

Stability Studies Preliminary settings of servocontrols for FRANCIS-KAPLAN-PELTON hydraulic turbines

User's Guide - Version 2.3.1

by Pierre Perrichon

CONTENTS

BIBLIOGRAPHY	5
TECHNICAL SUPPORT - CONTACTUPPORT TECHNIQUE - CONTACT	5
LIST OF SYMBOLS	6
ABSTRACT	6
1 INTRODUCTION	7
1.1 Presentation	7
1.2 Linear approach to the stability adjustment of a hydroelectric group	7
1.3 Terminology	9
2 SUPPLY	11
2.1 Installing HydroStab	11
2.2 Uninstalling HydroStab	12
3 BUILDING AND LOADING THE HYDROSTAB TOOLBOX IN SCILAB	13
3.1 Foreword	13
3.2 Prerequisites	13
3.3 The builder.sce constructor	13
3.4 The loader loader.sce	14
3.4.1 Loading	14
3.4.2 Global variable due to HydroStab launch	14
3.4.3 Troubleshooting	14
4 USER'S GUIDE	14
4.1 Reduction of hydraulic diagrams - EXCEL CALTUR Solution	14
4.1.1 Principle	14
4.1.2 Calculation elements	15
4.2 HydroStab Solution	16
4.2.1 HydroStab principle	16
4.2.2 Scilab Home Window	16
4.2.3 Reception Place	17
4.2.3.1 Buttons Nyquist Bode Indiciel	18
4.2.3.2 PID Button	19
4.2.3.3 FTx Button FT1	19
4.2.3.4 DEL Button	20
4.2.3.5 Printing legends in the Scilab console	20
4.2.3.6 Graphics tools available	21
4.3 Dedicated menus in HydroStab	21
4.3.1 Toolbar Menu	21
4.3.2 File Menu	22
4.3.2.1 Create a new configuration	22
4.3.2.2 Saving a configuration	22
4.3.2.3 Reloading a configuration	24

HYDROTUR

7.3 TAKAHASHI Method
7.3.1 Principle of the method
7.3.2 Calculations
7.3.3 Comparison of Module Margin methods (FT1), ZN (FT2), Takahashi (FT3)
7.3.3.1 Nyquist
7.3.3.2 Step responses
7.3.3.3 Gain and phase margins
8 NON-LINEAR SIMULATION OF THE REVIN POWER PLANT
8.1 Study method
8.2 Characteristics of simulations
APPENDIX
A. HYDROSTAB-CALTUR: EXCEL SPREADSHEET 51
A.1 Main sheet "Length-Section"
A.2 - "Flow- efficiency" secondary sheet
B. SEASONAL VARIATIONS – TIDAL RANGE – ADAPTATION OF PID
C. EXAMPLE OF A HYDROSTAB SESSION RECORDING FILE
D. HYDRAULIC STRUCTURE OF THE 2-STAGE SYSCOP COPYING SYSTEM
D.1 Working principle of double-stage copying system
E. ELEMENTS OF HYDROTUR-HYDROSIM DIAGRAMS
E.1 List of HYDROTUR-HydroSim schematic libraries
56
E.2 Speed governor for FRANCIS turbines
E.3 Modeling of the Turbine + Adduction circuit by analytical equations
E.4 Modeling of the Turbine + Adduction circuit with machine hills [n11-c11-q11]
E.5 Modeling the copying system
E.6 Network Circuit Modeling
F. LAYOUT AND ORGANIZATION OF THE SCILAB SPACE
G. REVIN HYDROELECTRIC POWER PLANT
H. LISTING TYPE APRES EXECUTION DU CONSTRUCTEUR BUILDER.SCE
LIST OF FIGURES

BIBLIOGRAPHY

5/72

- [1] Scilab Enterprises Philippe Roux, Scilab De la théorie à la pratique I.Les fondamentaux, D-Booker, 2013.
- [2] Scilab Enterprises Yvon Degré, Serge Steer, Scilab De la théorie à la pratique II-Modéliser et simuler avec XCOS, D-Booker, 2014.
- [3] Scilab Enterprises Laurent Berger, Scilab De la théorie à la pratique III. Le traitement du signal, D-Booker, 2014.
- [4] IEC 60308, Turbines hydrauliques Essais des systèmes de régulation, 2005.
- [5] IEC 61362, Guide pour la spécification des systèmes de régulation des turbines, 2012.
- [6] L. VIVIER, Turbines hydrauliques et leur régulation, PARIS: Editions Albin Michel, 1966.
- [7] Y.Granjon, AUTOMATIQUE Systèmes linéaires, non linéaires, à temps continu, à temps discret, représentation d'état, NANCY: DUNOD - SCIENCES SUP, 2010.
- [8] E.GODOY, Régulation industrielle, L'usine Nouvelle Série EEA, 2007.
- [9] P. De LARMINAT, Automatique des systèmes linéaires Tome 3 Commande, Flammation Sciences, 1977.
- [10] P. PERRICHON, "Eléments de synthèse pour la réalisation d'un régulateur de vitesse numérique industriel dans la conduite d'un groupe hydraulique," Grenoble Université INP ENSE3, Grenoble, 2011.
- [11] B. GREIVELDINGER, "Etude de la stabilité de réglage d'une centrale hydroélectrique en réseau séparé," Ecole polytechnique de LAUSANNE, LAUSANNE, 2003.
- [12] Scilab Enterprises Yvon Degré, Serge Steer, Scilab De la théorie à la pratique II-Modéliser et simuler avec XCOS, D-Booker, 2014.

Standard documents	References
Scilab Engineering	[1] [2] [3]
IEC normative references	[4] [5]
Scientific literature	[6] [7] [8] [9]
University documents	[10] [11]

TECHNICAL SUPPORT - CONTACTUPPORT TECHNIQUE - CONTACT

Figure 1 : Technical support for the HYDROTUR - SEGPAL project

LIST OF SYMBOLS

6/72

ω, Ω	Unit rotation speed (rd.s ⁻¹)
а	Water wave velocity coefficient (m.s-1)
aut	Self-adjustment coefficient of the electrical network (s.u)
FTBF	Closed loop transfer function
FTBO	Open loop transfer function
g	Acceleration of gravity (m.s-2)
Head	Gross or net head (m)
I, MR2	Turbine+Alternator Inertia (T.m2)
Kd	Gain of the derivative action (s.u)
Кр	Governor gain (s.u)
L, Leq	Equivalent pipe length (m)
ma	Marge de module (s.u)
W, Power	Hydraulic unit power (MW)
Q	Unit flow rate (m3/s)
S, Seq	Equivalent pipe section (m2)
Speed	Unit rotation speed (rpm)
Та	Mechanical group launch time (s)
Td	Time constant of the derivative action (s)
Ti	Integrator time constant (s)
Ts	Operating time of the adjustment organs (s)
Tw	Hydraulic unit launch time (s)
ty	Tachometric time constant (s)

ABSTRACT

HydroStab represents a functional box built in Scilab language, in the **HYDROTUR** software suite, and is dedicated to calculating the stability of a speed governor controlling a hydroelectric machine of the FRANCIS, KAPLAN, PELTON type.

HydroStab Solution provides the adjustment parameters of a series-parallel PID corrector allowing the operation of a hydroelectric unit, with a safety margin, and without divergence when commissioning the regulator on site.

Prior to the study, an Excel **CALTUR** sheet establishes a reduction of the hydraulic diagram, in accordance with the data from the plant (length of pipes per section, adjoining sections), and determines the equivalent length and section of a single group.

These results are then to be entered in HydroStab.

HydroStab then determines a convergence domain to be reached and provides a quadruplet (K p , T i , T d , K d), with graphical program proof.

The main method adopted is based on a mathematical technique based on the **Nyquist space**, and proposes to force the passage of the transfer function in open loop, by a point P, to guarantee a **gain margin of 6 dB**, with a fixed **module margin** ma=0.42.

This value is generally commonly accepted in the turbomachinery adjustment system, and is recommended by Electricité de France.

HydroStab complies with international standards IEC 60308 and 61362 in the calculated results.

Other methods (Ziegler-Nichols, Takahashi) are also integrated into HydroStab for comparative studies.

FOREWORD

The examples cited in this document are often based on characteristics of the Revin hydroelectric power station in France.

7/72

These informations are normally available on the NET, and are therefore not confidential (public documents of Electricité De France EDF)

The results calculated here are the sole responsibility of the author of this document, in Turbine mode.

They are only commented as a Tutorial in the presentation of HydroStab.

They do not in any way call into question the studies already carried out by project or project management, turbine manufacturers, design offices, commissioning engineering, within the limited framework of speed regulation for rotating machines.

This involves presenting a systematic method for approaching primary and relevant adjustment calculations to be carried out in the approach to speed stability studies of a hydroelectric unit.

Appendix G provides a brief description of the Revin power plant.

1 INTRODUCTION

1.1 Presentation

Hydroelectricity is an important and vital renewable energy source, which converts the energy of water into electricity. This energy source can be produced by hydroelectric production units (power plants), and must meet many functional demands (load taking, load shedding, network frequency adjustment, flow control, water level control, etc.).

Any change in operating conditions results in transient hydraulic operating regimes which it is preferable to anticipate by appropriate modeling of the control circuits, as environmental issues and hydraulic safety are key areas requiring the greatest attention and expertise.

Indeed, many accidents observed following ruptures of loading pipes, or linked to the turbine, often occur during discharges at full load, due to large hydraulic transients.

Therefore, it is necessary to develop controllers capable of controlling hydraulic transients.

Figure 2 : General functional diagram of a hydroelectric control system

1.2 Linear approach to the stability adjustment of a hydroelectric group

The literature dealing with linear or nonlinear approaches to servo systems in Automation and Signal Processing is substantial. The presentations are numerous and all have their advantages and disadvantages.

It is however important to emphasize that the method adopted for the servo-control corrector must be of a complexity that can be understood by the operating and commissioning personnel of the plant; or, if the method is complex, add any calculation software allowing a relevant adjustment of the machine, while remaining compatible with the operational techniques in industrial engineering.

8/72

The purpose of this document is not to re-explain what is already easily found on the NET, but to describe the procedures adopted for adjusting a **PID type corrector**, within the framework of the **HYDROTUR** project.

The method selected and described is called the Open Loop Module Margin Method, in the NYQUIST geometric plane.

This method has already been tried and tested by some turbine manufacturers for over forty years, and has shown its effectiveness in the final adjustments of commissioning.

The classification table of synthesis methods indicated in [8] : *REGULATION INDUSTRIELLE chapitre 20 : METHODES DE COMMANDE : SYNTHESE, COMPARAISON ET CRITERES DE CHOIX page 518.*

The synthesis seems to confirm the relevance of using the PID regulator in an industrial environment, within the framework of single-input single-output SISO¹ systems.

Method	Method PID Frequency other than PID		Polynomial	Predictive (linear) control	State approach	Fuzzy
Aptitude in Automatic	Low	Middle	Middle	Middle	High	Very low
Adapted to multivariable	Low	No	No	Yes	Yes	Yes but hard
Adapted to non-linear	Middle	No	No	No	No	Yes
On-site retouching	Yes	Yes, if the regulator is not very complex	No No No		No	Yes
Potential	Middle	Middle	High High High		High	Middle
Governor complexity	Low	Low to Middle	e Middle High		High	Low
Calculation volume (digital realization)	Low	Low	Depends on the order of the model	Depends on the order of the model	Raised if observant	Low
	Very present in the industrial environment	Graphic approach	Separation of setpoint / disturbance dynamics	Possibility	Separation of setpoint / disturbance dynamics	No model
OthersExperimental settingNo need for an analytical possibleEasy programming of automated synthesis		Easy programming of automated synthesis	of taking constraints into account	Very general modeling Systematic approach	required	

Figure 3 : Classification of synthesis methods

The HYDROTUR project proposes a systemic approach to speed regulation for hydraulic rotating machines and modeling of the functional elements presented in *Figure 2*.

 $^{^1\,\}text{SISO}$: Simple Input-Simple Output

These studies result in the provision of numerous documents and modeling software components, specially developed with the **Scilab/Xcos** software engineering platform, freely accessible and **available free of charge on the NET**.

9/72

An overview of the project is presented in the document "HYDROTUR – Simulator for hydraulic turbines – Installation and user guide". This document also indicates all the procedures to follow for the complete installation of HYDROTUR on a PC type computer under Windows, in the cited version of Scilab/Xcos.

The objective of this document is to provide a linear approach to the adjustment system of speed regulators in small movements from a **series-parallel PID corrector**; the nonlinear approach is widely presented in the different simulations for all types of FRANCIS, KAPLAN, or PELTON machines with horizontal or vertical axis: the list of proposed simulators is recalled in Appendix F. In particular, studies with **machine hills (n11, q11 c11) are available**.

HYdroStab Solution represents a calculation element in the HYDROTUR suite, allowing a relevant approach to the adjustment of the speed corrector involved in the speed regulation of a FRANCIS, KAPLAN, PELTON type hydraulic machine.

The objective is therefore to calculate and provide a quadruplet (K_p , T_i , T_d , Kd) of adjustment of a PID corrector, implemented in the speed regulation system of the group.

A stability study therefore aims to:

- to determine the parameters that best approximate the adjustment of a speed regulator of an electro-hydraulic group coupled to an isolated electrical network
- to characterize the frequency response of this group to load variations on the network, in order to provide a priori regulation parameters to the commissioning personnel and to avoid on-site optimization (which may not be feasible, or risky).

1.3 Terminology

Electro-hydraulic unit	Assembly consisting of a hydraulic turbine and an alternator coupled on the same shaft
Turbine	Device for converting hydraulic energy (kinetic energy of water under pressure) into mechanical energy (shaft rotation torque). May be Pelton, Francis, Kaplan or Bulb type
Alternator	Device for converting mechanical energy (shaft rotation torque) into electrical energy distributed on the network
Network	Set of electrical circuits (transformers, transmission lines, etc.) and electricity consumers to which the group is connected
Hydraulic circuit	Set of components (forced pipes, balance chimneys, tank, aspirator) ensuring the circulation of water from the upper basin to the turbine and from the turbine to the lower basin.
Gross head	Water level ² difference between the upper basin and the lower basin
Net Head	Water pressure difference2 at the turbine "terminals", i.e. between the tank outlet and the vacuum inlet for Francis, Kaplan or bulb, between the injector(s) inlet and atmospheric pressure for Pelton
Adjustment organ	Organ used to control the flow of water sent to the turbine: valve for a Francis, injector(s) for a Pelton, valve-blade pair for a Kaplan turbine or a Bulb
Copying system	Assembly whose function is to transform an electrical position instruction into a position of the adjustment member.
	It consists of an actuator which transforms an electrical instruction into a flow of pressurized oil, a distributor (if necessary) which amplifies the flow of oil, a servomotor (controlled by the flow of oil

² Rather than expressing this value in pascals or bars, the classic units of pressure, this value is generally given in meters, which is the height of the column of liquid required to create an identical pressure. With water, we speak of meters of water column (denoted mCE). where is the density of the fluid and the acceleration of gravity. For water 1,000 kg m-3 at 4 °C, and with the normal value of gravity g = 9.806 65 m s-2), the conversion is as follows: • 1 bar (105 pascals) corresponds to 10.1972 mCE; • Conversely, 1 mCE corresponds to 98.0664 mbar.

from the actuator or distributor) which drives the adjustment member to the instruction position, a
position measurement system which transforms the position of the servomotor or adjustment
member into an electrical signal, and an electronic servocontrol responsible for developing the
electrical instruction of the actuator according to the difference between the position instruction
(from the speed regulator) and the position measured by the sensor (see Appendix D.1)

2 SUPPLY

2.1 Installing HydroStab

The HYDROTUR-HydroStab project is provided from a "HydroStab.zip" file, which must be unzipped.

🔤 HydroStab.zip

Le paquet peut être installé de différentes façons :

By the Scilab ATOMS module installer by pointing HYDROTUR-HydroStab in the "Optimization" module³
 By entering the command atomsInstall("HydroStab") in the Scilab console
 Manually, by dropping and unzipping the ZIP file into a user-defined directory, such as "HYDROTUR\HydroStab\" for example.

Figure 4 : Different Methods of Installing HydroStab

In automatic installation mode, the HydroStab package files are installed in the system Roaming

The exact location can be known by typing the SCIHOME command in the Scilab console.

You can also enter the command chdir(SCIHOME) to access this directory directly.

Then access the atoms directory using the Scilab file browser by double-clicking

Figure 5 : HydroStab Auto-Install Directory

This software package includes the following:

Figure 6 : Unzipping the HydroStab.zip file

³ In this case, enter "atomsGui" in the Scilab console and access the "Optimization" entity

Directory or File	Content
CALTUR	Spreadsheets (fr-en) in Excel xlsx format xlsx (see §4.1, Appendix A)
	Calculation of the equivalent length and section of a hydraulic circuit
demos	Examples of achievements made under HydroStab – Saving these configurations to restart the simulations
docs	HydroStab documentation in French and English, in .pdf format
etc	Initialization (HydroStab.start file) and finalization (HydroStab.quit file).
	Scripts used in loading the HydroStab module loader.sce or unloading it unloader.sce
help	Help files in XLM format divided into subdirectories in French (fr) and English (en)
	 Set of images used in the online help of the components (subdirectory "gui")
macros	Macros (.sci files)
	Set of source files written in Scilab language
XCOS_Models	Models of the transfer functions used in HydroStab, in XCOS graphic format "zcos"
	FTBO.zcos : Open loop process transfer function
	FTBF.zcos : Closed loop process transfer function
	Test PID Parallèle - Mixte.zcos
builder.sce	Main manufacturer of the HydroStab module
changelog.txt	HydroStab version change history
DESCRIPTION	HydroStab Brief Description
HydroStab.cfg	Save the execution context of the last use of HydroStab
HydroStab.par	Default settings of the HydroStab toolbox
HydroStab.sce	Launch of HydroStab
	Direct launch also possible with the command to be entered in the Scilab console:
	exec(HydroStab)
HydroStab.txt	Set of texts used in the HydroStab software.
	French and English languages
HydroStab_Gui.sce	HydroStab GUI – User Guide Interface
licence.txt	Declaration of conformity to the CeCILL license Version 2.1
readme.txt	Recommendation for installing HydroStab on the computer

Figure 7 : HydroStab Directory Contents

2.2 Uninstalling HydroStab

• If HydroStab was installed as a Scilab ATOMS module, uninstallation is performed by running the following command in the Scilab console:

atomsRemove("HydroStab")

• If HydroStab was installed in a user directory, destroy that directory.

3 BUILDING AND LOADING THE HYDROSTAB TOOLBOX IN SCILAB

13/72

3.1 Foreword

Building the HydroStab toolbox requires a good understanding of the work $[1]^4$.

Its use only requires knowledge of this manual "HYDROTUR -HydroStab - User Guide" and the components it includes.

Figure 8 : Scilab "Fundamentals" book

3.2 Prerequisites

The source codes of the executive are entirely written in Scilab language, and available in the HydroStab\macros directory No prerequisites are therefore necessary for its use.

3.3 The builder.sce constructor

The script **builder.sce** file, located in the HydroStab directory, creates the HydroStab library and provides all the files needed to use it:

• Compilation of all the ".sci" macros, associated with the macros subdirectory of HydroStab\macros

Additionally, the builder.sce constructor provides and adds the following files to the HydroStab directory:

- clearner.sce
 Cancels and deletes all files created by the builder.sce builder
- Ioader.sce
 Loading the HydroStab library into Scilab.
- unloader.sce
 Unloading the HydroStab library into Scilab

A listing, obtained by screen copy after launching the buider.sce constructor in Scilab, is provided in Appendix H

⁴ This book can be ordered online from D-Booker editions

3.4 The loader loader.sce

3.4.1 Loading

The loader.sce loader is created by the builder.sce interface, as shown in *§0*.

Running this script loads the library HydroStab into Scilab.

In the case of an automatic installation of HydroStab, the loader.sci file is launched automatically when Scibab is opened.

In case of manual installation (case n°3, see *Figure 4*), the loader must be launched by the operator before using HydroStab.

We obtain the list of operations carried out in the Scilab console:

```
--> exec('C:\0 - Test\HydroStab\loader.sce', -1)
Start HydroStab Version 2.3.1 : Stability study - Preliminary adjustment of the turbines governors
Load macros
Load help
...Run the "Run_HydroStab" script in the SciNotes window to start HydroStab
-->
```

Figure 9 : Example of loading the HydroStab library in Scilab – Using the loader.sce file

As shown in the figure below, the operator launches a HydroStab session by executing the script « Run_HydroStab» in the SciNotes part of Scilab, indicated in *Figure 13*

3.4.2 Global variable due to HydroStab launch

Running the "loader.sce" file loads all compiled macros, and creates a global variable SCI_HYDROTUR_HydroStab, available during the entire HydroStab usage session

--> SCI_HYDROTUR_HydroStab SCI_HYDROTUR_HydroStab = "C:\0 - Test\HydroStab\"

Figure 10 : Environment variable SCI_HYDROTUR_HydroStab

This variable points to the HydroStab installation directory

3.4.3 Troubleshooting

The loader.sce file is not backward compatible across Scilab versions. For example, it is not possible to load HydroStab created with Scilab 2025.0.0 into Scilab 2024.1.0, or earlier versions.

It is then necessary to restart the builder.sce constructor in the appropriate version of Scilab, especially when the installation of HydroStab is carried out in manual mode, as indicated in the *Figure 4*.

4 USER'S GUIDE

4.1 Reduction of hydraulic diagrams - EXCEL CALTUR Solution

4.1.1 Principle

CALTUR proposes a calculation method for reducing the hydraulic diagram of the power plant, in order to bring it back to the study of a simple circuit comprising only one turbine, supplied by a water supply through a single conduit of length <u>Leq</u> and section <u>Seq</u>.

Ces deux données sont ensuite utilisées dans les circuits de calcul du logiciel HydroStab.

The CALTUR Excel spreadsheet is provided in the HydroStab\CALTUR directory, in English and French.

Figure 11 : Reduction of the hydraulic diagram - Preliminary calculations for the stability study of a hydraulic group

Appendix A presents the spreadsheets used in the calculator CALTUR.

Note that *Leq* and *Seq* can also be provided by the hydraulic expertise service ⁵.

In the following calculations, and as a first approximation, no account is taken of the pressure losses in the hydraulic circuit, unlike the non-linear approach of the simulation circuits proposed in HYDROTUR and which takes into account this data, calculated or imposed.

4.1.2 Calculation elements

The HydroStab calculator uses a simplified model, deduced from a preliminary study of the hydraulic circuit.

This study determines the equivalent length and section Leq and Seq, allowing a complex hydraulic circuit to be reduced to a simple form using known methods, as shown in the figure above.

Non-exhaustive reminder of some formulas used in this study:

Of course, it is also necessary to take into account the section reductions in the circuit. For example, for a section of variable section:

These parameters create the internal variables:

• **ag** : $ag = \frac{ce}{g^*Seq}$ used in certain TURBADDUC blocks, for circuits not provided with machine hills.

⁵ Voit aussi Figure 91

- **Dh**: $Dh = \sqrt{\frac{4*Seq}{\pi}}$ (m) **Hydraulic diameter**
- The Reynolds number, for information purposes only, Re : $Re = \frac{2 * rho * Qnom}{mu\sqrt{\pi * Seq}}$ or $Re = \frac{V * rho * D_h}{mu}$
- , formula in which denotes V____ the average speed of wate: $V = \frac{Qnom}{Seq}$

4.2 HydroStab Solution

Figure 12 : Circuit for calculating the parameters of a Speed PID - Module Margin Method

HydroStab provides the adjustment parameters of a PID corrector allowing the operation of a hydroelectric group with a safety margin, and without divergence during commissioning.

The method adopted is based on a mathematical technique partially developed in this document.

This method is called the **Module Margin Method**.

From the hydraulic data to be entered into the calculation software, and from a convergence domain to be reached and established in hypothesis by constant terms, a quadruplet (Kp, Ti, Td, Kd) is proposed, with graphical program proof.

4.2.2 Scilab Home Window

- 1. Start a Scilab session
- 2. If HydroStab was installed manually, first run the "loader.sce" loading file, in the installation directory chosen by the user
- 3. To launch HydroStab
 - By clicking on the **Run_HydroStab** file in the Scinotes window, then launching the script by pressing the arrow key indicated in *Figure 13*
- 4. You can position yourself, after a first run, in the HydroStab installation directory, by typing the following command in the console:

chdir(SCI_HYDROTUR_HydroStab)

Figure 13 : Scilab home window and launch of the "Run_HydroStab" script

^{CCP} Un aménagement et une organisation de l'espace Scilab est proposée en Appendix F

4.2.3 Reception Place

The calculation data must be entered in a single table, shown below.

HyDR	OTUR	18/77	Scilab
		10/72	
	Turbine Parameters –		
Power Plant	Revin G4	Site Identifier and Unit Number	
Hnom (m)	223		
Leq (m)	1338	1	
Seq (m2)	16.407		
Power (MW)	180	Site and unit hydraulic data	
Flow (m3/s)	95		
Speed (rpm)	300		
MR2 (T.m2)	2175	L	
Кр	1.34	Г	
Ti (s)	15.32	Governor control settings (requested or calculated)	
Td (s)	1.10		
Кd	10.00		
Tw (s)	3.54	ר ר	
Ta (s)	11.93	 Calculated hydraulic parameters 	
Allievi	1.32		
Gain Margin (dB)	G=6.06 dB @ Freq. =0.053 Hz		
Phase Margin (°)	Phi=27.29° @ Freq.=0.022 Hz		
		Plot Type Selections (Nyquist / Bode / Step Response)	
Nyquist	Bode Step	Deleting a FT	
PID	FT1 DEL		
	4	Transfer function number FT	
Ī		Hydraulic Data Setting / Servo Parameters	
		Info-message 🗲 Comment	

Figure 14 : HYDROTUR Home Window - HydroStab Solution

4 7 3 1	Buttons	Nyquist	Bode	Step
.2.3.1	Duttons			

•	Keys	Nyquist	and	Bode	are used to plot the Nyquist locus or Bode plane of the open-loop FTBO
	transfe	r function of t	he pro	ocess, adjus	ted by a series-parallel PID type corrector.

The frequency sweeps, fmin_n=0.01Hz and fmax_n=100 Hz in the Nyquist plane, or fmin_b=0.01Hz and fmax_b=10 Hz in the Bode plane, can be adjusted, if necessary, by editing the file "HydroStab.par".

• The closed-loop FTBF transfer function of the process looped back by the PID corrector is plotted with the key .

Step . The numerical scope obtained represents the temporal response of the system to a double disturbance step, symmetrical at times t=0 and at time TSim/2, where TSim is the duration of the programmable simulation.

TSim, simulation duration, and A_Ech; step amplitude can be in the file "HydroStab.par", as well as the minimum ymin_Temp and maximum ymax_Temp values of the digital scope ordinate.

The 3 buttons	Nyquist	Bode	Step	are used to va	lidate t	he Hydraulic ar	nd/or		
Regulator data fields entered by the operator									
A consecutive click on the same of these buttons causes the following transfer function to be displayed:									
FT1	Nyqui	st 🔶	FT2	Nyquist		FT3	Nyquist		

4.2.3.2

PID Button

• The input boxes depend on the activity of the PID button, and are colored accordingly, in the editing windows.

19/72

If the PID key is released PID, the operator only enters the hydraulic data of the machine. In this case, the plot only refers to the single setting (Kp, Ti, Td, Kd), calculated by HydroStab.

$^{\ref{eq:second}}$ In the Nyquist plane, this path necessarily passes through the optimal point ${ m P}^{\mathfrak{s}}$

The expected gain margin is then 6 dB for a Module Margin of 0.41 (+3dB)

	PID	-		PID	
Site	Revin G4		Site	Revin G4	
				,	
Hnom (m)	223		Hnom (m)	223	
Leq (m)	1338		Leq (m)	1338	
Seq (m^2)	16.407		Seq (m^2)	16.407	
Power (MW)	180		Power (MW)	180	
Flow (m3^/s)	95		Flow (m3^/s)	95	
Speed (rpm)	300		Speed (rpm)	300	
MR2 (T.m^2)	2175		MR2 (T.m^2)	2175	
Kp	1.34	1	Кр	1.34	
Ti (s)	15.32		Ti (s)	15.32	
Td (s)	1.10		Td (s)	1.10	
Kd	10.00	1	Kd	10.00	
		-			
Tw (s)	3.54]	Tw (s)	3.54	
Ta (s)	11.93]	Ta (s)	11.93	
Allievi	1.32	1	Allievi	1.32	
Marge Gain (dB)	G=6.06 dB @ Freq. =0.053 Hz]	Marge Gain (dB)	G=6.06 dB @ Freq. =0.053 Hz	
Marge Phase (°)	Phi=27.29° @ Freq.=0.022 Hz]	Marge Phase (°)	Phi=27.29° @ Freq.=0.022 Hz	
		_			

Figure 15 : Menus for adjusting servos systems

If the PID key is pressed , the user can stack several adjustment quadruplets (Kp, Ti, Td, Kd) in order to simultaneously visualize their efficiencies or modify the hydraulic data.

This device thus facilitates optimal settings, taking into account significant variations in the tidal range (variation in the Head drop), or the operating point in power (Power) or flow (Flow).

Note: an optimal calculation triggered with the graved out PID button	PID	. causes the calculation of the
quadruplet (Kn Ti Td Kd) following the Margin Module technique: then PIC) mode	PID immediately becomes
active again.	- moue	

4.2.3.3 FTx Button FT1

The button selects a transfer function from N calculated ones. It displays the number of the transfer function indicated mainly in the fields Kp, Ti, Td, Kd, Gain Margin and Phase Margin, as well as the hydraulic data of the recording.

⁶ Voir § 7.1 Module Margin Method §7.1.1 Stability criterion in the Nyquist plane

Figure 16 : Selecting one FT from N with the BP

4.2.3.4 DEL Button

The **DEL** button selects a transfer function from N to remove it from the law bundle. A confirmation request is proposed to avoid any handling errors.

DEL

Figure 17 : Deleting one FT among N

4.2.3.5 Printing legends in the Scilab console

In a HydroStab session, the graph legends are systematically ordered by their creation orders, following the settings used in the simulation (FT1, FT2, etc.)

The meaning of the legends is available on the Scilab console, after clicking on this element of the screen:

```
..Load HydroStab File Parameters :
C:\0 - Test\HydroStab\demos\Revin\HydroStab - Revin G4 - 01.par
 -- 28/11/2024 - 08:27:32 --
                                                                                        ----- Nyquist - FTBO
FT1 :
        Marge Module
        Kp=1.34 Ti=15.32 s Td=1.10 s Kd=10.00
        Gain Margin G=6.06 dB @ Freq.=0.053 Hz Phase Margin Phi=27.29° @ Freq.=0.022 Hz
FT2 :
        Ziegler-Nichols
         Kp=1.65 Ti=10.36 s Td=2.07 s Kd=10.00
        Gain Margin G=3.45 dB @ Freq.=0.064 Hz Phase Margin Phi=21.54° @ Freq.=0.030 Hz
FT3 :
        User
        Kp=1.80 Ti=13.00 s Td=1.00 s Kd=10.00
        Gain Margin G=3.15 dB @ Freq.=0.049 Hz Phase Margin Phi=16.98° @ Freq.=0.030 Hz
```


4.2.3.6 Graphics tools available

The standard Scilab/Xcos graphics toolbar, in the graphics windows, is maintained in the GUI⁷ HydroStab :

1. Zoom in

Zooming in is available with the icon

Frame the area to be enlarged with the mouse using the right mouse button, then release the mouse

Figure 20 : Zooming in graphics windows

It is also possible to zoom in and out in the graphics window using the mouse wheel.

2. Datatips

DataTips mode (marking data in a graph) is automatically implemented when HydroStab is launched. It can also be controlled with the tool

As a reminder:

Left click on the curve creates a datatip and right click on the datatip removes it.

4.3 Dedicated menus in HydroStab

4.3.1 Toolbar Menu

		? Languages	
File Methods	Methods ? Languages	Comment	Languages
New	Ziegler-Nichols	Symmetric Nyquist	Français
Load	Takahashi	Nyquist -3 dB	English
Save		Online Help	
Close		About HydroStab	
		About Scilab	
File Menu	Method Menu	Menu ?	Language Menu

⁷ GUI : Graphic User Interface

4.3.2 File Menu

4.3.2.1 Create a new configuration

The function of creating a new configuration is preceded by a request for confirmation of the action, in order to avoid any unexpected loss of work in progress:

HYDROTUR - HydroStab Solution X							
\bigcirc	The context of the FTs has been char	nged.					
$\mathbf{\overline{v}}$	Save configuration ?						
Quit No Yes							

Figure 21 : Request for confirmation when creating a new configuration

If so, a new working page is displayed, showing the "default configuration" of HydroStab:

Turbine Parameters					
Site	XxXxXx				
Hnom (m)	80.6				
Leq (m)	128				
Seq (m2)	112				
Power (MW)	778				
Flow (m3/s)	1100				
Speed (rpm)	75				
MR2 (T.m2)	112500				
Кр	2.02				
Ti (s)	7.84				
Td (s)	0.56				
Кd	10.00				
Tw (s)	1.59				
Ta (s)	8.92				
Allievi	6.21				
Gain Margin (dB)	G=6.50 dB	@ Freq. =0. 103 H	z		
Phase Margin (°)	Phi=27.24° @ Freq. =0.043 Hz				
Nyquist	Bode	Sten			
riyquist	DOUC	Step			
PID	FT1 DEL				

Figure 22 : HydroStab Default Configuration

It is therefore necessary to re-enter all the data communicated for the stability study, and save the data with a site name and possibly a group number.

4.3.2.2 Saving a configuration

Recording a HydroStab session is done with the "Save" function.

A choice of backup mode is offered as soon as the menu is activated:

Figure 23 : Selecting the backup mode

The user can therefore:

- Modify the configuration of the existing file
- Save configuration with new automatic numbering of the recording file
- Simply return to the current HydroStab session, without any modifications

The record contains the unique set of the hydraulic configuration of the site, and all the tests carried out with different values of the hydraulic settings and the quadruplets (Kp, Ti, Td, Kd).

1. Select the backup directory::

Save HydroS	tab : Saving a Settings File - Select a Saving Directory	×
Rechercher dans	: 🔁 Revin 🧹 🖻 📸 🕶	
Documents r		
Bureau	Previous directory	
Documents		
Ce PC	Create a directory	
2	Nom du dossier : C:10 -Test\HydroStab\demos\Revin Out	vrir
Réseau	Type de fichier : Tous les fichiers V Ann	uler

Figure 24 : Selecting a backup directory

2. Validate or Cancel the operation

The name of the recording file is automatic, and consists of:

- of the prefix « HydroStab »
- of the site ID indicated in the HydroStab window. For example
 Revin G4
- this name is associated with an automatically calculated registration number: if this is the first record, the index is
 01. Otherwise, the index is equal to that of the last record made, increased by 1 unit.
- the record suffix is « .par »

📔 HydroStab - Revin G4 - 02.par

Figure 25 : Naming recording files of a HydroStab session

The detailed structure of a backup file is shown in Appendix C

3. Once the recording has been validated and completed, a window displays the backup name.

HYDROTUR		24/72	
E Hyc	droStab_Save File : HydroStab - Revin G4 - 02.par Directory : C:\0 - Test\HydroStab\demos\Revin	OK	×

Figure 26 : Confirmation of recording a HydroStab session

4.3.2.3 Reloading a configuration

1. To reload a working configuration, activate the "Load" function and bring up the file manager:

🛃 HydroStab_Lo	ad : Loading a Set	tting file			×
Rechercher dans :	📒 Revin		~	🗈 💣 🎫	
Documents r	 HydroStab - I HydroStab - I HydroStab - I HydroStab - ∑ 	Revin G4 - 01.par Revin G4 - 02.par XxXxXx - 01.par			
Bureau					
Documents					
Ce PC					
<u>*</u>	Nom du fichier :				Ouvrir
Réseau	Type de fichier :	All *.par files		~	Annuler

Figure 27 : Reloading a parameter file

The manager searches for files with the suffix ".par" in the selected tree.

.

2. After validation, the configuration, calculations, and plots are returned:

25/72

Figure 28 : Restoring a parameterization file

Note: The source file representing the figure above is indicated indiqué in Appendix C

4.3.2.4 Closing a HydroStab Solution session « Close » or

A HydroStab solution session is closed by activating the submenu, or more simply by clicking on the cross \times located at the top right of the execution window.

Before operation, HydroStab checks whether the initial configuration of the current job has changed. If so, a final confirmation request is requested to offer a recording of the session:

Figure 29 : Confirmation of closing a HydroStab session

4.3.3 « Methods » Menu

The "Methods" menu offers to juxtapose with the main Margin of Module method, well-known algorithms, for comparison:

- Ziegler-Nichols method
- Takahashi method
- Module Margin set to -3dB for gain margin comparison.

Leurs modes de fonctionnement sont indiqués dans la suite de ce document.

4.3.4 Menu ?

4.3.4.1 *Comment* Menu

A comment corresponds to the text displayed in the "info_message" area of the main screen (see Figure 14)

This comment is initialized according to the method implemented by the user, with each new calculation introducing the plot of a new transfer function FT

Five attributes are possible, and automatically inserted by HydroStab :

- Marge Module +3dB
- Ziegler-Nichols
- Takahashi
- User
- Marge Module -3dB

The Comment menu allows you to enrich this content by adding additional information, such as a variation in the tidal range, flow rate, or any other particular condition of the test. (*see example in Appendix B*).

2 🔊	Scilab Input Value Request								
	Edit a comment								
	Marge Module +3dB - Tidal range variation of a height of 30 meters								
	OK Cancel								

Figure 30 : Enriching a comment in the presentation

4.3.4.2 Menu Symétrie Nyquist

This function alternately adds or removes the symmetrical plot in the Nyquist diagram:

Figure 31 : Symmetry in the Nyquist plane

4.3.4.3 Nyquist -3dB Menu

In this case study, the module margin circle is tangent to the -3dB curve

The margin of gain is reduced.

This study, in this case, is to be compared with the methods of Ziegler-Nichols and Takahaschi proposed.

Figure 32 : Nyquist with Module Margin set to -3dB

4.3.4.4 « Online Help » Menu

This menu opens the HydroStab online help. The online help can also be launched in the Scilab console by entering the command "doc HydroStab".

Online help is created in the HydroStab\help directory in files in "xlm" format.

Then, by recompiling the program, a ".JAR" file is available to create the English/French online help.

When a help page is open, it is possible to change the display language using the "Language" menu.

4.3.4.5 HydroStab Version

The version of HydroStab is displayed in the Scilab console when you launch a session of the program.

It can also be read using the menu in the HydroStab toolbar « About HydroStab Solution » :

Figure 33 : HydroStab Version

4.3.4.6 Scilab Version

The version of Scilab used is recalled here

Figure 34 : Version de Scilab

This version can be downloaded from the site

https://www.scilab.org/

5 XCOS MODEL DIRECTORY

The calculations established in HydroStab are based on graphical representations of the elements to be considered, produced using the XCOS diagram editor.

In anticipation, these basic models are consistent with the general presentation made in *Figure 41*.

The transfer functions indicated below, cited as an example, refer to the parameters of the Revin Group 4 plant; i.e. with the calculated parameters Tw, Ta and aut=0 (see next chapter)

5.1 Scale model of the process to be adjusted

Figure 36 : Scale model of the process to be adjusted

Process transfer function to be adjusted PROCESS – Polynomial representation ⁸:

5.2 Open loop process control model FTBO STBO.zcos

Figure 37 : FTBO model of closed loop process control

Note: the process simulation is obtained directly from the FTBO by disengaging the speed PID, i.e.: Kp=1, Td=0 s, and Ti=1.e10 s

Open Loop Transfer Function FTBO – Polynomial Representation s 8:

14	6.08648 + 18	31.5939s - 5	2 923.0471s - 69	3 963.8666s + 1	4 1797.15s	
2	3	4	5	6	7	8 9
19925.28s + 50240	.027s + 4530	5.76s + 1905	8.475s + 4195.	767s + 507.5	52853s + 33.65	57702s + s

⁸ The transfer functions are given for information purposes, for a parameterization defined in the study of the Revin site by the transfer function FT1

5.3 Closed-loop process control model FTBF Stress

30/72

Figure 38 : Closed-loop process control model

Closed Loop Transfer Function FTBF – Polynomial Representation⁸:

	2	3	4	5	6	7	89
292.17296 + 3763.1877s	+ 8079.1859s ·	+ 36312.294s ·	+ 48900.06s +	19058.475s +	+ 4195.767s + 5	07.52853s + 33.6	557702s + s
2	3	4	5	6	7	8 9	
19925.28s	+ 50240.027s	+ 45305.76s +	19058.475s +	4195.767s +	507.52853s + 3	3.657702s + s	

5.4 Use in HydroStab program

Les The "FTBO" and "FTBF" data are global variables, and accessible at any time in the Scilab console:

- FTBO is represented in its polynomial form in s (*type FTBO*)
- FTBF is represented in its matrix state form (A, B, C, D) in state-space (Type FTBF)

6 CALCULATION ELEMENTS FOR DETERMINING THE STABILITY PARAMETERS OF THE SPEED REGULATOR

6.1 Introduction

Every project includes a phase of studying the stability of the hydraulic unit. It is therefore necessary here to recall the context of the speed regulator based on the essential elements characterizing a hydraulic power station.

Figure 39 : Block diagram of a PELTON hydraulic unit

Figure 40 : Input data for a stability study

Two main phases of approach guarantee a priori the control of the work. These two phases are complementar

• <u>Hydraulic</u>

Taking into account the water hammer and wave phenomena in the penstock, caused by the sudden closing of a valve (distributor of a FRANCIS or KAPLAN turbine, or injectors of a PELTON machine), a study of the hydraulic transients determines the opening and closing operating times of the adjustment devices, in order to minimize the overpressure generated in the pipe, following a load shedding, or an emergency shutdown of the group.

This study is conducted by hydraulic experts, specialists in Fluid Mechanics.

These operating times are controlled by flow reducers in the oil-hydraulic circuit, and thus condition the flow of oil admitted into the servomotor chambers. Unfortunately, this results in an increase in the overspeed measured on the machine.

- The expert study thus provides the best compromise between overpressure and overspeed by determining a double-slope oleohydraulic closing law, if necessary, and guarantees the safety conditions of the structure, without rupture of the conduit or runaway of the machine. <u>The Governor is therefore not a safety device.</u>
- <u>Oleohydraulics</u>

Appendix D recalls the role of the speed governor in the oleohydraulic control chain.

The governor positioner in fact controls the water intake servomotor(s) on the hydraulic wheel via actuators.

• <u>Électric</u>

The electrical stability study has the following objects:

- ✓ to determine the optimal quadruplet $[K_p, T_i, T_d, K_d]$ of the speed regulator of the group coupled to an isolated electrical network (aut=0)
- ✓ to characterize the group's response to load variations on the network.
- ✓ to provide the regulation parameters to the commissioning personnel and the operator, in order to minimize the optimization time on site, and therefore the volume of useful water to be used. This operation is, in fact, not always possible or easy to carry out.

6.1.1 Unit stability study

The "Conduit / Turbine / Alternator" assembly is considered to be similar to the "Conduit / Orifice / Rotating masses" assembly.

Two fundamental parameters are used to model the system shown in Figure 39, from the input data () defined in Figure 40.

✓ he mechanical launch time (or specific inertia of the group), is the time necessary to make the rotating masses Turbine + Alternator pass from zero speed to rotation speed:

$$T_a = \frac{L\omega^2}{W} \ second(s)$$
 (3.1)

This time is justified from the fundamental equation of mechanics ⁹ $I \cdot \frac{d\Omega}{dt} = C_m - C_r$

• The hydraulic launch time is the characteristic time of the pipe discharging at the speed $V = \frac{Q}{S}$ that the water takes from rest to reach this speed:¹⁰:

$$T_{W} = \frac{L.Q}{g.H.S} \ second(s)^{11}$$
(3.2)

, where g is the acceleration of gravity expressed in $m.s^{-2}$.

Noting the **hydraulic power** of the unit $W = \rho.g.H.Q$, either $Q = \frac{W}{\rho.g.H}$ ¹², and by reinjecting the value of the **hydraulic flow** Q into (3.2), we also obtain:

$$T_{W} = \frac{LW}{\rho g^{2} H^{2} S} \ second(s)^{13}$$
(3.3)

, where ρ denotes the density of water, in kg/m³

• On the other hand, and for information purposes, the significant Alliévi coefficient allows us to know the type of oscillations generated in the pipe. This coefficient is not involved in the calculations:

$$Allievi = \frac{Q.a}{2.g.H.S}$$
(3.4)

⁹ [6] Turbines hydrauliques et leur régulation - page 403

¹⁰ [6] Turbines hydrauliques et leur régulation - page 450

¹¹ This formula is used in the Excel worksheet « CALCUR »

¹² This formula is used in the Excel worksheet « CALCUR »

¹³ This formula of Tw is used in the script « SolveurHydroStab.sci »

 $\begin{bmatrix} a \end{bmatrix}$ is the speed coefficient of the water wave (m/s)

If Allievi > 1, the water hammer caused by the sudden closing of a valve is called "mass".

If *Allievi* < 1, The water hammer caused by the sudden closing of a valve is called a "wave".

6.2 Study in small movements

The small-movement simplifications of the analytical equations of the process lead to modeling the hydraulic group by the reduced system:

Figure 41 : Simplified calculation circuit for modeling a hydraulic group

The regulation parameters will therefore be calculated on this basis. We will therefore assume the calculation circuit presented in *Figure* 41, and we will initially focus on the system represented by the open-loop transfer function (FTBO).

Additional notations, hypotheses, and comments

7 OPTIMIZATION METHODS

7.1 Module Margin Method

7.1.1 Stability criterion in the Nyquist plane

The Nyquist plot consists of plotting the transfer function shown in *Figure 41* in the complex plane. Its disadvantage compared to the Bode plot is that explicit knowledge of the frequency is lost. Nevertheless, this plot allows to define a stability criterion known as the open-loop Nyquist criterion:

If the FTBO transfer function of a controlled system has no pole with a positive real part, then this system is closed-loop stable if, when describing the open-loop Nyquist locus FTBO in the direction of increasing frequencies, an observer sees the critical point (-1,0) to his left.

Using this criterion, stability margins can be defined (Figure 43) :

Gain Margin is defined as the reciprocal of the system gain at the pulse where the open loop system phase FTBO reaches -180° . It corresponds to *Figure 42* at point N, and is generally expressed in dB:

Marge de Gain=-20log(|ON|) = (-20.log(|FTBO|)). The **Critical Frequency** is the frequency where the phase falls below 180°.

• **Phase Margin** represents the difference between the phase of the FTBO system considered and -180° at the cutoff pulse ω_c , i.e. the pulsation for which the module is equal to 0 dB: $Phase Margin=arg \lceil FTBO \rceil - (-180^\circ)$.

It is also defined by the point M corresponding to the intersection of the Nyquist locus of FTBO with the unit circle centered at the origin and of unit radius (*Figure 42*).

The **HydroStab** software calculates the a priori adjustment values of the speed regulator control parameters in small movements, by imposing a minimum distance between the Nyquist locus and the critical point. This distance is also called **the Module Margin**.

This software is thus based on a frequency method, and is only applicable to a linear system.

The objective is to force the FTBO (regulator + process) to pass through an imposed point P in the Nyquist plane)

Figure 44 : Input data and results of the small motion stability study

ma denotes the margin module, and is represented by a circle of radius **ma** centered on the critical point (-1.0). The point \mathbf{P} targeted indicates the intersection between this circle and the line passing through the points (-1,0) and (0,-1). The angle between this line and the axis Re is therefore equal to $\frac{\pi}{4}$.

7.1.2 Module Margin setting to +3 dB

7.1.2.1 Principle

The circle of radius ma is tangent to the circle of radius +3 dB:

$$20.\log(1+ma) = +3 \text{ dB}$$

$$ma = 10^{\frac{3}{20}} - 1$$

i.e.

ma = 0.4125375

Figure 45 : Module Margin adjustment to +3 dB

Figure 46 shows that the HydroStab software calculation circuit is well within its objective with a **ma** module margin set to +3dB. Thus, the Nyquist locus of the open-loop process is corrected by the PID to pass through point **P**.

Figure 48 : Open Loop Bode Plot - Gain and Phase Margins - Ma Setting at +3dB

As shown in Figure 48, the PID parameter tuning method establishes characteristics such as:

• The gain margin is approximately 6dB,, that is, at the frequency where the phase shift between input and output is -180°, the output/input gain is 6dB, i.e. $10^{\frac{-6}{20}} \approx 0.5$

The phase margin is approximately 27°, i.e. at the frequency where the output/input gain is 1 (0dB), the phase shift between the output and the input is -180°+27°≈-153°.

7.1.3 Adjusting the Module Margin to -3 dB

7.1.3.1 Principle

The circle of radius ma is tangent to the circle of radius -3 dB:

$$20.\log(1 - ma) = -3 \text{ dB}$$
$$ma = 1 - 10^{\frac{-3}{20}}$$

Soit

7.1.3.2 Results at -3 dB

Figure 50 shows that the calculation circuit of the HydroStab software is well in line with its objective with a module margin **ma** set to -3dB. Thus, the Nyquist locus of the open-loop process is corrected by the PID to pass through point **P**.

Figure 52 : Open Loop Bode Plot - Gain and Phase Margins - ma Setting at -3dB

As shown in *Figure 52*, the PID parameter tuning method establishes characteristics such as:

- The gain margin is approximately 4dB, i.e. at the frequency where the phase shift between input and output is -180°, the output/input gain is 4dB, i.e. $10^{\frac{-4}{20}} \approx 0.63$
- The phase margin is approximately 20°, i.e. at the frequency where the output/input gain is 1 (0dB), the phase shift between the output and the input is -180°+20°≈-160°.

7.2 Ziegler-Nichol's method

7.2.1 Principle of the method

The Ziegler-Nichols method allows the parameters of the regulator controlling the PROCESS¹⁵ process to be adjusted.

Figure 53 : Principle of the Ziegler-Nichols method

By simulating the loop of *Figure 53* for various models, Ziegler & Nichols (ZN) searched for the parameters of the PI, PD, PID controllers minimizing the J criterion:

$$J = \int_0^{+\infty} |e(t)| dt$$
(3.5)

, during an index variation of the setpoint, the system being in steady state at time t=0.

The method used is called « Pumping limit» :

• The process being looped by a proportional action regulator only, the critical gain K_{cr} is increased until sustained oscillations appear (pumping phenomenon).

Figure 54 : Closed-loop PID "FTBF.zcos" for application of the Ziegler-Nichols method

7.2.2 Implementation of the method

7.2.2.1 Selecting Manual or Automatic modes for implementation

The file « HydroStab.par » contains the following parameters, allowing the adjustment of the Zieglers-Nichols, or Takahashi methods:

Setting	Meaning
Auto_ZN	Automatic or manual search for critical gain Kcr in Ziegler-Nichols or Takahashi methods (%t or %f)
Trace_ZN	Allows the display in the console of the iterations of the automatic search (%t or %f)
ZN_Datatip	Display (1) or not (0) of datatips of the Tosc oscillation period

Figure 55 : Choice of optimization parameters for the Zigler-Nichols or Takahashi methods

7.2.2.2 Activation in manual mode

The method is activated by selecting « Ziegler-Nichols » from the main menu bar of HydroStab:

Figure 56 : Activation of the Ziegler-Nichols method

15 Voir [9]

The research method is divided into a step 1 of manual adjustment of the critical gain Kcr, under the responsibility of the operator, and a step 2 of validation of the results of the calculated PID.

39/72

7.2.2.3 Initialization and configuration

The ZN model parameters are initialized, by default, with the values Ti=1.e+4 s, Td=0 s, and Kd=10. These values inhibit the Integral action and the derivative action.

The critical gain Kcr is initialized with the inverse of the optimization coefficient, applied to the current Kp value:

$$K_{cr} = K_p / 0.6$$

The other constants Ts, Tw, k, Gain, aut, Ta, r2, ty are identical to those corresponding to the simulation of the transfer function in progress in HydroStab. The number of this function is the one indicated on the FTx key FT1.

7.2.2.4 Critical Gain Setting Kar - Validation of calculations Validation

When the procedure is launched, an initial simulation is carried out with the input parameters specified above.

A digital oscilloscope is used to monitor the step response of the process, looped back by its PID corrector; a message box indicates the operations to follow.

Figure 57 : Ziegler-Nichols scope with linear regression line and local maxima

Figure 58 : Ziegler-Nichols Dialog Box

The scope visualizes:

- The setpoint step applied at time t=0
- The step response of the process
- The local maxima T_Max(i) of the response (•)
- The linear regression line in the least squares sense defined by the set of points Max(i)

The period of the oscillations is automatically calculated by HydroStab, considering the average of the recorded time intervals:

$$T_{osc} = \left(\sum_{i=1}^{N-1} tMax(i+1) - tMax(i)\right) / (N-1)$$
(3.7)

The "Ziegler-Nichols" dialog box provides the following information:

(3.6)

- The number of the method selected for calculating the parameters of the controlling PID
- The gain Kcr relative to the current estimate, i.e. that imposed by the operator during its test phase.
- The estimated period of the oscillations, in accordance with the formula (3.7)
- The slope of the linear regression line
- The calculated values of the adjustment triplet [Kp, Ti, Td], in accordance with the applied method (Figure 62 : Proposal for tuning a PID using the Ziegler-Nichols method Method No. 1)

The various adjustment tests are carried out by clicking on the button [Kc]; in this case, an input box appears to enter the value of the Kcr gain:

💽 Sc	ilab Mu	ltiple Values Request	×
	Enter the	e value of the critical gain Kcr	
	Kcr	2.753	
		OK Cancel	

Figure 59 : Kcr gain input box

One click on the button immediately ends the ZN session to return to HydroStab.

One click on the button Causes the new FT, if it does not already exist, to be inserted into the list of current FTs.

In any case, HydroStab points to the FT resulting from this calculation (ex : FT4). Its representation in Nyquist or Bode planes, or its index representation are therefore available under HydroStab.

• Increase the value of the critical gain Kcr of the loop, by entering its value directly after pressing the button Kcr , until a sustained oscillation of the Corrector + Process is obtained.

More generally, the gain Kcr must be adapted in opposition to the linear regression slope obtained

- If the slope of the regression line is positive, decrease the value of Kcr
- If the slope of the regression line is negative, increase the value of Kcr

Figure 60 : General adjustment principle of the critical gain Kcr in the Ziegler-Nichols method

Figure 61 : Example of Ziegler-Nichol's process adjustment

7.2.2.5 Calculations

Method 1, pre-selected in the "HydroStab.par" file (ZN_Methode=1), is then applied to calculate the speed regulator parameters.

Governor transmittance	Values of the controll	er parameters according to the	Ziegler-Nichols method
$PID = K_{p} \cdot (1 + \frac{1}{T_{i} \cdot s} + T_{d} \cdot s)$	K _p = 0.6 K _{cr}	$T_i = 0.5 T_{osc}$	$T_d = 0.1 T_{osc}$ $K_d = 10$

Figure 62 : Proposal for tuning a PID using the Ziegler-Nichols method – Method No. 1

We can verify that we have the well-known relationship at the stability limit:

$$T_i >> 4.T_d \tag{3.8}$$

Scilab

7.2.2.6 Verifications

Referring to the examples given in the Revin case, and to the file "*HydroStab* - *Revin G4* - *01.par*", we thus obtain the plot in the Nyquist plane of the transfer function FT2:

Figure 63 : Verifications of the Ziegler-Nichols method

It is also possible to check the critical gain Kcr obtained by the Ziegler-Nichols method.

To do this, enter a new program in HydroStab with the input data Kcr=2.75, Ti=1000, and Td=0:

Figure 64 : Verification of the critical gain Kcr in the Nyquist plane

The critical gain Kcr obtained by the ZN method therefore corresponds exactly to the critical point (0, -1) v indicated in the Nyquist plane.

Similarly, we obtain a non-divergent sustained oscillation of the step response.

T_{osc} can be checked by programming the option ZN_Datatip=1. In this case, the datatips of the maximums Max(i) are automatically displayed, as shown below:

7.2.2.7 Activation in Automatic mode

The automatic search for the critical grain Kcr is carried out:

- either by programming the parameter Auto_ZN=%t in the file "HydroStab.par"
- either by activating the Auto button in the Kcr gain display window (see *Figure 58*)

Under these conditions, HydroStab automatically searches for the value of the gain Kcr by a series of iterations with variable steps, to determine a precise value of the gain to 1/1000 IIth.

Figure 66 : Active phase of automatic search for critical gain Kcr

Figure 67 : Terminal phase of searching for critical gain Kcr

7.2.2.8 "Trace_ZN" tracing option in automatic critical gain search Kcr

L'option de traçage Trace_ZN de l'algorithme de recherche automatique permet l'affichage, dans la console Scilab, de l'ensemble des itérations réalisées :

45/72

```
Itération=01 Kcr=2.763 M_Kcr=0.000000 Pente= 0.0001136 M_Pente= 0.0001136 Ecart=-0.0094079 Incrément=0.2000
Itération=02 Kcr=2.563 M_Kcr=2.763272 Pente=-0.0009550 M_Pente= 0.0001136 Ecart= 0.0818277 Incrément=0.2000
Itération=03 Kcr=2.663 M_Kcr=2.763272 Pente=-0.0006382 M_Pente= 0.0001136 Ecart= 0.0535999 Incrément=0.1000
Itération=04 Kcr=2.713 M_Kcr=2.763272 Pente=-0.0003366 M_Pente= 0.0001136 Ecart= 0.0278190 Incrément=0.0500
Itération=05 Kcr=2.753 M_Kcr=2.763272 Pente= 0.0000106 M_Pente= 0.0001136 Ecart=-0.0008798 Incrément=0.0100
Itération=06 Kcr=2.743 M_Kcr=2.753272 Pente=-0.000852 M_Pente= 0.0000106 Ecart= 0.0070762 Incrément=0.0100
Itération=07 Kcr=2.748 M_Kcr=2.753272 Pente=-0.0000382 M_Pente= 0.0000106 Ecart= 0.0031727 Incrément=0.0050
Itération=08 Kcr=2.752 M_Kcr=2.753272 Pente= 0.000007 M_Pente= 0.0000106 Ecart=-0.0000566 Incrément=0.0010
Itération=09 Kcr=2.751 M_Kcr=2.75272 Pente=-0.000092 M_Pente= 0.000007 Ecart= 0.0007625 Incrément=0.0010
```


7.2.3 Comparison of the Margin Module and Ziegler-Nichol's methods

7.2.3.1 Comparison of methods in the Nyquist geometric plane

Figure 69 : Comparison of the Module Margin and Ziegler-Nichol's methods in the Nyquist plane

The margin gain goes from de 6 dB (FT1 : Module Margin) to 3.45 dB (FT2 : Ziegler-Nichols)

The overshoot by the Module Margin method (*FT1: Module Margin*) is 2% lower than the overshoot obtained by the Ziegler-Nichols method (**FT2: Ziegler-Nichols**) for an equivalent velocity.

7.2.3.3 Other possible settings regarding the Ziegler-Nichols method

The site <u>https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Ziegler-Nichols</u> also indicates other values for this adjustment mode.

These calculations were attempted in this study, but gave disappointing results: they do not seem suitable for hydraulic studies.

Méthode de Z	iegler-Nich	iols ¹	
Type de contrôle	K_p	T_i	T_d
Р	$0.5K_u$	-	-
PI	$0.45K_u$	$T_u/1.2$	-
PD	$0.8K_u$	-	$T_u/8$
PID ²	$0.6K_u$	$T_u/2$	$T_u/8$
PIR (Pessen Integral Rule) ²	$0.7K_u$	$T_u/2.5$	$3T_u/20$
léger dépassement ²	$0.33K_u$	$T_u/2$	$T_u/3$
aucun dépassement ²	$0.2K_u$	$T_u/2$	$T_u/3$

7.3 TAKAHASHI Method

7.3.1 Principle of the method

Figure 72 : General principle of Takahashi's method

B ₀	Blocker 0 order
E	Sampler – sampling period dt_Ech=0.1 s
PID (z)	PID Speed in z (discrete transfer function)
P(t)	Disturbance

The procedure for obtaining the parameters Kp, Ti and Td is analogous to that set out in the Ziegler-Nichols method

- The simulations are digital
- The criterion to be minimized is $J = \sum_{t=0}^{\infty} e_t^2$

HydroStab only performs an approximation of the TAKAHASHI method.

7.3.2 Calculations

En fonction du gain Kcr trouvé, HydroStab assoie les calculs

Governor transmittance	Values of the regulat	or parameters according to t	he TAKAHASHI method
$PID = K_{p}.(1 + \frac{1}{T_{i}.s} + T_{d}.s)$	Kp=0.6*(1-dt/Tosc)*Kcr	Ti=0.5*(Tosc-dt)	$Td = Tosc^2 / (8 * Tosc - dt)$
			Kd = 4

Figure 73 : PID tuning by TAKAHASHI method

7.3.3 Comparison of Module Margin methods (FT1), ZN (FT2), Takahashi (FT3)

7.3.3.1 Nyquist

Figure 74 : Comparison of Module Margin (FT1), ZN (FT2), Takahashi (FT3) - Nyquist methods

7.3.3.2 Step responses

Figure 75 : Comparison of Module Margin methods (FT1), ZN (FT2), Takahashi (FT3) – Step responses

Figure 76 : Comparison of Module Margin methods (FT1), ZN (FT2), Takahashi (FT3) – Gain and phase margins – Scilab console

8 NON-LINEAR SIMULATION OF THE REVIN POWER PLANT

The previous study showed approximate methods, providing the elementary tuning of the quadruplet K_p , T_i , T_d , Kd of the speed PID corrector.

This last chapter covers the simulation of nonlinear systems, as described in the models of the HYDROTUR component library, developed under XCOS, and the list of which is recalled in Appendix E.

8.1 Study method

- 1 Carry out a linear simulation under HydroStab with the hydraulic data of the structure
- 2 Transfer the hydraulic data and the quadruplet (K_a, T_i, T_d, Kd) into the turbine simulator programming files.
- 3 Use the pertubograph on the network load to optimize the Kp gain, following different sequences
- 4 Record each sequence

The perturbograph, used in Appendix *E.6*, is one of the elements provided in the ATOMS HYDROTUR-SegPal module, an extension of the XCOS standard library, which can be downloaded from the site:

http://atoms.scilab.org/toolboxes/SegPal/2.2.2

8.2 Characteristics of simulations

In this document, we simply add the results of the simulations carried out, and available in the directory:

These studies are part of the third HYDROTUR – HydroSim component, available in the ATOMS module of Scilab

To view these "scg" files, open Scilab, navigate to these directories using the Scilab browser, then double-click on the files.

In general, it is a question of finding the best compromise between the driving overspeeds/overpressures.

Figure 77 : Example of non-linear simulations on the Revin plant

[]	A B	υ		ш	ш	U	т	-	~	×	_	×	z	0	٩
~	UNIT:	-		SITE:					TURBINE:	FRAM	VCIS			Items	to be filled in
2															Result
Э									Unit						
4	Mechanic	cal launch time(s	÷	Ta =	10.807		MR2 (*)	4825.00	T.m ²						
S							Speed	250.00	t/mn	26.180	rad/s		Alteri	nator + Turl	nine Inertia:
۵	Tw/Ta=		0.198				Power	306.00	MW				(*) This	s is the MR2	not the MD2
7							Flow	175.70	m³/s					(MR2=ML	(2/4)
∞	Specific s	speed		= SU	189.783		Head	195.00	E						
ი							Wheel diam. (**)	3.57	E			-	***) Not manda	tory	
9															
÷															
12	PENSTOCI	¥													
13	Hvdraulic	t launch time (s)		Tw =	2.145		Allievi Paramter =		1.532		Nominal flow	rate	175.7	m3/s	
4											Nominal Head		195	ε	
5	Equivaler	ht length	l ea =	700.00	E	Equivalent sectio	n Sed =	29.98	m ²		Efficiencyt n		0.910		
2 4		0	5										2		
2						Additional									
9	Part N°	Units Nbr.	Lenath	Diameter :	Section	Flow	Total	>	L*V	L/S	v equivalent =		5.860949	m/s	
19			ε	٤	a2	m³/s	m3/s	m/s	m ² /s	m ⁻¹ .s ⁻¹	L*v total =		4102.66	m²/s	
20	-	2	180	6	31.81		175.7	5.52	994.26	5.66					
21	2	1	170	5.6	24.63		175.7	7.13	1212.70	6.90					
22	е	1	40	4	12.57		175.7	13.98	559.27	3.18					
23	4	1	130	7.4	43.01		175.7	4.09	531.08	3.02					
24	5	2	180	10	39.27		175.7	4.47	805.35	4.58					
25	9														
26	7														
27	8														
28	6														
29	10														
8	11														
31	12														
32	13														
33	14														
34	15														
35	16														
36	17														
37	18														
38	19														
39	20														
40	21														
4	22														
42	23														
19															

A. HYDROSTAB-CALTUR: EXCEL SPREADSHEET

A.1 Main sheet "Length-Section"

HYDROTUR

APPENDIX

A.2 - "Flow- efficiency" secondary sheet

Formula

$$P = \eta . \rho . g . H . Q$$

B. SEASONAL VARIATIONS – TIDAL RANGE – ADAPTATION OF PID

In the example below, we assume a site subject to a strong tidal range

The PID, calculated with a head of 80 m, becomes unstable for a head passing to 50 m

- FT1 PID "Summer" Module Margin, 80 m head
- FT2 Winter conditions: the head goes from 80 m to 50 m. The PID is unstable
- FT3 : The "Winter" PID is recalculated using the Module Margin method

Transfer function FT3 : Marge Module +3dB - Hnom=50 m

Conclusion: the plant operator will therefore have to switch the PID parameter sets mid-season

Figure 78 : Tidal variation - "summer" and "winter" PID- File : HydroStab\demos\Test\ HydroStab - XxXxXx - 01.par

C. EXAMPLE OF A HYDROSTAB SESSION RECORDING FILE

54/72

D. HYDRAULIC STRUCTURE OF THE 2-STAGE SYSCOP COPYING SYSTEM

D.1 Working principle of double-stage copying system

Figure 80 : Simplified control diagram of the control unit – SYSCOP copying system with 2 control units

E. ELEMENTS OF HYDROTUR-HYDROSIM DIAGRAMS

E.1 List of HYDROTUR-HydroSim schematic libraries

		Available Forecast
Turbine type	Name/Directory	Features
	FR2	Turbine and pipes modeled according to analytical formulas – Wave hammer
FRANCIS	FR4	Turbine and adductions modeled using machine hills Interpolation and extrapolation on torque and flow (q11,c11)=F(N,O)
	FR5	Turbine and adductions modeled using machine hills Interpolation and extrapolation on torque and flow (q11,c11)=F(Arctg(φ),O)
	PELT1	PELTON turbine horizontal axis, 1 needle and 1 deflector Deflector following the pilot injector Turbine and pipe modeled according to analytical formulas
	PELT2	PELTON turbine horizontal axis, 2 needles and 1 deflector Deflector following the pilot injector Turbine and pipe modeled according to analytical formulas
PELTON	PELT3	Pelton vertical axis 3 needles with or without jet dispatcher. Deflectors following the pilot injector Turbine and pipe modeled according to analytical formulas
1 single PELTON diagram now covers all PELTON models)	PELT4	Pelton vertical axis 4 needles with or without jet dispatcher. Deflectors following the pilot injector Turbine and pipe modeled according to analytical formulas
	PELT5	Pelton vertical axis 5 needles with or without jet dispatcher. Deflectors following the pilot injector Turbine and pipe modeled according to analytical formulas
	PELT6	Pelton vertical axis 6 needles with or without jet dispatcher. Deflectors following the pilot injector Turbine and pipe modeled according to analytical formulas
	KB1	Turbine and adductions modeled using an analytical hill Interpolation and extrapolation on the geometric average Blades/Wicket gates and Speed. (Reduced torque = $F(N, \sqrt{P * V})$)
KAPLAN	KB2	Turbine and pipe modeled by a transfer function. Combination between guides and blades

Figure 81 : List of available nonlinear models and algorithms

E.2 Speed governor for FRANCIS turbines

This document is written by Pierre PERRICHON. It must not be reproduced, or communicated in any form to a third party without written authorization.

e

Figure 82 : Speed governor for FRANCIS turbines

-

4

E.3 Modeling of the Turbine + Adduction circuit by analytical equations

58/72

This document is written by Pierre PERRICHON. It must not be reproduced, or communicated in any form to a third party without written authorization.

Figure 83 : Modeling of the Turbine + Adduction circuit by analytical equations

E.4 Modeling of the Turbine + Adduction circuit with machine hills [n11-c11-q11]

Figure 84 : Modeling of the Turbine + Adduction circuit with machine hill [n11-c11-q11]

E.5 Modeling the copying system

This document is written by Pierre PERRICHON. It must not be reproduced, or communicated in any form to a third party without written authorization.

Figure 85 : Modeling of the double-stage copying system

E.6 Network Circuit Modeling

61/72

This document is written by Pierre PERRICHON. It must not be reproduced, or communicated in any form to a third party without written authorization.

Figure 86 : Network Circuit Modeling

F. LAYOUT AND ORGANIZATION OF THE SCILAB SPACE

1. After installation and first launch of Scilab, we obtain the screen below:

- Address Controller Associations 7			
Cher Edition Controle Applications :	0		
	0		
ngateur de tichiers	9 # X Console Solati 2024 0.0	Y A X Nevigateur de variables	
C:[Jsers]perri]OneDrive[Documents]	× *	Non Valeur Type Visi	olité Menory
ion O	Initialization :		
Documents	Chargement de l'environnement de travail		
- Pachiera Outlook			
MATLAB	> SCI		
Mes formes	5.1 -		
Modeles Office personnaises	*C1/PROGRA-1/SCILAB-3.0*		
Dessinil.vsd			
HP ePrint	> SCINCME	Historique des commandes	
	SCINOME -	E: // - 24/04/2024 18:22:49 - //	
	Revision and the first structure for the sector of the sector.	SCHOME	
	-CI (OBELB (DETER (ADDOREN (NORMER)) (DETER) (BETER-2024)	.0.0-	
	>		
		Plux d'actualités	7.0
		Oscover Sciab community	
		Solab is open source.	
		Combust and	
		and tax append a part	nes a appreciates
		 Add and improve functions on <u>Git.ab</u>. View and edit belo resets 	
live fichier/hipertoire	T	Add and improve functions on <u>Gitab</u> , view and edit <u>help papers</u> . Publish tooboxes on <u>ATCMS</u> .	

62/72

Figure 87 : First Scilab home screen after installation

, and close the three panes on the right of the screen

	Appli	cations ?
	2	SciNotes
inotos		Xcos

- 2. Open SciNotes in tApplications→Scinotes
 - 3. After Click on the blue bar "Untitled 1 SciNotes" and, while holding down the left mouse button, drag the window to the right below the center of the console screen, which allows it to be anchored to the right.

Console Scilab 5.5.2			×
Fichier Édition Contrôle Applications ?			
2 🕒 🔏 🕞 🚺 🟷 🖴 🖴 🎽	(🕸 🔞		
Navigateur de fichiers 🤋 🛪 🗙	Console Scilab 5.5.2	1	x s s
C:\Users\pierre\Documents Nom Documents Discs-notes OneNote FeedbaddHub Fichiers Outook FluidSIM Ip.system.package.appdata MATLAB Mes formes Modèles Office personnalisés POF Architet POF Architet POROPCCleaner Visual Studio 2015 YouCam Visual Studio 2015 Youcherfinzol19-bd-24012019.pdf Jatex.pdf Jatex.pdf Thre fichier/répertoire Respecter la casse Expression	Ini C Sans titre 1 - SciNotes × Fichier Édition Format Options Fenêtre Exécuter ? Sans titre 1 - SciNotes * Sans titre 1 - SciNotes * Click on the blue bar « Untitled 1 - SciNotes » Then Slide to the right of the screen		

Figure 88 : Anchoring the SciNotes window in the Scilab space

We thus obtain the operational device presented in Figure 13

4. Save the working environment and customizations

Click on « Edit → Preferences »

In the "General" menu, click on "Use previous working directory" to avoid re-navigating in the file manager

General	Environment			
Web	Floating point exception (ieee):	Pr	roduces Inf or NaN	
Preferences	Printing format:	Va	ariable format	
Fonts	Polynomial display:	A	SCII	
Console	Width:			10
Command history	Recursion limit:			1000
Scinotes Xcos	Containers display depth:			2
	Language setting			
	Default language:		English	
	(This requires a restart of Scila	b)		
	Java Heap Memory			
	Select the memory (in MB) available	in lava:		0
	(This requires a restart of Scila	b)		
	Start-up directory			
	O Use current working directory			
	Use previous working directory			
	Use default directory			

Figure 89 : Saving the Scilab working environment

G. REVIN HYDROELECTRIC POWER PLANT

Unité de Production Est - GEH Revin

LES AMÉNAGEMENTS HYDROÉLECTRIQUES DE REVIN ST NICOLAS LES MAZURES

HYDROTUR - HydroStab Solution - Stability studies of servocontrols

Version 2.3

Une énergie renouvelable, stockable, et disponible rapidement

'aménagement de Revin St Nicolas les Mazures, a été la 1ère usine EDF équipée de **4 groupes réversibles** «turbine/pompe» de **200** MW de puissance chacun. C'est actuellement la 3^e STEP en France par la puissance totale installée.

2 minutes seulement suffisent pour qu'elle atteigne sa puissance maximale de 800 MW (soit 1/3 de la puissance totale de la centrale nucléaire de Chooz qui nécessite plusieurs heures pour monter en puissance).

Mais son originalité principale réside dans son mode de fonctionnement.

Pendant les périodes de forte consommation d'électricité, l'eau du bassin supérieur est turbinée puis stockée dans le bassin inférieur. Pendant les heures de faible consommation, l'eau du bassin inférieur est pompée, grâce aux groupes réversibles pour être stockée à nouveau dans le bassin supérieur. Et ainsi de suite.

Par sa rapidité d'intervention et sa réserve de puissance, la STEP joue un rôle essentiel dans la sécurité et la régulation de l'alimentation électrique des clients d'EDF. Elle pourrait également soutenir le redémarrage de la production d'électricité dans l'hypothèse d'une panne générale.

Compte tenu de son rôle spécifique, la mise en service de l'usine est commandée à distance depuis le Centre de Conduite Hydraulique de Lyon.

Une trentaine de salariés assurent au quotidien l'exploitation des ouvrages ainsi que leur maintenance.

La STEP de Revin en quelques chiffres

Mise en service : 1976 Puissance totale : 800 MW disponibles en 2 mn

Usine souterraine

Caverne principale : 115 m de longueur, 17 m de largeur, 16 m de hauteur Tunnel d'accès : 170 m de longueur 4 groupes réversibles de 200 MVA, turbine de type Francis

Poste de transformation 4 transformateurs de 200 MVA 13 000/400 000 Volts Bassin supérieur Superficie : 66 ha Digue : 4 200 m de longueur, 9 à 18 m de hauteur Volume total : 8,5 millions de m³ Volume utile : 6,9 millions de m³

Bassin inférieur

Barrage : 300 m de longueur en crête, 35 m de hauteur Volume total : 9 millions de m³ Volume utile : 6,9 millions de m³ Noyau central en argile

Lac des Vieilles Forges 5 millions de m³

Figure 90 : Revin hydroelectric power plant

Figure 91 : Revin - Length/Equivalent section – Studies

Figure 92 : Revin - Characteristics of Revin turbine pumps

H. LISTING TYPE APRES EXECUTION DU CONSTRUCTEUR BUILDER.SCE

--> exec('C:\PPe\0 - Scilab\0 - Xcos8\10 - TURBINES\0 - HydroStab ATOMS\HydroStab\builder.sce', -1)

Construction du fichier Toolbox_names.sce dans le répertoire \etc\...

Building macros...

-- Creation of [HydroStablib] (Macros) -genlib: Processing file: AddLegend.sci genlib: Processing file: Bode.sci genlib: Processing file: Calcul_FTB0_FTBF.sci genlib: Processing file: ChangeLanguage.sci genlib: Processing file: ChargeurXcos.sci genlib: Processing file: CheckValues.sci genlib: Processing file: ClearCurves.sci genlib: Processing file: Colorize_PID__Button.sci genlib: Processing file: DelHydroStabFigure.sci genlib: Processing file: Display_Info_Message.sci genlib: Processing file: Display_Results.sci genlib: Processing file: FT_Select_GUI.sci genlib: Processing file: FindObj PPe.sci genlib: Processing file: Get_FT_Button.sci genlib: Processing file: Gradient.sci genlib: Processing file: HydroStab_About.sci genlib: Processing file: HydroStab Files.sci genlib: Processing file: HydroStab_Load.sci genlib: Processing file: HydroStab Load cfg.sci genlib: Processing file: HydroStab_Param_Def.sci genlib: Processing file: HydroStab Save.sci genlib: Processing file: HydroStab_Save_cfg.sci genlib: Processing file: HydroStab Takahashi.sci genlib: Processing file: HydroStab_XcrossClosure.sci genlib: Processing file: HydroStab_Ziegler_Nichols.sci genlib: Processing file: Init_FormatPID.sci genlib: Processing file: K_FT.sci genlib: Processing file: Load_IHM_PID.sci genlib: Processing file: Load_IHM_Param.sci genlib: Processing file: Load_PID_IHM.sci genlib: Processing file: Load_Param_IHM.sci genlib: Processing file: Nyquist.sci genlib: Processing file: NyquistSymetrique.sci genlib: Processing file: Nyquist_PPe.sci genlib: Processing file: Nyquist_Switch.sci genlib: Processing file: PPe_show_margins.sci genlib: Processing file: PlotDB.sci genlib: Processing file: Plot_Max_Reglin.sci genlib: Processing file: PlotterErase.sci genlib: Processing file: PrintScilabConsole.sci genlib: Processing file: Print_sim_G_P_Marge.sci genlib: Processing file: Read_Marge.sci genlib: Processing file: Recherche_sim.sci genlib: Processing file: ResetStructureSim.sci genlib: Processing file: Saturation_FT.sci genlib: Processing file: Scilab About.sci genlib: Processing file: Select_Save.sci genlib: Processing file: Set FT Button.sci genlib: Processing file: SolveurHydroStab.sci genlib: Processing file: Sys Bode.sci genlib: Processing file: Sys_Compute.sci genlib: Processing file: Sys_DEL.sci genlib: Processing file: Sys_FT_GUI.sci genlib: Processing file: Sys_Indiciel.sci genlib: Processing file: Sys_Nyquist.sci genlib: Processing file: Temporel.sci genlib: Processing file: Titre_Echelon.sci genlib: Processing file: ZN.sci genlib: Processing file: ZN_GUI_1.sci genlib: Processing file: ZN_GUI_2.sci genlib: Processing file: ZN_Grille.sci genlib: Processing file: ZN_Optimize.sci genlib: Processing file: isSite.sci

genlib: Processing file: post_xcos_simulate.sci genlib: Processing file: sysPID.sci Generating loader.sce... Generating unloader.sce... Generating cleaner.sce...

Figure 93 : Listing after execution of the builder.sce constructor

LIST OF FIGURES

69/72

Figure 1 : Technical support for the HYDROTUR - SEGPAL project	5
Figure 2 : General functional diagram of a hydroelectric control system	7
Figure 3 : Classification of synthesis methods	8
Figure 4 : Different Methods of Installing HydroStab	11
Figure 5 : HydroStab Auto-Install Directory	11
Figure 6 : Unzipping the HydroStab.zip file	11
Figure 7 : HydroStab Directory Contents	12
Figure 8 : Scilab "Fundamentals" book	13
Figure 9 : Example of loading the HydroStab library in Scilab – Using the loader.sce file	14
Figure 10 : Environment variable SCI_HYDROTUR_HydroStab	14
Figure 11 : Reduction of the hydraulic diagram - Preliminary calculations for the stability study of a hydraulic group	15
Figure 12 : Circuit for calculating the parameters of a Speed PID - Module Margin Method	16
Figure 13 : Scilab home window and launch of the "Run_HydroStab" script	17
Figure 14 : HYDROTUR Home Window - HydroStab Solution	18
Figure 15 : Menus for adjusting servos systems	19
Figure 16 : Selecting one FT from N with the BP FT1	20
Figure 17 : Deleting one FT among N DEL	20
Figure 18 : Printing legends and operations conducted in the Scilab console	20
Figure 19 : Scilab Standard Graphics Toolbar	21
Figure 20 : Zooming in graphics windows	21
Figure 21 : Request for confirmation when creating a new configuration	22
Figure 22 : HydroStab Default Configuration	22
Figure 23 : Selecting the backup mode	23
Figure 24 : Selecting a backup directory	23
Figure 25 : Naming recording files of a HydroStab session	23
Figure 26 : Confirmation of recording a HydroStab session	24
Figure 27 : Reloading a parameter file	24
Figure 28 : Restoring a parameterization file	25
Figure 29 : Confirmation of closing a HydroStab session	25
Figure 30 : Enriching a comment in the presentation	26
Figure 31 : Symmetry in the Nyquist plane	26
Figure 32 : Nyquist with Module Margin set to -3dB	27
Figure 33 : HydroStab Version	28
Figure 34 : Version de Scilab	28
Figure 35 : XCOS Models – List of models	29
Figure 36 : Scale model of the process to be adjusted	29
Figure 37 : FTBO model of closed loop process control	29
Figure 38 : Closed-loop process control model	30
Figure 39 : Block diagram of a PELTON hydraulic unit	30

Figure 40 Figure 41 Figure 42 Figure 43 Figure 44 Figure 45 Figure 46 Figure 47 Figure 48 Figure 49 Figure 50 Figure 51 Figure 52 Figure 53 Figure 54 Figure 55 Figure 56 Figure 57 Figure 58 Figure 59 Figure 60 Figure 61 Figure 62 Figure 63 Figure 64 Figure 65 Figure 66 Figure 67 Figure 68 Figure 69 Figure 70 Figure 71 Figure 72 Figure 73 Figure 74 Figure 75 Figure 76

	70/72		
Input data for a stability study			
: Simplified calculation circuit for modeling a hydraulic group			
: Nyquist Plan		33	
: Module Margin in the Nyquist Plane		34	
Input data and results of the small motion stability study			
Module Margin adjustment to +3 dB			
Controller stability in the Nyquist plane (FTBO) – ma $pprox$ 0.41			
: Step responses of the small motion regulator (FTBF)			
Open Loop Bode Plot - Gain and Phase Margins - Ma Setting at +3dB			
: Module Margin adjustment to -3 dB		36	
: Stabilité du régulateur dans le plan de Nyquist	(FTBO) – ma=0.29	36	
: Step responses of the small motion regulator (FTBF)	36	
: Open Loop Bode Plot - Gain and Phase Margin	s - ma Setting at -3dB	37	
: Principle of the Ziegler-Nichols method		38	
: Closed-loop PID "FTBF.zcos" for application of	the Ziegler-Nichols method	38	
: Choice of optimization parameters for the Zig	ler-Nichols or Takahashi methods	38	
: Activation of the Ziegler-Nichols method		38	
: Ziegler-Nichols scope with linear regression lin	e and local maxima	39	
: Ziegler-Nichols Dialog Box		39	
: Kcr gain input box		40	
: General adjustment principle of the critical ga	in Kcr in the Ziegler-Nichols method	40	
: Example of Ziegler-Nichol's process adjustmer	ıt	41	
: Proposal for tuning a PID using the Ziegler-Nic	hols method – Method No. 1	41	
: Verifications of the Ziegler-Nichols method		42	
: Verification of the critical gain Kcr in the Nyqu	ist plane	43	
: Verification of the period of Tosc oscillations in the Ziegler-Nichols method			
: Active phase of automatic search for critical gain Kcr			
: Terminal phase of searching for critical gain Ko	r	44	
: Trace_ZN tracing option		45	
: Comparison of the Module Margin and Ziegler	-Nichol's methods in the Nyquist plane	45	
: Comparison of the Module Margin and Ziegler	-Nichol's methods in the time domain	46	
: Ziegler-Nichol's method setting values availab	le on the NET	46	
: General principle of Takahashi's method		47	
: PID tuning by TAKAHASHI method		47	
: Comparison of Module Margin (FT1), ZN (FT2)	, Takahashi (FT3) - Nyquist methods	48	
: Comparison of Module Margin methods (FT1),	. ZN (FT2), Takahashi (FT3) – Step responses	48	
: Comparison of Module Margin methods (FT1),	, ZN (FT2), Takahashi (FT3) – Gain and phase margins – Scilab		
		49	

Figure 80 : Simplified control diagram of the control unit – SYSCOP copying system with 2 control units	55
Figure 81 : List of available nonlinear models and algorithms	56
Figure 82 : Speed governor for FRANCIS turbines	57
Figure 83 : Modeling of the Turbine + Adduction circuit by analytical equations	58
Figure 84 : Modeling of the Turbine + Adduction circuit with machine hill [n11-c11-q11]	59
Figure 85 : Modeling of the double-stage copying system	60
Figure 86 : Network Circuit Modeling	61
Figure 87 : First Scilab home screen after installation	62
Figure 88 : Anchoring the SciNotes window in the Scilab space	62
Figure 89 : Saving the Scilab working environment	63
Figure 90 : Revin hydroelectric power plant	65
Figure 91 : Revin - Length/Equivalent section – Studies	66
Figure 92 : Revin - Characteristics of Revin turbine pumps	66
Figure 93 : Listing after execution of the builder.sce constructor	68

Personal Notes

Version 2.3