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For users

- It is strongly advised to read this document before using the Fact
functions, it is not very long! 

• The use of Fact implies to know a bit about Scilab.

• Almost all functions are associated to an help using :

help <fonction> 

which opens a html window with a browser.
To get a list of the main functions : 

help abc_fact
help fact

• If the result yielded by a function is not clear, it is possible to type the name of the output
argument, then check its fields. For example, a principal component analysis is obtained by : 
-->p=pcana(ble) ;  
But what is there into p ? 
-->p
   scores: [1x1 struct]
   eigenvec: [1x1 struct]
   var_scores: [1x1 struct]
   eigenval: [1x1 struct]
   x_mean: [1x1 struct]
   centred: 0
   std : 0

Then we can guess that p.scores contains the scores, p.eigenvec the eigenvectors, and so
on. 

How to install/remove Fact for Scilab :

Scilab is installed from:    www.scilab.org

1-  open Scilab, choose the console, open « Applications » then « Atoms modules »
      sort them by alphabetical with « all modules » ; choose Fact
      click on « install » :    
1bis : alternatively : open the Fact page (http://atoms.scilab.org/toolboxes/FACT)
          download the binary file  (ex : FACT_0.4-3.bin.zip) in a directory
         open the same directory with Scialb browser 
         verify the internet connection !
         type in the console:   atomsInstall('FACT_0.4-3.bin.zip')            
     
2- restart Scilab  Fact has been installed

- remove Fact with the « remove» button
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Introduction :
Issued for example from chromatography, spectrometry or images, data suited for
chemometric applications have very often hundreds or thousands of lines and/or columns, and
thus are very difficult to handle with the usual softwares, Excell or OpenOffice. To fix this
problem, we have developed toolboxes under Scilab et Matlab, easing the work of users and
giving a possibility for the chemometric community to contribute. Only the Scilab version is
presented here, for Matlab see at the last page of this document. 
A first toolbox developed by Dominique Bertrand (INRA) was called « SAISIR »
(Statistiques Appliquées à l’Exploitation des Spectres Infrarouge). It contains tools for
loading, handling and saving data, graphical interfaces and statistical applications:
multivariate analysis, discrimination, regression, …Saisir has been built since 1998 for
Matlab. One of its particular features is to use a Div structure introduced before 1985 in
BASIC in order to keep informations about the observations and the variables along with the
data. 
The rewriting of Saisir for Scilab led to update the functions, some added, other removed or
replaced. These modifications were important enough for the resulting toolbox to be
considered different from Saisir. In order to avoid confusion, the name was changed in :
« FACT »  (Free-Access Chemometric Toolbox ). Fact keeps many functions as well as the
spirit of Saisir. The use of Fact implies a basic knowledge of Scilab environment and of the
chemometric tools that are used. 

1. General principles

Both Saisir and Fact use structures. The basic principle is that the lines and columns contain
identifiers or labels which «     follow     » the processings. For example, the following table
contains notes of three apple cultivars named « GALA1 », « FUJI1 », « FUJI2 », for three
sensorial descriptors: global « OGLO », earth «OTER », cellar « OCAV » :

OGLO OTER OCAV
GALA1 2.8 1.2 0.3
FUJI1 2.6 0.5 0.4
FUJI2 7.5 0.3 0

(in this example the decimal separator is a dot)

The data contains 3 rows and 3 columns. The rows (or observations) are identified by the
names of the cultivars : « GALA1 », « FUJI1 » and « FUJI2 » ) ; as well as the columns (or
variables) are identified by « OGLO », « OTER » et « OCAV ». Then the data form the
matrix:

2.8 1.2 0.3
2.6 0.5 0.4
7.5 0.3 0

This table will be processed with the three informations. The corresponding Fact format is a
DIV structure which contains the fields :
<> .d  for  « data/données »
<> .i   for  « individuals/individus » (rows) ;
<> .v  for  « variables » (columns ). 
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The Div structure is necessarily built by the function div or other functions into which this
function is embedded, according to two possibilities : 

a) build manually a structure with the fields .d,.i and .v, then apply div :
 
-->Pomme.d=[2.8 1.2 0.3;2.6 0.5 0.4;7.5 0.3 0];
-->Pomme.i=['gala1';'Fuji1';'Fuji2'];
-->Pomme.v=['oglo';'oter';'ocav'];
-->Pomme
 Pomme  =
   d: [3x3 constant]
   i: [3x1 string]
   v: [3x1 string]
-->Pomme=div(Pomme)
 Pomme  =
   d: [3x3 constant]   
   i: [3x1 string]   
   v: [3x1 string] 

b) apply div by giving the three fields .d, .i and .v in this order:

-->Pomme=div([2.8 1.2 0.3;2.6 0.5 0.4;7.5 0.3 0],['Gala1';'Fuji1';'Fuji2'],
['oglo';'oter';'ocav'])
 Pomme  =
  d: [3x3 constant]   
   i: [3x1 string]   
   v: [3x1 string] 

The Div structure Div is identified by the command typeof : 
-->typeof(Pomme)
 ans  =
 div 

On the screen, the baselinestrech between the fields .d, .v and .i is simple for usual structures,
double for Div structures.

Each field can be extracted, e.g.: 
--> Pomme.i
ans=
! Gala1 !
! Fuji1 !
! Fuji2 !

--> x=Pomme.d
x =
          2.80          1.20          0.30
          2.60          0.50          0.40
          7.50          0.30             0

Note that the fields « i » and  « v » are strings ; Scilab does not use cell arrays as Matlab. 
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An interesting case concerns data represented by curves (spectra, chromatograms,..). They
form matrices with rows as observations. The identifiers of the variables are thus numbers
converted inti strings and representing the scale marks of the curve. Here is an example from
infrared spectra :  

  1100 1102 1104 1106 1108
1br01 0.20541 0.20723 0.20908 0.21099 0.21293
1br51 0.21421 0.21611 0.21805 0.22002 0.22201
1fu21 0.17093 0.1725 0.1741 0.17574 0.17741
1fu71 0.17365 0.17514 0.17667 0.17823 0.17981
As previously  « 1br01 », « 1br51 », « 1fu21 », « 1fu71 » identify the observations ; and
« 1100 », « 1102 », « 1104 », « 1106 », « 1108 » identify the variables. Suppose that the Div
structure of these data is called spectra, then:

-->spectra
spectra=
d: [4x5 constant]
i:  [4x1 string]
v: [5x1 string]

--> spectra.v
ans=
! 1100  !  
! 1102 !
! 1104 !
! 1106 !
! 1108 !

The numerical origin of the variable labels is used for the representation of the curves
(functions curves and tcurves).  

2. Using the Fact environment

The help command opens a html window explaining the syntax of the function. The list of the
Fact commands classified by thematic is obtained by : 
-->help abc_fact
It allows to find quickly the searched command. In the upper left hand side of the window, is
printed: 

fact >> fact > abc_fact
Click onto one of the fact and it opens an alphabetical list of the functions. Click onto the
desired function to get all the details.  
 
2.1 Getting started
The data compatible with Fact form matrices. Missing values (NaN) are not handled and
generate an error message. 
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2.1.1 Loading, building and saving Div structures

Loading from Excel or OpenOffice
The function csv2div imports data from Excel and OpenOffice if they are organized as
follow :  
<>the first row contains the identifiers of the columns;
<>the first column contains the identifiers of the rows;
<>the other cells contain numerical values, with a dot « . » or a comma « , » as decimal
separator. 
The cell in position (1,1) is dropped during the importation process. 
Example of the data  « fruits » with Excel or OpenOffice: 

  OGLO OTER OCAV
GALA1 2,8 1,2 0,3
FUJI1 2,6 0,5 0,4
FUJI2 7,5 0,3 0

This file must be saved under the « .csv » format:
<> with Excel, click onto  save under then CSV (separator = « ; ») ;
<> with OpenOffice : click onto save under then csv / edit the parameters of the filter
then  filed separator:  « ; » and clear the default text separator. 

The loading into Scilab is obtained by the command: res = csv2div('filename') ;
where filename is a string, the name of the file to be loaded (and eventually with the path),
and res is the Div structure. For example :

--> essai=csv2div(‘fruits.csv') 

loads the file fruits.csv and puts the result into the Div structure essai. 

The csv2div function imports the missing values replaced by NaN in the original file .csv.
But if missing values are represented by an empty field, then an error message is generated by
csv2div.    

Export of Div structures towards a .csv file (for re-use with Excel or OpenOffice)     :
The command div2csv exports a Div structure into a .csv file, with the identifiers of the rows
and the columns. The file is saved in the .csv format (field separator: “;”) with its row and
column identifiers. For example: 

-->div2csv(essai, 'tableau' , ',' )

saves the Div structure essai into the file TABLEAU.csv. Note that the last argument is the
decimal separator. Csv files are easily imported by Excel or OpenOffice. 
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2.1.2 Handling the data 

Simple operations are possible with Div structures because the basic functions have been
overloaded for Div; they are summerized into the following table. Of course the dimensions
must fit. 

Operation Scalars Matrices Div
Structures

Syntax Detail of the calculation

Transposition a,c c=a' c.d=a.d'
c.i=a.i
c.v=a.v

Addition a,b,c c=a+b c.d=a.d+b.d
c.i=a.i
c.v=a.v

Subtraction a,b,c c=a-b c.d=a.d-b.d
c.i=a.i
c.v=a.v

Multiplication
by a scalar

s a,c c=s*a c.d=n*a.d
c.i=a.i
c.v=a.v

Division by a 
scalar

s a,c c=a/s c.d=a.d/n
c.i=a.i
c.v=a.v

Multiplication
of Div 
structures

a,b,c c=a*b c.d=(a.d)*(b.d)
c.i=a.i
c.v=a.v

Element-wise 
multiplication

a,b,c c=a.*b c.d=(a.d).*(b.d)
c.i=a.i
c.v=b.v

Element-wise 
division 

a,b,c c=a./b c.d=a.d./b.d
c.i=a.i
c.v=a.v

Merging the 
row

a,b,c c=[a;b] c.d=[a.d;b.d]
c.i=[a.i;b.i] ;

c.v=a.v

Merging the 
columns

a,b,c c=[a b]  ou
c=[a,b]

c.d=[a.d b.d]
c.i=a.i

c.v=[a.v;b.v]

Extracting 
data

p,q,r,s a,c c=a(p :q,r:s) c.d=a.d(p:q,r:s)
c.i=a.i(p:q)
c.v=a.v(r:s)

Insertion of 
data

p,q,r,s m c c(p:q,r:s)=m c.d(p:q,r:s)=m

Tableau 1:  operations made possible for Div structures with the current operators ( ' + - * /
.* ./  [ ] [;] )
 
For the extraction or the insertion of data, the ranges p:q or r:s cannot be replaced by p or r.
Thus c=a(p,r) is valid but not c=a(p) even in the case of vectors.
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The following commands apply onto the indices and not onto the descriptors. So, the row
corresponding to Fuji2 is selected by:

--> Fuji2=spectre(3,:) ;   // and not: Fuji2=spectre(Fuji2,:)

It is sometimes boring with very big matrices to find the index of an observation or a variable
from its identifier. The command strseek can help:

--> index = strseek (Pomme.i, ‘Fuji’)
index= 
2.
3. 

It returns the indexes of all the observations of Pomme. i which contain the string « FUJI »
within their names. Uppercase and lowercase characters are considered as different. 

With numerical data, the command indexseek returns a single value, the index whose value
is the closest of a given value. For example:

-->index=indexseek(spectre.v,1104);

Note that an exact fit is not necessary; this command will find the appropriate index even if
the variable « 1104 » is coded by « 1103.9996 ».  

Using identifiers as an extraction key
It is ofen useful and sometimes mandatory for big matrices to use the names as extraction key.
Numerous procedures ( discriminant analysis, principal component analysis, analysis of
variance, graphics) are simplified if the user abided to this principle. Let explain it with an
example.
Suppose that an experiment involves three cultivars of wheat flour (Camp Rémi, Talent and
Arminda), cultivated in two location (Paris and Montpellier), with 20 répétitions. A correct
identifier for an observation could be: CRPA09 which means : Camp Rémi, cultivated in
Paris, 9th répétition. Two letters are used for the cultivr (CR), two letters for the location (PA),
and two letters for the repetition: (‘09’ and not ‘9’) which adress to the 9th observation
between 1 and 99 répétitions !
Similarily TAMO19 means Talent, cultivated in Montpellier, 19th repetition.
The dimensions of the identifiers must remain constant.  For instance CRMO12 and
ARMPA10 are not compatible because the CR code contains 2 characters while the ARM
code contains 3 characters! Also the same combinations of letters cannot be used for several
codes: si PA is used for the location, it cannot be remployed for a wheat cultivar. 

Such identifiers can be used to extract data. The extraction from the Div structure wheat of
all the flours from wheats cultivated in  Paris is obtained with the command: 

[indexofobs] = strseek(wheat.i,'PA')
[sel_obs] = wheat(indexofobs,:)

The first line determines the indexes of the observations containing PA, the second line
extracts them and builds the corresponding Div structure. 
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2.1.3 Principal component analysis 
The principal component analysis is useful for a global observation of the data, before other
processings. Moreover this method presents several of the elements and the graphics used in
the Div environment. 

A first example concerns the data Olive oil  described in the article: 
M. Forina and C. Armanino, Eigenvector Projection and Simplified Non-Linear Mapping of
Fatty Acid Content of Italian Olive Oils, Annali di Chimica 72:127-141, (1987). 

For a characterization of the olive oils from several regions of Italy, the authors have
quantified 8 fatty acids (Palmitic, Palmitoleic, Stearic, Oleic, Linoleic, Eicosanoic, Linolenic,
Eicosenoic) into 572 samples of olive oils issued from 9 Italian regions. The file olives.csv
contains the data. The rows correspond to the 572 obervations. The columns correspond to the
concentrations of each of the 8 fat acids. Thus we get a matrix of dimensions (572 x 8).

The identifiers of the observations contain 2 characters for the region. For instance Ca005
means that the 5th sample was obtained in the region Ca for Calabria.

The data is loaded into Scilab :

--> olive1=csv2div('olives.csv')
olive1= 
   d: [572x8 constant]
   v: [8x20 string]
   i: [572x20 string]

The PCA is obtained with the commands pcana  or cspcana onto a dataset without missing
or NaN values, containing only the row and columns to be processed. 
The difference between pcana and cspcana is that cspcana always centers and standardizes the
data, while by default pcana does not center nor standardize. Nevertheless centering and
standardization can be obtained manually with :  
centering:           centering the columns 
standardize:      normalisation or standardiaation of the columns (variance=1)
So the following options are equivalent:

option 1 :
--> olive2=centering(olive1);
--> olive3=standardize(olive2);
→ res=pcana(olive3)
 res  =
   scores: div
   var_scores: div
   eigenvec: div
   eigenval: div
   ev_pcent : div
   x_mean: div
   x_stdev: div
   centred: 0
   std : 0 
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option2 :
-->res=cspcana(olive1)
 res  =
   scores: div
   var_scores: div
   eigenvec: div
   eigenval: div
   ev_pcent : div
   x_mean: div
   x_stdev: div
   centred: 1
   std: 1

The output are the same, except for the options centred and std. They report the
pretreatments processed by the functions pcana or cspcana, not the pretreatments processed
before. 
In those examples, res is a structure containing all the results of the PCA. The fields scores,
eigenvec, var_scores, eigenval et x_mean are  Div structures. 
A useful field is res.scores. Each row represents an observation and each column an
eigenvector ranked in the decreasing order of the eigenvalues. The identifiers of the rows of
res.scores are thus a copy of those of olive1.i or olive3. The identifiers of the columns of
res.scores are built by the functions pcana or cspcana :

-->res.scores.v
 ans  =
!PC1  46.5 %  !
!PC2  22.1 %  !
!PC3  12.7 %  !
!PC4  9.9 %   !
!PC5  4.2 %   !
!PC6  3.1 %   !
!PC7  1.5 %   !
!PC8  0 %     !

The factorial maps  represent pairs of columns chosen by the operator into res.scores as
graphics X-Y. The command map and related commands are used.

--> map(res.scores, 1, 2)
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The previous figure represents the columns 1 and 2 of  res.scores. More information is added
to the captions of the abscissa and ordinate: the eigenvalues of axes 1 and 2, in percent. 

This figure is difficult to read. And we can wonder about the influence of the origin of the
oils. A colored map is easily obtained with coloredmap.
For example :

-->  coloredmap(res.scores, 1, 2, 1, 2 ) 

asks for a representation of the columns 1 and 2 (arguments 2 and 3) of the matrix res.scores
using a color according to the key given by the arguments 4 and 5. These arguments
determine the position (start/stop) of the selected region within res.scores.i which will be
used to gather observations and to represent them with the same color.  In our example, the
function extracts the strings of res.scores.i which begin in the first position and end in the
second position :  Ca, Cs, El, Is, Na, Sa, Si, Um and Wl, and sets a color for each group. Each
observation is represented by these colored strings. 
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It is clear that the regions have an influence onto the composition in fatty acids of the olive
oils.The eigenvalues in percent, '46,5%' and '22,1%' are added automatically to PC1 and PC2
respectively. 

Other options are possible to represent the classes: 

each class with a different color:
scmap :        a symbol (<=7 classes) or a number (>7 classes) 
diacmap :     ' Δ ' 
dotcmap :     ' ٭  '  
starcmap :    ' * ' 

all classes in black and white :
kcmap :         the identifier of a class 
kscmap :       a symbol (<=7 classes) or a number (>7 classes) 

The correlation map is obtained with the command corrplot according to the syntax :
corrplot(scores,col1,col2, fact1,fact2, …). The first argument is a matrix whose columns
are orthogonal together, for example the score of a PCA or a PLS; col1 and col2 are the rank
of the components from score to be plotted; the last arguments are Div structures for which
we wish to visualize the correlation with the scores. For example: 

--> corrplot(res.scores,1,2,olive1) ;

represents the correlation of the variables of olive1with the factors 1 and 2. 
Supplementary variables (not involved in the process of calculation of the scores) can be
added as supplementary arguments. 

Second exemple : PCA onto spectra 
This second example is based on a collection of 140 visible and infrared spectra of wheat
flours. Observations are described by a code which gives successively the year of harvest (3 :
1993 ; 4 : 1994 ; the type durum (D) or soft (T) of the wheat, the number of the cultivar and
the agronomical conditions H1, H2, A1, A2. Spectra have been recorded between 400 and
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2500 nanometers by 2 nanometers, yielding 1050 spectral variables for each spectra. The Div
structure is the field nir.x from the file nir.dat:

--> nir.x
ans = 
       d: [140x1050 constant]
       i: [140x1 string]
       v: [1050x1 string]

Spectra can be plotted with the command curves which was designed for column vectors. For
row spectra, a transposition is necessary. For exemple :

--> curves(nir.x(3,:),'','Longueur d''onde (nanomètre)','Absorbance')

represents the 3rd spectra. Note that nir.x(3,:) is a vector, so it is represneted by a column; for
nir.x(3:4,:) which is a matrix the spectra form the rows and the transposed form is used: 

--> curves(nir.x(3:4,:)','','Longueur d''onde (nanomètre)','Absorbance')

The second argument allows to choose how the curves are represented. It was set here to the
default value '' but it is also possible to choose the color or the style of the curve, e.g. 'r*'
represents the observations as red stars. 
The ticks of the abscissa correspond to the values of the wavelengths. The Scilab command
plot(nir.x.d(3,:)') yields almost the same figure, but the abscissa ticks are in the range 1 to
1050 , the number of variables. And the captions are not printed directly, contrary to curves
which tries to interpret the variables labels as numbers, in order to correctly set the abscissa
ticks. And when it is not possible, e.g. the variable labels are not numbers, the X scale is
graduated according to the rank of the variables. 
Several curves can be represented in the same figure with curves. For instance, the command
curves(nir.x(1:10,:)') represents the  10 first spectra, overlapping. 
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and  curves( nir.x ( [3;6;9] , :)' ) represents the spectra of the rows 3, 6 and 9. 

The PCA onto spectra is similar to PCA obtained with other data. Nevertheless the intensity
of each wavelength is meaningful and thus the data should never be normalized. But centering
remains possible, it can be obtained with the centering and pcana commands:

--> x2=centering(nir.x);
--> resacp=pcana(x2);

All the possible components are calculated, here from 1 to 140. The factorial maps are
obtained as previously;

--> coloredmap(resacp.scores,1,2,2,2)

represents the factorial plan determined by the two first eigenvectors, using the characters in
second position within resacp.scores.i (start and stop at 2) to build the map. The nature
durum/soft of the wheats is represented by the letters T and D respectively; their influence is
very clear. 

3 Supervised multivariate analysis.

Regression and discrimination methods are presented in 3.1 and  3.2 respectively. 

3.1. Regressions

The regression methods.
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Several regression methods are available : partial least square (PLSR), principal component
regression (PCR), Ridge regression, multiple linear regression (MLR). 
The simplest regression is the MLR, also named least squares. Unfortunately it cannot apply
to highly correlated variables, so these variables are replaced by orthogonal scores in PLSR
and PCR. 

The data for building a regression.
To build a regression, it is necessary to have a matrix X of n rows and q columns, and a vector
y of n rows at the Div format;  y is predicted using X . The row in X and y must correspond to
the same observations (if necessary, see the reorder command to achieve it). The regression
methods in Fact only allow the prediction of a single variable at once, that is why y is always
a vector. 
The PLS regression is detailed. The other methods apply the same way. 

The partial least squares regression or PLSR
The PLS regression is a very famous and powerful regression method. It applies even for
highly colinear variables in X. The « complexity » of the model depends on a parameter called
« dimension ». The more a model is complex, the more it fits but the less it is stable. So a
compromise between stability and complexity is necessary. The choice of the number of
dimensions is possible using cross-validation.  Hereafter, ndim is the number of dimensions
of the model. 
Back to the previous example, about wheat. The reference values of the protein concentration
in nir.y correspond to the spectra. The first step is to build a model, the second step is to apply
it to an unknown dataset and to validate (or not!) the quality of prediction. In order to get
those two datasets, the original dataset was split into:  a calibration dataset (xcal,ycal)
containing the first 100 obervations ; and a test dataset (xtest,ytest) containing the last 40
observations. 

-->xcal=nir.x(1:100,:);
-->ycal=nir.y(1:100,:);
-->xtest=nir.x(101:140,:);
-->ytest=nir.y(101:140,:);

The  PLS is called by the command pls for a standard calculation, or by the command ikpls
for a calculation with the improved-kernel pls algorithm (quicker). For instance:

--> model=pls(xcal,ycal,10,30)
 model  =
   err:  div
   ypredcv:  div
   b:  div
   scores: div
   loadings: div
   x_mean: div
   y_mean: div
   center: 1
 
The PLSR has  been calculated with a cross validation of 10 consecutive block and 30 latent
variables (LV). Centering is the default option. The field model.err.d contains two vectors:
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the root mean square error of calibration (RMSEC) and the root mean square error of cross-
validation (RMSECV). These curves are printed with curves: 

--> curves(model.err);

The RMSEC and the RMSECV are printed in blue and green respectively. According to this
figure, we choose a model with 6 LV.

 

 The regression coefficients are also called b-coefficients because of the relationship: y=Xb
+E . The b-coefficients of the model with 6 LV are also plotted:                                    

--> curves(model.b(:,6))

Then the model is applied to the test dataset using the regapply command, the same for all
regression methods:  

-->pred=regapply(model,xtest,ytest)
 pred  =
   ypred:  div
   rmsep:  div
   r2:  div

The standard error of prediction RMSEP can also be plotted. 
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Note that all the models calculated with the regression method are evaluated simultaneously.
Thus pred.ypred.d is a matrix of dimensions (40 x 30), 40 observations and 1 to 30 latent
variables. 

The regplot command compares the prediction of the model with 6 latent variables to the
reference values: 

--> y6=pred.ypredtest(:,6);  // selection of the 6th variable of ypredtest
--> h=regplot(ytest,y6,'r*','t','p.cent','protein content') ;

The options chosen for regplot in this example are:
'r*' : observations are represented by red stars;
't':    representation of the trend curve;
'p.cent': units of measurement;
'protein content': title of the figure.

Note that “biais” and “var” are the mean and variance respectively of the residuals
(differences) between the predicted and the reference values; and RMSE2 = biais2 + var2. 

3.2. Pretreatments.

Pretreatments aim at removing a spectral information which is detrimental for building
calibration models. 

Some pretraitments are very popular in near infra-red spectroscopy where spectral
deformations are often very important: 
snv  normalizes the spectra; veru useful in case of a multiplicative effect;  
detrending  corrects simple deformations of the baseline as vertical shift and slope. 

These methods are vey easy to use, see the syntax using the corresponding hep. But other
pretraitments are a bit more difficut to apply because they need supplementary data; among
them we will focus on orthogonal projections. Two of them are detailed below: external
parameter orthogonalization (EPO) and error removal by orthogonal subtraction (EROS). 
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The principle of orthogonal projections.
The detrimental information is represented by a matrix D obtained from data usually issued
from an experimental design. Then this information is represented by the eigenvectors of a
PCA onto D. The tuning of the model consists in determining the number A of these
eigenvectors representing at best the detrimental information. The correction is obtained by a
projection of the spectra orthogonally to these A first eigenvectors.  

Data dedicated to orthogonal projection. 
The data are issued from an experimental design targeting a negative influence to be
corrected. Let's take the temperature as an example. 
A possibility consists in the acquisition of spectra onto one ore more samples at different
temperatures (not necessary the same temperature for each sample; the sampes can vary); the
EROS method can be applied. 
Another possibility consists in the acquisition of spectra onto a same set of samples at
different levels of temperature ( all the samples have the same temperature); the EPO and
EROS methods can be applied.  

The example illustrates both EPO and EROS. The data are in the file epo_apples.dat which
contains the following fields: 

 -->apples
 apples  =
 
   x1: [1x1 struct]
   xcal: [1x1 struct]
   ycal: [1x1 struct]
   xtest: [1x1 struct]
   ytest: [1x1 struct]
 
The calibration and test datasets are (xcal,ycal) and (xtest,ytest) respectively. x1 contains the
spectra of 10 apples acquired at 8 different temperatures; x1.i identifies simultaneously the
apples (1st character, letters A to H) and the temperatures (2nd to 3rd character,
5/10/15/20/25/30/35/40°C). In the following these data are supposed to be extracted, yielding
the variables: x1,x1_obs,x1_temp, xcal, ycal, xtest et ytest. It simplifies the notations,
x1 is easier to type than apples.x1. For instance:

-->x1=div(apples.x1);
-->x1
 x1  =
   d: [80x256 constant]
   i:  [80x1 string]
   v: [256x1 constant]

We will need to use the codes of the samples c_ech (the apples) and the codes of the
detrimental influences c_gi (the temperatures). They are obtained with str2conj which
extracts the identifiers of the groups withing the strings: 

-->c_ech=str2conj(x1.i,1,1);
-->c_gi=str2conj(x1.i,2,3);
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Calculation of external parameter orthogonalization   (EPO)
EPO is called by the command epo according to the following example: 

 -->[res_epo]=epo(x1,c_ech,c_gi,xcal,ycal,10,8)
 res_epo  =
   d_matrix: div
   eigenvec: div
   ev_pcent: div
   wilks: div
   rmsecv: div
   pls_models: div

The numbers 10 and 8 indicate a cross-validation with 10 groups and a PLS regression with
up to 8 latent variables.

We can notice that c_ech (the code of the samples) appears among the input arguments. It is
not used by the EPO, but it is necessary for the calculation of the Wilks lambda. 

The fields d_matrix and eigenvec are the ones of the matrix of the detrimental influence and
its first eigenvectors. The dimension of the correction is determined using the helps: the
eigenvalues in percent, in the field ev_pcent, the Wilks lambda in the field wilks and the
RMSECV in the field rmsecv. For example: 

-->curves(res_epo.wilks)

yields the following figure. The scale between 0 and 7 recalls that the first model is not
corrected by EPO. 
The Wilks lambda is a multivariate criteria to discriminate groups: 0 = no differences between
groups; 1 = groups well separated. The EPO correction is expected to increase Wilks lambda
while increasing the number of dimensions. Effectively it increases greatly up to 5 principal
components and after low.  Thus the dimension of the correction is set to 5. 

The field pls_models is a list of structures which contains all the PLSR models between 1
and 8 latent variables.  Each element of the list is associated to a correction by orthogonal
projection involving from 0 to (8-1 =7) principal components: 
pls_models(1) no correction by orthogonal projection 
pls_models(2) EPO with 1 componant 
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…        ...
pls_models(8) EPO with 7 componants

An EPO correcting 7 dimensions corresponds to the 8th  and last model, for which the values
of the RMSECV and the RMSECV are plotted with the following figure: 

-->curves(res_epo.pls_models(8).err)

The RMSECV of the PLSR dicreases with the increase of the number of latent variables and
suggests 6 latent variables. 

Calculation of error removal by orthogonal subtraction (EROS)     :
EROS is called by the following command eros:

-->res_eros=eros(x1,c_ech,xcal,ycal,10,8)
 res_eros  =
   d_matrix: div
   eigenvec: div
   ev_pcent: div
   wilks: div
   rmsecv: div
   pls_models: list
 
EROS is based on the samples (the apples) and does not take into account the levels of the
detrimental influence (the températures) to which the samples are exposed, so compared to
EPO there is one parameter less to fill. Nevertheless the outputs (res_epo et res_eros)
contain the same fields.

Application of EPO and  EROS     :

The models obtained by EPO and EROS were res_epo and res_eros respectively. These
models are applied to the test dataset (xtest,ytest) with the commande popapply according to
the following example:

-->res_test=popapply(res_epo,5,xtest,ytest)
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 res_test  = 
   ypred: div
   rmsep: div
   r2: div

We had previously chosen 5 dimensions for EPO and 6 latent variables latentes for PLSR.
The graph of the prediction errors shows that this choice was correct, the corresponding
RMSEP being 1,3706 among the lowest values and close to the best a posteriori choice
(5LV, RMSEP=1,2811).

The 6th  coloumn of res_test.ypred.d contains the predictions for 6 latent variables. 

Another possibility:
The functions pop_dextract then pop_dtune can also perform pretreatments by orthogonal
projections (POP). They are used when the correction involves two or more detrimental
influences, each represented by a different data or model. 
Suppose that a Detrend correction (also an orthogonal projection) is also expected in the
previous example. EPO and EROS can be performed by epo, eros and pop_dextract and
yield D the matrix of detrimental information, into the field dmatrix. Detrend is obtained by
the function detrending which yields a Vandermonde matrix named L. The two matrices L
and D are merged then pop_dtune performs the correction by orthogonal projection. 

3.2 Discrimination

The principle of discrimination methods.
Three discrimination methods are available in Fact: factor discriminant analysis (FDA), PLS
discriminant analysis (PLS-DA) and step-wise discriminant analysis. Each of these methods
has its own algorithm to determine the directions into the space (associated to a metric) that
discriminate at best the different groups. Then the coordinates or scores of the observations
into these spaces are obtained. The probabilities that an observation belongs to a group are
defined with an Euclidian or a Mahalanobis distance (by default). Each observation is
attributed to the group to which it is the closest, provided that the distance is upper  to a given
threshold. The confusion matrices represent the numbers of observations attributed to each
class (in row) compared to the real belonging of the observations ( in columns). The diagonal
contains the good classifications, their number is compared to the total number of
observations. Calculations are processed with all the calibration dataset or with cross-
validation. 

The data to process a discrimination.
Discrimination methods need a matrix e.g. X  of variables acquired for several observations
and a vector e.g. gr identifying the group of each observation. If X is of dimensions (n x q),
gr is a vector of dimensions (n x 1). This vector contains integers with values between 1 and
maxgroup, where maxgroup is the number of groups. Each group must be represented at
least one time in the calibration dataset. 
When the labels of the observations are keys that can explain the groups, these labels can be
easily used to obtain gr . For the example concerning the olive oils at paragraph 2.1.3, the
region of origin is identified by the 2 first letters of the labels. 
Thus  gr is obtained directly by the command str2conj:
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-->[gr,labels_regions, nbr_obs]=str2conj(olive1.i,1,2);
 
gr is a vector containing integers between 1 and 9 which represent each of the 9 groups. 
labels_regions and nbr_obs give the codes of the groups/regions and the number of
observations respectively: 

-->labels_regions
 labels_regions  =
!Ca  !
!Cs  !
!El  !
!Is   !
!Na  !
!Sa  !
!Si  !
!Um!
!Wl  !

Factorial discriminant analysis (  FDA  ) 
The factorial discriminant analysis is designed for data containing highly correlated variables
such as chromatograms or spectra. Similarily to the principal component regression, it
processes in two steps: a PCA onto the data followed by a linear discriminant analysis.

The factorial discriminant analysis is called by the command fda :

-->res_fda=fda(olive1,code_group,10,8)
 res_fda  =
   conf_cal_nobs: list
   conf_cal: list
   conf_cv: list
   err: div
   errbycl_cal: div
   errbycl_cv: div
   notclassed: div
   notclassed_bycl: div
   method: "fda"
   xcal: div
   ycal: div
   loadings: div
   classif_metric: 0
   scale: "c"
   classif_opt: 0
   threshold: 0.1111111

The percents of error of calibration and cross-validation, values between 0 and 100, are in the
field res_fda.err and can be plotted: 

--> curves(res_fda.err); 
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Note that res_fda.conf_cal_nobs, res_fda.conf_cal_nobs and  res_fda.conf_cal_cv are
lists containing 8 Div structures in this example, one for each dimension. If 7 dimensions are
selected, according the figure above, the confusion matrix for 7 dimensions is: 

-->cm7=res_fda.conf_cal_nobs(7);
-->cm7.d
 cm  =
 
    34.      0.     0.     0.     0.      0.        1.     0.     0.   
      0.    21.     0.     0.     0.      0.        0.     0.     0.   
      0.      0.   46.     0.     0.      0.        0.     0.     0.   
      0.      0.     0.   60.     0.      0.        0.     0.     0.   
      0.      0.     0.     0.     9.      0.        0.     0.     0.   
    17.    12.     4.     5.   12.  206.      18.     6.     4.   
      5.      0.     0.     0.     4.      0.      17.     0.     0.   
      0.      0.     0.     0.     0.      0.        0.   45.     0.   
      0.      0.     0.     0.     0.      0.        0.     0.   46.  
 
All the 206 observations of the group 6 are well classified into the group 6; but other
observations attributed to the group 6 belong in fact to the other groups, e.g. 17 for group 1. 

The details of classification errors for each class and each dimension are obtained with
res.errbycl_cal and  res.errbycl_cv :

-->curves(res_fda.errbycl_cal)
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The PLS-discriminant analysis (PLS-DA) 
The PLS-DA first builds a PLS2 model using the VODKA method. The reference values are
represented by Y, the disjuctive matrix identifying the groups.  The outputs are the same than
for FDA. For the comparison, we only present the call of plsda and the confusion matrix for 7
dimensions (or latent variables for the PLS-DA) :

-->res_plsda=plsda(olive1,code_group,10,8);
-->cm7bis=res_plsda.conf_cal_nobs(7);
--> cm7bis.d
    35.     0.     0.     0.     0.      0.      1.     0.     0.   
      0.   20.     0.     0.     0.      0.      0.     0.     0.   
      0.     0.   48.     0.     0.      0.      0.     0.     0.   
      0.     0.     0.   57.     0.      0.      0.     0.     0.   
      0.     0.     0.     0.     7.      0.      0.     0.     0.   
    19.   13.     2.     8.   18.  206.    20.     3.     5.   
      2.     0.     0.     0.     0.      0.    15.     0.     0.   
      0.     0.     0.     0.     0.      0.      0.   48.     0.   
      0.     0.     0.     0.     0.      0.      0.     0.   45.  

The forward discriminant analysis:  
The variables are added one after the other by the forwda function: 

-->res_forwda=forwda(olive1,code_group,10,8);

Contrary to the other methods, forwda applies a threshold to add a new discriminant variable.
In our example, the maximum is 6 variables and according to the cross-validation the best
model is obtained for 3 variables: 
 
-->cm7ter=res_forwda.conf_cal_nobs(3);
--> cm7ter.d
 ans  =
    32.     0.     0.     0.     1.      1.      1.     0.     0.   
      0.   24.     0.     0.     0.      0.      0.     0.     0.   
      0.     0.   43.     0.     0.      0.      0.     6.     4.   
      0.     0.     0.   57.     0.      0.      0.     0.     1.   
      0.     0.     0.     0.     8.      0.      2.     0.     0.   
    10.     9.     0.     7.     3.  205.    10.     0.     3.   
    14.     0.     0.     0.   13.      0.    23.     0.     0.   
      0.     0.     4.     0.     0.      0.      0.   45.     0.   
      0.     0.     3.     1.     0.      0.      0.     0.   42.  
 
For all the discriminant methods: 
Only for the cross-validation, the confusion matrices represent percentages and not a
classification of each observation as for calibration. The reason is that it can happen that all
the elements of a same class be in the calibration dataset, or in the validation dataset:
therefore their class cannot be estimated.  To avoid this problem, the cross-validation is
repeated 10 times and that explains the use of the percentages. 
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3.3 Multi-table analysis.

A selection of multi-table methods is proposed:  ccswa, comdim,   statis 

These methods can be used and an help is provided. However an update with harmonization
of their outputs is schedulled. Then a demo will be added. 

4 Univariate analysis: ANOVA+SNK

Fact is not statistically oriented but it contains an analysis of variance for one facteur which
deals simultaneously with several variables. It is followed by Student-Newman-Keuls which
is a test for the classification of the means. The ouptuts are simplified according to the
informations needed in chemometrics.  

An example is given by the file pph.dat. After loading: 

-->pph
 pph  =
   d: [21x5 constant]
   v: [5x1 string]
   i: [21x1 string]
-->pph.v
 ans  =
!B1      !
!B2      !
!B3      !
!B4      !
!epicat !

The 5 variables are the tanins: the dimers B1, B2, B3, B4 and the monomer epicatéchine. 
The 21 observations are represented into pph.i by their class identifier, cl1 à cl7: thus we
have 7 classes of 3 repetitions each.  

The analysis of variance is called by the command snk: 

-->res=snk(pph,pph.i)
 res  =
   anova: [7x1 string]
   snk: list

The first argument pph is the data to be processed, the second argument pph.i is the identifier
of the classes. The output res contains two fields: res.anova for the results of the ANOVA
and  res.snk for the results of SNK. 

-->res.anova
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 ans  =
!ANOVA 1 factor, 7 classes of 3 repetitions on average  !
!Variable    SCEA     SCER     F(6,14)     Pr>F                 !
!B1            1513.      28.64      123.2        0                       !
!B2            1.290      1.244      2.419        0.081                !
!B3            0.229      0.068      7.812        0                       !
!B4            0.207      0.077      6.293        0.002                !
!epica        3.932      0.406      22.59        0                       !

SCEA and SCER are the sums of squares explained respectively by the studied factor and
the residual. F is the calculated Fischer value and Pr>F is the probabily that there are no
differences between the means.  
The ANOVA takes into account different numbers of observations in the classes; only the
average is reported. 

res.snk is a list; res.snk(i) contains the results of SNK for the variable i. For example the 5 th

variable is epicat:  

-->res.snk(5)
 ans  =
!STUDENT_NEWMAN_KEULS 5%:     !
!classes nobs mean    epicat   !
!cl7        3      2.144    A          !
!cl6        3      2.060    A          !
!cl2        3      1.593       B       !
!cl5        3      1.316       B C   !
!cl3        3      1.269       B C   !
!cl4        3      1.092           C   !
!cl1        3      0.933           C   !
 
SNK is designed for classes containing the same number of observations (nobs). If it is not the
case, the calculation is still performed with a mean number of observations rounded to the
nearest integer; but the more the numbers of observations will be different, the more the errors
will increase.   

The last column gathers by a same character the means which are not significatively different
with an error of 5p.cent. In this example cl6 and cl7 are different from the 5 other classes;
cl2 is different from cl1 and cl4 but not from cl3 or cl5.

5 Other useful informations 

5.1. More informations about Fact

Fact can be downloaded from the Atoms module of Scilab. 
This help file and the data files are available in “getting_started.zip” on the Fact page of
Scilab:  

http://atoms.scilab.org/toolboxes/FACT
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5.2. And for Matlab?

Saisir for Matlab and Fact for Scilab are different. At present Fact has not been designed for
Matlab users who can use Saisir 1.0 and download it directly at: 

http://www.chimiometrie.fr/saisirdownload.html

5.3. Rights and duties of the users.

Fact has been protected in France at APP. Nevertheless it is freely released under the Cecill-C
licence and thus there is absolutely no guarantee about the use of Fact and its consequences. 

We would be grateful to users that would mention the use of Fact when they communicate
about results obtained with this toolbox. 

Correspondance about Fact can be adressed to: 

JC Boulet
bouletjc@supagro.inra.fr
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