curve, e.g. 'r*'
represents the observations as red stars. 
The ticks of the abscissa correspond to the values of the wavelengths. The Scilab command
plot(nir.x.d(3,:)')  yields almost the same figure, but the abscissa ticks are in the range 1 to
1050 , the number of variables. And the captions are not printed directly, contrary to curves
which tries to interpret the variables labels as numbers, in order to correctly set the abscissa
ticks. And when it is not possible, e.g. the variable labels are not numbers, the X scale is
graduated according to the rank of the variables. 
Several curves can be represented in the same figure with curves. For instance, the command
curves(nir.x(1:10,:)') represents the  10 first spectra, overlapping. 
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and  curves( nir.x ( [3;6;9] , :)' ) represents the spectra of the rows 3, 6 and 9. 

The PCA onto spectra is similar to PCA obtained with other data. Nevertheless the intensity of
each wavelength is meaningful and thus the data should never be normalized. But centering
remains possible, it can be obtained with the centering and pcana commands:

--> x2=centering(nir.x);
--> resacp=pcana(x2);

All  the  possible  components  are  calculated,  here  from 1  to  140.  The  factorial  maps  are
obtained as previously;

--> coloredmap(resacp.scores,1,2,2,2)

represents the factorial plan determined by the two first eigenvectors, using the characters in
second position within  resacp.scores.i (start  and stop at 2) to build the map. The nature
durum/soft of the wheats is represented by the letters T and D respectively; their influence is
very clear. 

3 Supervised multivariate analysis.

Regression and discrimination methods are presented in 3.1 and  3.2 respectively. 

3.1. Regressions

The regression methods.
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Several regression methods are available :  partial least square  (PLSR), principal component
regression (PCR), Ridge regression, multiple linear regression (MLR). 
The simplest regression is the MLR, also named least squares. Unfortunately it cannot apply
to highly correlated variables, so these variables are replaced by orthogonal scores in PLSR
and PCR. 

The data for building a regression.
To build a regression, it is necessary to have a matrix X of n rows and q columns, and a vector
y of n rows at the Div format;  y is predicted using X . The row in X and y must correspond to
the same observations (if necessary, see the reorder command to achieve it). The regression
methods in Fact only allow the prediction of a single variable at once, that is why y is always
a vector. 
The PLS regression is detailed. The other methods apply the same way. 

The partial least squares regression or PLSR
The PLS regression is a very famous and powerful regression method. It applies even for
highly colinear variables in X. The « complexity » of the model depends on a parameter called
« dimension ». The more a model is complex, the more it fits but the less it is stable. So a
compromise  between stability  and complexity  is  necessary.  The choice  of  the  number of
dimensions is possible using cross-validation.  Hereafter, ndim is the number of dimensions
of the model. 
Back to the previous example, about wheat. The reference values of the protein concentration
in nir.y correspond to the spectra. The first step is to build a model, the second step is to apply
it to an unknown dataset and to validate (or not!) the quality of prediction. In order to get
those  two  datasets,  the  original  dataset  was  split  into:   a  calibration  dataset  (xcal,ycal)
containing the first 100 obervations ; and a test dataset (xtest,ytest) containing the last 40
observations. 

-->xcal=nir.x(1:100,:);
-->ycal=nir.y(1:100,:);
-->xtest=nir.x(101:140,:);
-->ytest=nir.y(101:140,:);

The  PLS is called by the command pls for a standard calculation, or by the command ikpls
for a calculation with the improved-kernel pls algorithm (quicker). For instance:

--> model=pls(xcal,ycal,10,30)
 model  =
   err:  div
   ypredcv:  div
   b:  div
   scores: div
   loadings: div
   x_mean: div
   y_mean: div
   center: 1
 
The PLSR has  been calculated with a cross validation of 10 consecutive block and 30 latent
variables (LV). Centering is the default option. The field  model.err.d contains two vectors:
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the root mean square error of calibration (RMSEC) and the root mean square error of cross-
validation (RMSECV). These curves are printed with curves: 

--> curves(model.err);

The RMSEC and the RMSECV are printed in blue and green respectively. According to this
figure, we choose a model with 6 LV.

 

 The b-coefficients of the model with 6 VL are also plotted:                                    

--> curves(model.b(:,6))

Then the model is applied to the test dataset using the regapply command, the same for all
regression methods:  

-->pred=regapply(model,xtest,ytest)
 pred  =
   ypred:  div
   rmsep:  div
   r2:  div

The standard error of prediction RMSEP can also be plotted. 

17



Note that all the models calculated with the regression method are evaluated simultaneously.
Thus pred.ypred.d is a matrix of dimensions (40 x 30), 40 observations and 1 to 30 latent
variables. 

The  regplot command compares the prediction of the model with 6 latent variables to the
reference values: 

--> y6=pred.ypredtest(:,6);  // selection of the 6th variable of ypredtest
--> h=regplot(ytest,y6,'r*','t','p.cent','protein content') ;

The options chosen for regplot in this example are:
'r*' : observations are represented by red stars;
't':    representation of the trend curve;
'p.cent': units of measurement;
'protein content': title of the figure.

Note  that  “biais”  and  “var”  are  the  mean  and  variance  respectively  of  the  residuals
(differences) between the predicted and the reference values; and RMSE2 = biais2 + var2. 

3.2. Pretreatments.

Pretreatments  aim  at  removing  a  spectral  information  which  is  detrimental  for  building
calibration models. 

Some  pretraitments  are  very  popular  in  near  infra-red  spectroscopy  where  spectral
deformations are often very important: 
snv  normalizes the spectra; veru useful in case of a multiplicative effect;  
detrending  corrects simple deformations of the baseline as vertical shift and slope. 

These methods are vey easy to use, see the syntax using the corresponding hep. But other
pretraitments are a bit more difficut to apply because they need supplementary data; among
them we will  focus  on  orthogonal  projections.  Two of  them are  detailed  below:  external
parameter orthogonalization (EPO) and error removal by orthogonal subtraction (EROS). 
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The principle of orthogonal projections.
The detrimental information is represented by a matrix D obtained from data usually issued
from an experimental design. Then this information is represented by the eigenvectors of a
PCA onto  D.  The  tuning  of  the  model  consists  in  determining  the  number  A of  these
eigenvectors representing at best the detrimental information. The correction is obtained by a
projection of the spectra orthogonally to these A first eigenvectors.  

Data dedicated to orthogonal projection. 
The  data  are  issued  from  an  experimental  design  targeting  a  negative  influence  to  be
corrected. Let's take the temperature as an example. 
A possibility consists in the acquisition of spectra onto one ore more samples at different
temperatures (not necessary the same temperature for each sample; the sampes can vary); the
EROS method can be applied. 
Another  possibility  consists  in  the  acquisition  of  spectra  onto  a  same  set  of  samples  at
different levels of temperature ( all the samples have the same temperature); the EPO and
EROS methods can be applied.  

The example illustrates both EPO and EROS. The data are in the file epo_apples.dat which
contains the following fields: 

 -->apples
 apples  =
 
   x1: [1x1 struct]
   xcal: [1x1 struct]
   ycal: [1x1 struct]
   xtest: [1x1 struct]
   ytest: [1x1 struct]
 
The calibration and test datasets are (xcal,ycal) and (xtest,ytest) respectively. x1 contains the
spectra of 10 apples acquired at 8 different temperatures; x1.i identifies simultaneously the
apples  (1st character,  letters  A  to  H)  and  the  temperatures  (2nd to  3rd character,
5/10/15/20/25/30/35/40°C). In the following these data are supposed to be extracted, yielding
the variables:  x1,x1_obs,x1_temp, xcal, ycal, xtest et ytest.  It simplifies the notations,
x1 is easier to type than apples.x1. For instance:

-->x1=div(apples.x1);
-->x1
 x1  =
   d: [80x256 constant]
   i: [80x1 string]
   v: [256x1 constant]

We will  need to  use  the  codes  of  the  samples  c_ech (the  apples)  and the  codes  of  the
detrimental  influences  c_gi (the  temperatures).  They  are  obtained  with  str2conj which
extracts the identifiers of the groups withing the strings: 

-->c_ech=str2conj(x1.i,1,1);
-->c_gi=str2conj(x1.i,2,3);
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Calculation of external parameter orthogonalization   (EPO)
EPO is called by the command epo according to the following example: 

 -->[res_epo]=epo(x1,c_ech,c_gi,xcal,ycal,10,8)
 res_epo  =
   d_matrix: div
   eigenvec: div
   ev_pcent: div
   wilks: div
   rmsecv: div
   pls_models: div

The numbers 10 and 8 indicate a cross validation with 10 groups and a PLS regression with
up to 8 latent variables.

We can notice that c_ech (the code of the samples) appears among the input arguments. It is
not used by the EPO, but it is necessary for the calculation of the Wilks lambda. 

The fields d_matrix and eigenvec are the ones of the matrix of the detrimental influence and
its  first  eigenvectors.  The dimension of  the  correction  is  determined using  the  helps:  the
eigenvalues  in  ev_pcent,  the  Wilks  lambda in  wilks and  the  RMSECV in  rmsecv.  For
example: 

-->curves(res_epo.wilks)

yields the following figure. The scale  between 0 and 7 recalls  that the first  model is  not
corrected by EPO. 
The Wilks lambda is a multivariate criteria to discriminate groups: 0 = no differences between
groups; 1 = groups well separated. The EPO correction is expected to increase Wilks lambda
while increasing the number of dimensions. Effectively it increases greatly up to 5 principal
components and after low.  Thus the dimension of the correction is set to 5. 

The field pls_models is a list of structures which contains all the PLSR models between 1
and 8 latent variables.  Each element of the list is associated to a correction by orthogonal
projection involving from 0 to (8-1 =7) principal components: 
pls_models(1) no correction by orthogonal projection 
pls_models(2) EPO with 1 componant 
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…        ...
pls_models(8) EPO with 7 componants

An EPO correcting 7 dimensions corresponds to the 8th  and last model, for which the values
of the RMSECV and the RMSECV are plotted with the following figure: 

-->curves(res_epo.pls_models(8).err)

The RMSECV of the PLSR dicreases with the increase of the number of latent variables and
suggests 6 latent variables. 

Calculation of error removal by orthogonal subtraction (EROS)     :
EROS is called by the following command eros:

-->res_eros=eros(x1,c_ech,xcal,ycal,10,8)
 res_eros  =
   d_matrix: div
   eigenvec: div
   ev_pcent: div
   wilks: div
   rmsecv: div
   pls_models: list
 
EROS is based on the samples (the apples) and does not take into account the levels of the
detrimental influence (the températures) to which the samples are exposed, so compared to
EPO there is  one  parameter  less  to  fill.  Nevertheless  the  outputs (res_epo et  res_eros)
contain the same fields.

Application of EPO and  EROS     :

The models obtained by EPO and EROS were res_epo and  res_eros  respectively. These
models are applied to the test dataset (xtest,ytest) with the commande popapply according to
the following example:

-->res_test=popapply(res_epo,5,xtest,ytest)
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 res_test  = 
   ypred: div
   rmsep: div
   r2: div

We had previously chosen 5 dimensions for EPO and 6 latent variables latentes for PLSR. The
graph of the prediction errors shows that this choice was correct, the corresponding RMSEP
being  1,3706  among the  lowest  values  and  close  to  the  best a  posteriori  choice   (5VL,
RMSEP=1,2811).

The 6th  coloumn of res_test.ypred.d contains the predictions for 6 latent variables. 

Another possibility:
The functions pop_dextract then pop_dtune can also perform pretreatments by orthogonal
projections  (POP).  They  are  used  when  the  correction  involves  two or  more  detrimental
influences, each represented by a different data or model. 
Suppose  that  a  Detrend correction  (also an orthogonal projection)  is  also expected  in  the
previous example. EPO and EROS can be performed by epo,  eros and  pop_dextract and
yield D the matrix of detrimental information, into the field dmatrix. Detrend is obtained by
the function detrending which yields a Vandermonde matrix named L. The two matrices L
and D are merged then pop_dtune performs the correction by orthogonal projection. 

3.2 Discrimination

The principle of discrimination methods.
Three discrimination methods are available in Fact: factor discriminant analysis (FDA), PLS
discriminant analysis (PLS-DA) and step-wise discriminant analysis. Each of these methods
has its own algorithm to determine the directions into the space (associated to a metric) that
discriminate at best the different groups. Then the coordinates or scores of the observations
into these spaces are obtained. The probabilities that an observation belongs to a group are
defined  with  an  Euclidian  or  a  Mahalanobis  distance  (by  default).  Each  observation  is
attributed to the group to which it is the closest, provided that the distance is upper  to a given
threshold. The confusion matrices represent the numbers of observations attributed to each
class (in row) compared to the real belonging of the observations ( in columns). The diagonal
contains  the  good  classifications,  their  number  is  compared  to  the  total  number  of
observations.  Calculations  are  processed  with  all  the  calibration  dataset  or  with  cross-
validation. 

The data to process a discrimination.
Discrimination methods need a matrix e.g.  X  of variables acquired for several observations
and a vector e.g. gr identifying the group of each observation. If X is of dimensions (n x q),
gr is a vector of dimensions (n x 1). This vector contains integers with values between 1 and
maxgroup, where  maxgroup  is the number of groups. Each group must be represented at
least one time in the calibration dataset. 
When the labels of the observations are keys that can explain the groups, these labels can be
easily used to obtain  gr . For the example concerning the olive oils at paragraph 2.1.3, the
region of origin is identified by the 2 first letters of the labels. 
Thus  gr is obtained directly by the command str2conj:
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-->[gr,labels_regions, nbr_obs]=str2conj(olive1.i,1,2);
 
gr is a vector containing integers between 1 and 9 which represent each of the 9 groups. 
labels_regions and  nbr_obs give  the  codes  of  the  groups/regions  and  the  number  of
observations respectively: 

-->labels_regions
 labels_regions  =
!Ca  !
!Cs  !
!El  !
!Is   !
!Na  !
!Sa  !
!Si  !
!Um!
!Wl  !

Factorial discriminant analysis (  FDA  ) 
The factorial discriminant analysis is designed for data containing highly correlated variables
such  as  chromatograms  or  spectra.  Similarily  to  the  principal  component  regression,  it
processes in two steps: a PCA onto the data followed by a linear discriminant analysis.

The factorial discriminant analysis is called by the command fda :

-->res_fda=fda(olive1,code_group,10,8)
 res_fda  =
   conf_cal_nobs: list
   conf_cal: list
   conf_cv: list
   err: div
   errbycl_cal: div
   errbycl_cv: div
   notclassed: div
   notclassed_bycl: div
   method: "fda"
   xcal: div
   ycal: div
   loadings: div
   classif_metric: 0
   scale: "c"
   classif_opt: 0
   threshold: 0.1111111

The percents of error of calibration and cross-validation, values between 0 and 100, are in the
field res_fda.err and can be plotted: 

--> curves(res_fda.err); 
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Note that res_fda.conf_cal_nobs, res_fda.conf_cal_nobs and  res_fda.conf_cal_cv are
lists containing 8 Div structures in this example, one for each dimension. If 7 dimensions are
selected, according the figure above, the confusion matrix for 7 dimensions is: 

-->cm7=res_fda.conf_cal_nobs(7);
-->cm7.d
 cm  =
 
    34.      0.     0.     0.     0.      0.        1.     0.     0.   
      0.    21.     0.     0.     0.      0.        0.     0.     0.   
      0.      0.   46.     0.     0.      0.        0.     0.     0.   
      0.      0.     0.   60.     0.      0.        0.     0.     0.   
      0.      0.     0.     0.     9.      0.        0.     0.     0.   
    17.    12.     4.     5.   12.  206.      18.     6.     4.   
      5.      0.     0.     0.     4.      0.      17.     0.     0.   
      0.      0.     0.     0.     0.      0.        0.   45.     0.   
      0.      0.     0.     0.     0.      0.        0.     0.   46.  
 
All  the  206  observations  of  the  group  6  are  well  classified  into  the  group  6;  but  other
observations attributed to the group 6 belong in fact to the other groups, e.g. 17 for group 1. 

The  details  of  classification  errors  for  each  class  and  each  dimension  are  obtained  with
res.errbycl_cal and  res.errbycl_cv :

-->curves(res_fda.errbycl_cal)

24



The PLS-discriminant analysis (PLS-DA) 
The PLS-DA first builds a PLS2 model using the VODKA method. The reference values are
represented by Y, the disjuctive matrix identifying the groups.  The outputs are the same than
for FDA. For the comparison, we only present the call of plsda and the confusion matrix for 7
dimensions (or latent variables for the PLS-DA) :

-->res_plsda=plsda(olive1,code_group,10,8);
-->cm7bis=res_plsda.conf_cal_nobs(7);
--> cm7bis.d
    35.     0.     0.     0.     0.      0.      1.     0.     0.   
      0.   20.     0.     0.     0.      0.      0.     0.     0.   
      0.     0.   48.     0.     0.      0.      0.     0.     0.   
      0.     0.     0.   57.     0.      0.      0.     0.     0.   
      0.     0.     0.     0.     7.      0.      0.     0.     0.   
    19.   13.     2.     8.   18.  206.    20.     3.     5.   
      2.     0.     0.     0.     0.      0.    15.     0.     0.   
      0.     0.     0.     0.     0.      0.      0.   48.     0.   
      0.     0.     0.     0.     0.      0.      0.     0.   45.  

The forward discriminant analysis:  
The variables are added one after the other by the forwda function: 

-->res_forwda=forwda(olive1,code_group,10,8);

Contrary to the other methods, forwda applies a threshold to add a new discriminant variable.
In our example, the maximum is 6 variables and according to the cross-validation the best
model is obtained for 3 variables: 
 
-->cm7ter=res_forwda.conf_cal_nobs(3);
--> cm7ter.d
 ans  =
    32.     0.     0.     0.     1.      1.      1.     0.     0.   
      0.   24.     0.     0.     0.      0.      0.     0.     0.   
      0.     0.   43.     0.     0.      0.      0.     6.     4.   
      0.     0.     0.   57.     0.      0.      0.     0.     1.   
      0.     0.     0.     0.     8.      0.      2.     0.     0.   
    10.     9.     0.     7.     3.  205.    10.     0.     3.   
    14.     0.     0.     0.   13.      0.    23.     0.     0.   
      0.     0.     4.     0.     0.      0.      0.   45.     0.   
      0.     0.     3.     1.     0.      0.      0.     0.   42.  
 
For all the discriminant methods: 
Only  for  the  cross-validation, the  confusion  matrices  represent  percentages  and  not  a
classification of each observation as for calibration. The reason is that it can happen that all
the  elements  of  a  same  class  be  in  the  calibration  dataset,  or  in  the  validation  dataset:
therefore  their  class  cannot  be  estimated.   To avoid  this  problem,  the  cross-validation  is
repeated 10 times and that explains the use of the percentages. 
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3.3 Multi-table analysis.

A selection of multi-table methods is proposed:  ccswa, comdim,   statis 

These methods can be used and an help is provided. However an update with harmonization
of their outputs is schedulled. Then a demo will be added. 

4 Univariate analysis: ANOVA+SNK

Fact is not statistically oriented but it contains an analysis of variance for one facteur which
deals simultaneously with several variables. It is followed by Student-Newman-Keuls which
is  a  test  for  the  classification  of  the  means.  The ouptuts  are  simplified  according  to  the
informations needed in chemometrics.  

An example is given by the file pph.dat. After loading: 

-->pph
 pph  =
   d: [21x5 constant]
   v: [5x1 string]
   i: [21x1 string]
-->pph.v
 ans  =
!B1      !
!B2      !
!B3      !
!B4      !
!epicat !

The 5 variables are the tanins: the dimers B1, B2, B3, B4 and the monomer epicatéchine. 
The 21 observations are represented into  pph.i by their class identifier,  cl1 à  cl7: thus we
have 7 classes of 3 repetitions each.  

The analysis of variance is called by the command snk: 

-->res=snk(pph,pph.i)
 res  =
   anova: [7x1 string]
   snk: list

The first argument pph is the data to be processed, the second argument pph.i is the identifier
of the classes. The output  res contains two fields: res.anova for the results of the ANOVA
and  res.snk for the results of SNK. 

-->res.anova
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 ans  =
!ANOVA 1 factor, 7 classes of 3 repetitions on average  !
!Variable    SCEA     SCER     F(6,14)     Pr>F                 !
!B1            1513.      28.64      123.2        0                       !
!B2            1.290      1.244      2.419        0.081                !
!B3            0.229      0.068      7.812        0                       !
!B4            0.207      0.077      6.293        0.002                !
!epica        3.932      0.406      22.59        0                       !

SCEA and SCER are the sums of squares explained respectively by the studied factor and
the residual.  F  is the calculated Fischer value and  Pr>F  is the probabily that there are no
differences between the means.  
The ANOVA takes into account different numbers of observations in the classes;  only the
average is reported. 

res.snk is a list; res.snk(i) contains the results of SNK for the variable i. For example the 5th

variable is epicat:  

-->res.snk(5)
 ans  =
!STUDENT_NEWMAN_KEULS 5%:     !
!classes nobs mean    epicat   !
!cl7        3      2.144    A          !
!cl6        3      2.060    A          !
!cl2        3      1.593       B       !
!cl5        3      1.316       B C   !
!cl3        3      1.269       B C   !
!cl4        3      1.092           C   !
!cl1        3      0.933           C   !
 
SNK is designed for classes containing the same number of observations (nobs). If it is not the
case, the calculation is still performed with a mean number of observations rounded to the
nearest integer; but the more the numbers of observations will be different, the more the errors
will increase.   

The last column gathers by a same character the means which are not significatively different
with an error of 5p.cent. In this example cl6 and  cl7 are different from the 5 other classes;
cl2 is different from cl1 and cl4 but not from cl3 or cl5.

5 Other useful informations 

5.1. More informations about Fact

Fact can be downloaded from the Atoms module of Scilab. 
This help file  and the data files are available  in “getting_started.zip” on the Fact page of
Scilab:  

http://atoms.scilab.org/toolboxes/FACT
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5.2. And for Matlab?

Saisir for Matlab and Fact for Scilab are different. At present Fact has not been designed for
Matlab users who can use Saisir 1.0 and download it directly at: 

http://www.chimiometrie.fr/saisirdownload.html

5.3. Rights and duties of the users.

Fact has been protected in France at APP. Nevertheless it is freely released under the Cecill-C
licence and thus there is absolutely no guarantee about the use of Fact and its consequences. 

We would be grateful to users that would mention the use of Fact when they communicate
about results obtained with this toolbox. 

Correspondance about Fact can be adressed to: 

JC Boulet
bouletjc@supagro.inra.fr
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