
Image Processing with Scilab
and Image Processing Design

Toolbox

Copyright © by Dr. Eng. (J) Harald Galda, 2011

Contents
1 Introduction...4
2 Characteristic Properties of Images..5
3 Basic Operations on Images...13

3.1 Introduction..13
3.2 Thresholding..13
3.3 Blob Analysis..18
3.4 Filtering..20

3.4.1 Introduction...20
3.4.2 Linear Filtering..20
3.4.3 Median Filtering..22
3.4.4 Morphological Filtering...23

3.5 Watershed Transform and Distance Transform...27
4 How to Detect Objects in Images..31

4.1 Introduction..31
4.2 Thresholding and Blob Analysis..31
4.3 Edge Detection and Watershed Transform...35

References...41

1 Introduction
There are various applications of image processing, e. g. detection of surface defects in in-
dustrial quality control, detection of anatomical landmarks in surgery, counting cells in bio-
technology and classification of regions in remote sensing. Images are generated by opti-
cal cameras, ultrasound, x-ray machines and other imaging devices.
When processing an image with a computer, it must be digitized or created in a digital for-
mat. There are some basic methods to distinguish between objects and background and to
describe regions in digital images. This document explains how digital images can be re-
presented mathematically and basic methods for finding objects and describing regions.
Scientists, engineers and medical doctors who intend to analyze images usually know how
their images were generated and how the objects of interest look like. However, these ob-
jects must be described mathematically when they are to be detected automatically with a
computer. The goal of this document is introducing these mathematical descriptions in a
way easily to understand.
The remaining part of the document is organized as follows: In chapter 2, a mathematical
representation of digital images and characteristic properties of images are introduced. In
chapter 3, basic image processing operations such as segmentation into connected regi-
ons and filtering are introduced. In chapter 4 methods for object detection are presented.
References are given in the last chapter.
Examples are implemented with Scilab 5.3.1 and Image Processing Design Toolbox (IPD)
8.0. The photograph used in this document is taken from IPD. Scilab is available for down-
load at www.scilab.org. IPD can be downloaded from atoms.scilab.org/toolboxes/IPD.

Figure 1.1: This image shows a Japanese tea cup and a can for tea powder. The author
took this photograph at home. This image is used in the further chapters.

4

http://www.scilab.org/
http://atoms.scilab.org/toolboxes/IPD

2 Characteristic Properties of Images
A 2D digital image consists of a finite number of points aligned as rows and columns. A
point of a digital image is called “pixel”. “Pixel” means “picture element”. At each pixel there
can be a scalar gray value or a vector of color components or gray values. In Scilab [1]
there are the following types of images:

• Gray value images, also called “gray scale” images or “intensity images”: A gray va-
lue image is a matrix of gray values. In Scilab a gray value image is a 2D array. A
gray value is usually an integer scalar between 0 and 255 or a real number between
zero and one. An example is displayed in Fig. 2.2 b.

• Pseudo color images, also called “indexed images”: Each pixel of a pseudo color
image corresponds to an item in a list of colors. A list of colors is called “color map”.
A color map is a matrix. The rows of this matrix correspond to color vectors and the
columns correspond to color channels. An example is shown in Fig. 2.2 c.

• Color images: At each pixel of a color image there is a vector of color components,
e. g. red – green – blue. Mathematically a color image can be described as a triple
of matrices. Each matrix corresponds to a color channel. In Scilab, color images are
represented as 3D arrays. The first dimension corresponds to the rows, the second
dimension corresponds to the columns and the third dimension corresponds to the
color channel. A color component is usually an integer scalar between 0 and 255 or
a real number between zero and one. A color image can be transformed to a gray
value image by calculating the scalar product or each color vector and a constant
vector. An example can be seen in Fig. 1.1 and 2.2 a.

• Logical images, also called “binary images”: A logical image is a matrix of boolean
values. When a logical image is visualized, false is displayed in black and true is
displayed in white. Logical images can be generated comparing each pixel of a gray
value image to a threshold. Pixels with gray values at least as high as the threshold
are mapped to true whereas pixels with gray values lower than the threshold get
mapped to false.

• Object images, also called “label images”: An object image consists of objects and
background. At each object image there is a number greater than zero. Pixels with
the same number belong to the same object. Pixels with different numbers belong
to different objects. Background pixels have the value zero. An object image can be
created searching connected areas in logical images. Object images can be visuali-
zed as pseudo color images.

Fig. 2.1 shows how a color image, a gray value image and a pseudo color image can be
generated and displayed in Scilab. The color image is read from disk and converted to a
gray level image. The color image is displayed. The gray level images is displayed as both
gray level image and color image. Fig. 2.2 shows the resulting images.
An important property of a gray level image is its gray level histogram. Fig. 2.3 shows how
the histogram of a gray level image is calculated and displayed in Scilab. Fig. 2.4 shows
the histogram of the gray level image displayed in Fig. 2.2 b. The whole image is very
bright so there are a lot of pixels with gray levels >= 200. There are few pixels with a gray
value lower than 100. The two peaks in the range between 0 and 255 correspond to the
white tea cup segments and the background. The low peaks between 100 and 150 corres-
pond to the comparatively dark blue and red areas.

5

Figure 2.1: A color image is read from disk and converted to a gray level image. The color
image is displayed. The gray level images is displayed as both gray level image and color
image.

Fig. 2.2 a: A color image
saved on hard disk.

Fig. 2.2 b: Result of transfor-
ming color image to gray
level image

Fig. 2.2 c: A gray level image
displayed as a pseudo color
image.

6

Fig. 2.3: How to calculate and display a histogram in Scilab

Fig. 2.4: The histogram of the image shown in Fig. 2.2 b. The two high peaks between 200
and 255 correspond to the white tea cup segments and the background. The three low
peaks between 100 and 150 correspond to the comparatively dark blue and red regions.

7

In Scilab images can be analyzed interactively. This is shown in Fig. 2.5.

Fig. 2.5 a: The function ImageTool for interactive image analysis is called.

Fig. 2.5 b: The GUI for interactive image analysis. When the mouse pointer is inside the
image, the position and gray value of the pixel the mouse pointer resides at is displayed.
The user can select a single pixel, a line between two points or a rectangular area.

8

Figure 2.6 shows one rectangular area in the background, one in a blue region and one in
the red region and the histogram of each region.

Fig. 2.6 a: Area in the white background. Fig. 2.6 b: Histogram of the white area.

Fig. 2.6 c: Area in a blue region. Fig. 2.6 d: Histogram of the blue area.

Fig. 2.6 e: Area in the red region. Fig. 2.6 f: Histogram of the red area.

9

As can be seen in Fig. 2.6, the gray level ranges of the red and blue regions partially over-
lap. The range of the selected white region does not overlap at all with the ranges of the
red and blue regions. In this image, it is possible to distinguish between objects and back-
ground based on gray value ranges.
In the color image in 2.2 a there are blue, red, yellow and white regions. These colors are
easily to distinguish when looking at the image. One might expect that the red and blue re-
gions are clearly visible in the red and blue channel, respectively. However, this is not the
case as can be seen in Fig. 2.7. In the red channel, the middle and right parts of the red
are lighter than the background whereas the left part is darker. In the blue channel, the
blue areas are darker than white. Moreover, the yellow region is brighter than the red one,
even though yellow is certainly not more similar to blue than red.
The red – green – blue color space, also called “RGB”, is used for storing color image files
and for displaying color images on screens. However, this color space does not seem to
be appropriate for calculations on images. There are other color spaces more suitable for
this purpose.

Fig. 2.7 a: Red channel. Fig. 2.7 b: Green channel. Fig. 2.7 c: Blue channel.

Fig. 2.8 shows how the channels of a color image can be displayed in Scilab.

Fig. 2.8: The Scilab commands for displaying color channels are shown.

10

One of these color spaces is L*a*b*, also called “CIE_LAB” [2]. The L*a*b* is implemented
in Scilab. Fig. 2.9 shows how an RGB image is converted to L*a*b* and how the compo-
nents and their histograms can be visualized. The color channels are normalized so the
minimum value is zero and the maximum value is one. This is done for the purpose of dis-
play and histogram calculation.
The results are shown in Fig. 2.10. The L* channel and its histogram look very similar to
the gray level image in Fig. 2.2 b and its histogram shown in Fig. 2.5. The blue segments
appear dark in both a* and b* channels whereas the red area appears bright in both chan-
nels. Both blue and red areas can be distinguished clearly from background. The yellow
area appears dark in a* and bright in b*. The histograms of a* and b* have high peaks that
correspond to the background and low broad maxima corresponding to objects.
In the L*a*b* space the different colors of this image can be distinguished from each other
and from background better than in RGB space. It is important to choose an appropriate
color space when working with color images.

Fig. 2.9: Conversion of an RGB image to L*a*b* and visualization of the color channels
and their histograms.

11

Fig. 2.10 a: Normalized L*. Fig. 2.10 b: Histogram of normalized L*.

Fig. 2.10 c: Normalized a*. Fig. 2.10 d: Histogram of normalized a*.

Fig. 2.10 e: Normalized b*. Fig. 2.10 f: Histogram of normalized b*.

12

3 Basic Operations on Images

3.1 Introduction
In this chapter basic image processing operations are introduced. These operations are
useful for detecting objects in single channel images, i. e. in gray level, logical and object
images. The following operations are described:

• Thresholding: The gray level of each pixel is compared to a threshold. If the gray le-
vel is equal to or greater than the threshold, the pixel is mapped to true. If the gray
level is below the threshold, the pixel is mapped to false. The result is a logical ima-
ge [3, 4].

• Blob analysis, also called “connected component analysis”: In a logical image the
connected regions of true pixels are searched. The pixels of each connected region
are mapped to a number greater than zero. All false pixels are mapped to zero. The
result is an object image. For each object characteristic properties such as the cen-
troid or the area given in pixels can be calculated [4].

• Filtering: For each pixel a new gray value, logical value or object label is calculated
from an area surrounding it. This can emphasize objects of interest or remove irre-
levant objects or noise. Moreover, the gray level gradient can be approximated and
used for edge detection. Filtering can be applied to gray level images, logical ima-
ges and object images. The result is of the same type as the original image [3, 4].

• Watershed transform: Starting from some seed points, unlabeled pixels are assig-
ned to regions of pixels that are already labeled and have a lower or the same gray
value [3].

• Distance transform: For each pixel the distance to the next background pixel is cal-
culated. Watershed segmentation can be applied to the result image [3].

3.2 Thresholding
A gray level image can be segmented by comparing the gray value with a threshold at
each pixel. In Scilab, pixels that have a gray value greater than or equal to the threshold
are mapped to true, whereas all other pixels are mapped to false.
Thresholding helps to find objects in an image if these objects are significantly brighter or
darker than the background. In this case there is a gray level range typical for object pixels
and another gray level range typical for background pixels. A gray level between these ran-
ges can be a threshold. A good candidate for a threshold is a local minimum of the histo-
gram.
Fig. 3.1 shows how a threshold can be determined manually. The objects are darker than
the background in the original image. Therefore, the image is inverted. Then the histogram
is calculated and displayed. The data tip mode is toggled and a local minimum of the histo-
gram is searched.
The threshold is applied to the inverted image. The original image, the inverted image and
the result are displayed in Fig. 3.2. The bright regions of the resulting image correspond
very well to the dark regions of the original image.

13

Fig. 3.1 a: The image is inverted, because the objects are dark and the background is
bright. The histogram of the inverted image is displayed.

Fig. 3.1 b: The histogram of the inverted image is shown. A data tip is placed on a local
minimum of the histogram.

14

Fig. 3.2 a: The inverted image is segmented by the threshold.

Fig. 3.2 b: Original image. Fig. 3.2 c: Inverted image. Fig. 3.3 d: Resulting image.

A threshold can be calculated automatically, too. A well known example for automated
threshold calculation is the Otsu method: The value k that maximizes the between-class
variance σbetween is chosen as threshold. The between-class variance is defined by the
following equations:

σbetween
2 =ωdark (μdark−μimage)

2+ωbright(μbright−μimage)
2 (3.1 a)

 ωdark=∑
q=0

k−1

p (r q) (3.1 b)

ωbright=∑
q= k

L−1

p(rq) (3.1 c)

15

μdark=

∑
q=0

k−1

r q p(rq)

ωdark

 (3.1 d)

μbright=
∑
q=k

L−1

r q p(r q)

ωbright

 (3.1 e)

μimage=∑
q=0

L−1

r q p(rq) (3.1 f)

p (r q)=
h(rq)
N

 (3.1 g)

N is the number of pixels, L is the number of gray values, r q is the qth gray value,
h (r q) is the histogram value of r q [3].

The Otsu method is implemented in Scilab. The calculation and the result are shown in
Fig. 3.3.

Fig. 3.3 a: Calculation of threshold using Otsu's method.

Fig. 3.3 b: Original image. Fig. 3.3 c: Inverted image. Fig. 3.3 d: Resulting image.

16

The result is not very accurate, because shadows and comparatively dark regions in the
left part of the image have a gray value higher than the calculated threshold.
In Fig. 3.4 the background is analyzed by calling the function ImageTool(), selecting a pixel
and displaying a row profile. All pixels on this row belong to the background. The gray va-
lue strongly varies on the row the selected pixel belongs to. The background brightness is
inhomogeneous because the illumination was inhomogeneous when the original photo-
graph was taken. Therefore, it is difficult to calculate a threshold automatically for the gray
level image.

Fig. 3.4 a: The function ImageTool() is called for analyzing the image.

Fig. 3.4 b: A pixel is selected. Fig 3.4 c: Gray value profile of the row the
selcted pixel belongs to.

In the following example, the image is cropped and the threshold is calculated on the crop-
ped inverted image. The threshold is close to the manually determined one and the result
is quite accurate as we can see in Fig. 3.5. The histogram of the inverted image has a very
high peak as can be seen in Fig. 3.1. This peak ends at the threshold calculated on the ori-
ginal gray level image. Contrasting this, the cropped inverted image does not have a peak
that is much higher than all other peaks. The background brightness does not vary as
strongly in the cropped image as in the original one.
The Otsu method is easy to implement and fast. However, it is important to consider back-

17

ground brightness variations when trying to segment an image using this method. Back-
ground variations can be caused by inhomogeneous illumination or by specular reflection.

Fig. 3.5 a: The image is cropped and the threshold is calculated on the cropped inverted
image.

Fig. 3.5 b: The result of thresholding. Fig. 3.5 c: The histogram of the cropped
inverted image.

3.3 Blob Analysis
Objects can be found in a logical image by searching the connected areas of true pixels.
The pixels of each connected area are mapped to an integer number greater than zero. All
pixels of the same area have the same number whereas pixels belonging to different areas
have different numbers. All false pixels are mapped to zero.
An algorithm for searching the connected components is described in [4] and this algo-
rithm is implemented in Scilab. Fig. 3.6 shows how a blob analysis can be done in Scilab.

18

Fig. 3.6 a: A blob analysis is performed using the function SearchBlobs(). The result is
shown by ShowImage(). The color map has as many entries as the resulting image has
objects.

Fig. 3.6 b: The logical image. Fig. 3.6 c: The result of blob analysis.

19

3.4 Filtering

3.4.1 Introduction
Filtering means that a mask is placed on each pixel and a new gray value or logical value
is calculated from the pixels below the mask. Objects of interest can be emphasized and
irrelevant objects can be removed applying a filter.
In this document the coordinate system of a filter mask f is defined as shown in Fig. 3.7:

f(-1, -1) f(-1, 0) f(-1, 1)
f(0, -1) f(0, 0) f(0, 1)
f(1, -1) f(1, 0) f(1, 1)

Fig. 3.7: The origin of a filter mask coordinate system is on the central element.

The following types of filtering are described in this document:

• Linear filtering: The new gray value is a weighted sum of the gray values of the
pixels below the mask.

• Median filtering: The median is calculated from the gray values or logical values of
the pixels below the mask.

• Morphological filtering: Morphological filters can expand or shrink objects and con-
nect or divide areas.

3.4.2 Linear Filtering
When an image I is filtered with a mask f that has N rows and M columns, the gray value
I filtered(i , j) at the pixel (i , j) is calculated in the following way:

I filtered(i , j)= ∑
n=nmin

nmax

∑
m=mmin

mmax

f (n ,m) I (i−n , j−m) (3.2 a)

−k≤n≤k , N=2 k+1
−k+1≤n≤k , N=2k (3.2 b)

−k≤m≤k , M=2k+1
−k+1≤m≤k , M=2k (3.2 c)

An example is shown in Fig. 3.8: The original image consist of an upper region with gray
value zero and a lower region with gray value one. The matrix

f =1
3(−1 −1 −1
0 0 0
1 1 1) (3.3)

is used as filter mask. In the filtered image, the pixels in the lowest row of the upper half
and the highest row of the lower half have the gray value one whereas all other pixels ha-
ve the gray value zero. The mask used in this example emphasizes horizontal edges.

20

Fig. 3.8: An image is filtered with a mask that emphasizes horizontal edges.

The matrix of the previous example can be expressed at the product of a matrix with only
one column and a matrix with only one row:

f column=
1
√3(−101) (3.4 a)

f row=
1
√3

(1 1 1) (3.4 b)

f = f column⋅ f row (3.4 c)
In other words, this matrix is separable. Fig. 3.9 shows how an image can be filtered with a
separable matrix. The column filter is applied to the columns and after this the row filter is
applied to the rows or the other way around. This reduces the number of multiplications
and additions when compared to using a matrix with several rows and columns and there-
fore speeds up the computation.

21

Fig. 3.9: The mask can be represented as a product of a row filter and a column filter. The
function SeparableFilter() applies both filters to the image. The result is the same as in Fig.
3.8.

3.4.3 Median Filtering
When a median filter is applied to a gray level image, the median of the gray values of the
pixels below the mask is calculated for each pixel. When a median filter with an odd num-
ber of elements is applied to a logical image, the pixel in the center is mapped to true, if
there are more true than false pixels below the mask.
The list of the gray values at the pixels below the mask must be sorted and the median
must be searched if the number of elements is odd or even be calculated if the number of
elements is even. Therefore, median filtering is very time consuming when compared to
other filtering methods.
Median filtering can be applied for removing small noise objects as can be seen in Fig.
3.10.

22

Fig. 3.10: In the original image there are a blob of nine object pixels and a single object pi-
xel. The median filter removes the object consisting of only one pixel. The other object is
still there even though some of its pixels become background pixels.

3.4.4 Morphological Filtering
Morphological filters expand or shrink objects and connect or disconnect areas in an ima-
ge. The mask of a morphological filter is a matrix of logical values. If an element of this
matrix is true, the pixel below it is included into the calculation of the new gray value, logi-
cal value or object index. If the element is false, the pixel below it is not included into the
calculation. The set of true pixels of the filter mask is also called “structuring element”.
The basic morphological operations are dilation and erosion. Dilation maps the gray value
to the maximum of the gray values blow the structuring element whereas erosion maps
the gray value to the minimum. Mathematically, the dilation and erosion of an image I with
a mask f that has N rows and M columns are defined as follows:

23

I dilated(i , j)= max
f (n ,m)=true

I (i+n , j+m) (3.5 a)

I eroded(i , j)= min
f (n ,m)=true

I (i+n , j+m) (3.5 b)

−k≤n≤k , N=2 k+1
−k+1≤n≤k , N=2k (3.5 c)

−k≤m≤k , M=2 k+1
−k+1≤m≤k , M=2k (3.5 d)

Further morphological operations are:

• Closing: dilation followed by erosion

• Opening: erosion followed by dilation

• Top Hat: emphasizes bright objects on a dark background, I tophat=I−I opened
• Bottom Hat: emphasizes dark objects on a bright background, I bottomhat=I closed− I

Fig. 3.11 shows the effects of dilation, erosion, closing, opening, top hat and bottom hat.
Morphological operations are explained in detail in [3].

Fig. 3.11 a: The image and the structuring element of the following examples are defined.

24

Fig. 3.11 b: Dilation makes the bright line broader whereas erosion removes the bright line.

25

Fig. 3.11 c: Closing leaves the bright unchanged, because the effect of dilation is canceled
out by the following erosion. Contrasting this, opening removes the bright line. Objects that
are completely removed by erosion can not restored by dilation.

26

Fig. 3.11 d: The top hat filter leaves the bright line intact whereas the bottom hat filter com-
pletely removes it.

3.5 Watershed Transform and Distance Transform
Starting from some seed points, unlabeled pixels are assigned to regions of pixels that are
already labeled and have a lower or the same gray value. Fig. 3.12 shows how the water-
shed transform works.

Fig. 3.12: Water fills several basins. There are watersheds where the water level exceeds
the depth of basins. The between watersheds correspond to regions of an image segmen-
ted by watershed transform.

Objects can be detected by applying a gradient filter and selecting seed points in regions
where the gradient is low. Fig. 3.13 shows the results for manually selected seed points.

27

lake 1 lake 2 lake 3

Fig. 3.13 a: The gradient is calculated and seed points are selected. Then the watershed
transform is calculated.

28

Fig. 3.13 b: Original image. Fig. 3.13 c: Gradient image. Fig. 3.13 d: Result image.

A possible work flow for automated seed point selection is shown in Fig. 3.14.

Fig. 3.14 a: Segmentation of an image using distance transform and watershed transform.

29

Fig. 3.14 b: Original image. Fig. 3.14 c: Gradient image. Fig. 3.14 d: Inverted edge
image.

Fig. 3.14 e: Distance Image. Fig. 3.14 f: Marker image. Fig. 3.14 g: Result image.

A gradient image is calculated from the gray level image. The gray level image is threshol-
ded and inverted. In the inverted image, background pixels belong to edges and object pi-
xels are non-edge pixels. The distance transform is calculated so pixels as far as possible
from edge pixels are found. The distance transform result is thresholded and blobs in the
thresholded distance transform image get markers for watershed transform.
A similar algorithm is described in [3].

30

4 How to Detect Objects in Images

4.1 Introduction
The goal of object detection is demarcating each object of interest against the background
and to represent it by one area that covers it as well as possible. In this chapter two me-
thods to achieve this goal are introduced:

• Thresholding and blob analysis: The image is segmented by a threshold to find
areas with gray values typical for the objects. Then the objects are detected using
blob analysis. Fragmented objects are connected by morphological filtering and
small noise objects are filtered out.

• Edge detection and watershed transform: The edges are detected and seed points
for watershed transform are determined. The biggest object after watershed trans-
form is the background so the background is filtered out. Objects that are fragmen-
ted are connected by morphological filtering.

After the objects are detected, their bounding boxes are determined and drawn into the ori-
ginal image.

4.2 Thresholding and Blob Analysis
In the image used in the previous chapters, the tea cup on the left has areas darker than
the background and the red tea powder can is entirely darker than the background. There-
fore, these two objects can be detected by searching these comparatively dark regions.
This can be done the following way: The image is converted from RGB to a gray level ima-
ge. The gray level image is inverted and segmented using a manually selected threshold.
Then the connected areas are searched. This process and its result are shown in Fig. 4.1.
In the original image two objects are visible. However, more than two connected areas are
found as can be seen in Fig. 4.1 b. Therefore, all objects except for the two biggest are fil-
tered out. For this purpose, a cumulated histogram of area sizes is calculated. The cumu-
lated histogram value of a specific size shows the percentage of connected areas that ha-
ve a number of pixels less than or equal to this specific size. This is shown in Fig. 4.2.
The resulting image contains two objects that cover partially the objects in the original ima-
ge. The bounding boxes of these objects are searched and drawn into the gray level ima-
ge. This is shown in Fig. 4.3.
As this example shows, it is important to distinguish not only between objects and back-
ground, but also between the objects of interest and noise objects when working with thre-
sholding and blob analysis.
It is possible to merge the fragments of an object applying a closing filter to the logical ima-
ge or the blob image. The two objects to be detected are far from each other so they are
still separate as can be seen in Fig. 4.4. However, if the objects to be detected are nearer
to each other than the fragments belonging to the same objects, they are merged. There-
fore, it is necessary to consi-der distances between objects when merging fragments.

31

Fig. 4.1 a: The color image is transformed to a gray level image. The gray level image is
inverted and segmented using a manually determined threshold. Then the connected
areas are searched.

Fig. 4.1 b: The two biggest connected areas correspond to the objects to be detected.

32

Fig. 4.2 a: The cumulated size histogram of the object image is calculated and a minimum
size is determined from it. Connected areas smaller than this minimum size are filtered
out.

Fig. 4.2 b: The cumulated size histogram of
the connected areas.

Fig. 4.2 c: All objects except for the two big-
gest are filtered out.

33

Fig. 4.3 a: The bounding boxes of the two detected objects are determined and drawn into
the original image.

Fig. 4.3 b: The original image with the bounding boxes of the detected objects.

34

Fig. 4.4 a: The logical image is filtered by a closing filter with a structuring element of 21 *
21 pixels. Then the connected areas in the filtered logical image are searched.

Fig. 4.4 b: Logical image. Fig. 4.4 c: Filtered logical
image.

Fig. 4.4 c: Two connected
areas are found.

4.3 Edge Detection and Watershed Transform
The objects in the example image can be demarcated against the background by their ed-
ges. It is possible to detect the edges, select points within the areas surrounded by edges
and apply watershed transform to detect the areas between the edges.
However, there are also edges within the objects. Therefore, it is necessary to select seed
points for watershed transform in several areas. The biggest area found then is the back-
ground. The background must be filtered out and then the remaining areas can be mer-

35

ged.
The seeds for watershed transform are selected in the following way: The edge image is
inverted and a distance transform is carried out. The result of distance transform is thre-
sholded and the connected areas in the resulting logical image are searched. These areas
get the seeds of watershed transform.
The process from edge detection to distance transform is shown in Fig. 4.5.

Fig. 4.5 a: The edges are detected, the edge image is inverted and a distance transform is
applied to the inverted edge image.

Fig. 4.5 b: Original image. Fig. 4.5 c: Inverted edge
image.

Fig. 4.5 d: Distance trans-
form of inverted edge image

36

The result of distance transform is thresholded. The threshold is selected manually. Fig.
4.6 shows the result of thresholding the distance transform image and watershed trans-
form.

Fig. 4.6 a: The result of distance transform is thresholded and the connected areas are
used as markers for watershed transform.

Fig. 4.6 b: Gradient image. Fig. 4.6 c: Marker Image. Fig. 4.6 d: Result of water-
shed transform.

In the image resulting from watershed transform the biggest blob is the background. The-
re are edge pixels between the blobs. The background and edges are set to zero and the
image is transformed to a logical image by thresholding with the value one. This logical
image is filtered by a closing filter with a 3*3 square as structuring element. The blobs in
the resulting image are searched. This process is shown in Fig. 4.7.

37

Fig. 4.7 a: The background pixels and edges in the object image are set to zero. Then the
image is transformed to a logical image, filtered with a closing filter and transformed back
to an object image again. There are exactly two regions corresponding to the objects to be
detected.

38

Fig. 4.7 b: Object image after setting edges
and background to zero.

Fig. 4.7 c: Logical image.

Fig. 4.7 d: Logical image after closing. Fig. 4.7 e: Result of blob analysis.

The blobs of the result image cover the images to be detected. The bounding boxes are
determined and drawn into the original image (s. Fig. 4.8).
When working with edge detection and watershed transform, it is important to select suita-
ble seed points and to detect and filter out the background in the image resulting from wa-
tershed transform.
The distance transform can help to find seed points for watershed transform. However, it is
necessary to find a threshold for segmenting the result of distance transform. This requires
some knowledge concerning the smallest fragments where seed points have to reside.

39

Fig. 4.8 a: Bounding boxes are determined and drawn into the original color image.

Fig. 4.8 b: The original color image with superimposed bounding boxes.

40

References
[1] Stephen L. Campbell, Jean-Philippe Chancelier, Ramine Nikoukhah, Modeling and

Simulation in Scilab/Scicos, Springer, New York, 2006
[2] Harald Galda, Development of a segmentation method for dermoscopic images based

on color clustering, Kobe University, August 2003
[3] Rafael C. Gonzales, Richard E. Woods, Steven L. Eddins, Digital Image Processing

Using MATLAB, Pearson Prentice Hall, Upper Saddle River, New Jersey, 2004
[4] Linda G. Shapiro, George C. Stockman, Computer Vision, Prentice-Hall Inc., Upper

Saddle River, New Jersey, 2001

41

	1 Introduction
	2 Characteristic Properties of Images
	3 Basic Operations on Images
	3.1 Introduction
	3.2 Thresholding
	3.3 Blob Analysis
	3.4 Filtering
	3.4.1 Introduction
	3.4.2 Linear Filtering
	3.4.3 Median Filtering
	3.4.4 Morphological Filtering

	3.5 Watershed Transform and Distance Transform

	4 How to Detect Objects in Images
	4.1 Introduction
	4.2 Thresholding and Blob Analysis
	4.3 Edge Detection and Watershed Transform

	References

