
NISP Toolbox Manual

Version 0.1
July 2009

Michaël Baudin
Jean-Marc Martinez

Contents

Introduction 4

1 Overview 5

2 Installation 6

2.1 Architecture of the directories . 6

2.2 Configuration . 7

2.3 NISP Library . 8

3 The ”randvar” class 9

3.1 Introduction . 9

3.2 The distribution functions . 10

3.2.1 Derivation of the ”LogNormale” and ”LogUniforme” laws 11

3.2.2 Methods . 12

3.2.3 A sample session . 12

3.2.4 Variable transformations . 13

3.3 Analysis of the distributions . 15

3.3.1 Uniforme random number generation . 15

3.3.2 Normale law random number generation 16

3.4 Variable transformations . 16

3.4.1 Functions of a random variable . 16

3.4.2 Transformation from Uniform to other c.d.f. 17

3.4.3 Inverse of the standard Normale c.d.f. 18

3.4.4 Transformations from Uniforme law . 19

3.5 References and notes . 21

4 The ”setrandvar” class 22

5 The ”polychaos” class 23

CONTENTS 3

6 Thanks 24

Bibliography 25

Introduction

The goal of this toolbox is to provide a tool to manage uncertainties in simulated models. This

toolbox is based on the NISP library, where NISP stands for ”Non-Intrusive Spectral Projection”.

This work has been realized in the context of the OPUS project, ”Open-Source Platform for

Uncertainty treatments in Simulation”, funded by ANR, the french ”Agence Nationale pour la

Recherche”.

The NISP library is based on a set of 3 C++ classes so that it provides an object-oriented

framework for uncertainty analysis. The Scilab toolbox provides a pseudo-object oriented interface

to this library, so that the two approaches are consistent.

The NISP library provides three tools, which are detailed below.

• The ”randvar” class allows to manage random variables, specified by their distribution law

and their parameters. Once a random variable is created, one can generate random numbers

from the associated law.

• The ”setrandvar” class allows to manage a collection of random variables. This collection

is associated with a sampling method, such as MonteCarlo, Sobol, Quadrature, etc... It is

possible to build the sample and to get it back so that the experiments can be performed.

• The ”polychaos” class allows to manage a polynomial representation of the simulated model.

One such object must be associated with a set of experiments which have been performed.

This set may be read from a data file. The object is linked with a collection of random

variables. Then the coefficients of the polynomial can be computed by integration (quadra-

ture). Once done, the mean, the variance and the Sobol indices can be directly computed

from the coefficients.

Chapter 1

Overview

In this section, we present the main commands of the NISP toolbox as well as an example of use.

Chapter 2

Installation

In this section, we present the installation process for the toolbox. We present the steps which

are required to have a running version of the toolbox and presents the several checks which can

be performed before using the toolbox.

2.1 Architecture of the directories

We suppose that the archive has been unpacked in the ”tbxnisp” directory. The following is a

short list of the steps which are required to setup the toolbox.

1. build the toolbox : run the tbxnisp/builder.sce script to create the binaries of the library,

create the binaries for the gateway, generate the documentation

2. load the toolbox : run the tbxnisp/load.sce script to load all commands and setup the

documentation

3. setup the startup configuration file of your Scilab system so that the toolbox is known at

startup (see below for details),

4. run the unit tests : run the tbxnisp/runtests.sce script to perform all unit tests and check

that the toolbox is OK

5. run the demos : run the tbxnisp/rundemos.sce script to run all demonstration scripts and

get a quick interactive overview of its features

The easiest way to setup your Scilab system is to configure the startup configuration file so that

the toolboxes are known immediately at startup. The directory where this file is located is stored

in the Scilab variable SCIHOME. On my Linux system, the Scilab 5.1 startup file is located in

/home/myname/.Scilab/scilab-5.1/.scilab. On my Windows system, the Scilab 5.1 startup file is

located in C:/Users/myname/AppData/Roaming/Scilab/scilab-5.1/.scilab. This file is a regular

Scilab script which is automatically loaded at Scilab’s startup. If that file does not already exist,

Chapter 2. Installation 7

create it. Copy the following lines into the .scilab file and configure the path to the toolboxes,

stored in the SCILABTBX variable.

ilib(0);

SCILABTBX="/home/myname/mytoolboxes";

exec(SCILABTBX + filesep() + ’tbxnisp’+ filesep() + ’loader.sce’);

The figure 2.1 presents the messages which are generated when the builder of the toolbox is

launched.

-->exec D:\Baudin\ProjetScilab\toolboxes\tbxnisp\builder.sce

...

Fig. 2.1 : Launch of the builder

The figure 2.2 presents the messages which are generated when the loader of the toolbox is

launched.

-->exec D:\Baudin\ProjetScilab\toolboxes\tbxnisp\loader.sce

...

Fig. 2.2 : Launch of the loader

The figure 2.3 and 2.4 presents the messages which are generated when the unit tests script

of the toolbox is launched.

-->exec D:\Baudin\ProjetScilab\toolboxes\tbxnisp\runtests.sce

...

Fig. 2.3 : Launch of the unit tests script (part 1/2)

2.2 Configuration

The directories which are provided in the toolbox are presented in figure 2.5.

This is an overview of the content of these directories :

• tbxnisp/demos : demonstration scripts

• tbxnisp/doc : the documentation

• tbxnisp/doc/usermanual : the LATEXsources of this manual

Chapter 2. Installation 8

...

Fig. 2.4 : Launch of the unit tests script (part 2/2)

Fig. 2.5 : Architecture of the toolbox

• tbxnisp/etc : startup and shutdow scripts for the toolbox

• tbxnisp/help/en US/scilab en US help : html pages of the help

• tbxnisp/jar : java archive for the help

• tbxnisp/macros : Scilab macros files *.sci

• tbxnisp/tests : tests

• tbxnisp/tests/nonreg tests : tests after some bug has been identified

• tbxnisp/tests/unit tests : unit tests

2.3 NISP Library

The current version is based on the NISP Library v2.1. As presented in figure 2.5, the NISP

library must be installed in the directory src/nisp.

Chapter 3

The ”randvar” class

In this section, we present the ”randvar” class, which allows to define a random variable, and to

generate random numbers from a given distribution function.

3.1 Introduction

In this section, we make a brief introduction to the statistical definitions of distribution function,

expectation and variance. This section does not aim at giving a complete overview of statistics,

but aims at setting the notations used in this document.

The density function and the cumulative distribution function of a continuous variable are

defined as following.

Definition 3.1.1 (Density function) Let X be a continuous random variable. A density function

(or distribution function) for X is a function f : R→ R which satisfies

P (a ≤ x ≤ b) =

∫ b

a

f(x)dx, (3.1)

for all a, b ∈ R.

Definition 3.1.2 (Cumulative distribution function) Let X be a continuous random variable.

The cumulative distribution function F of X is defined by

F (x) = P (X ≤ x), (3.2)

for all x ∈ R.

The relationship between the density function and the cumulative distribution function is

given by the following proposition, which is not prooved in this document.

Chapter 3. The ”randvar” class 10

Name f(x) Expectation Variance

”Normale” 1
2σ
√

2π
exp

(
− (x−µ)2

2σ2

)
µ σ2

”Uniforme”

{
1
b−a , if x ∈ [a, b[
0 if x /∈ [a, b[

b+a
2

(b−a)2
12

”Exponentielle”

{
λ exp (−λx) , if x > 0
0 if x ≤ 0

1
λ

1
λ2

”LogNormale”

{
1

σx
√

2π
exp

(
− 1

2
(ln(x)−µ)2

2σ2

)
, if x > 0

0 if x ≤ 0
µ′ = exp

(
µ+ 1

2σ
2
) (

exp(σ2)− 1
)
exp

(
2µ+ σ2

)
”LogUniforme”

{
1
x

1
ln(b)−ln(a) , if x ∈ [a, b[

0 if x /∈ [a, b[
b−a

ln(b)−ln(a)
1
2

b2−a2

ln(b)−ln(a) − E(x)

Fig. 3.1 : Distributions functions of the ”randvar” class

Proposition 3.1.3 Let X be a continuous real-valued random variable with density function

f(x). Then the function F defined by

F (x) =

∫ x

−∞
f(t)dt, (3.3)

is the cumulative distribution function of X. Furthermore, we have

F ′(x) = f(x). (3.4)

Definition 3.1.4 (Variance) Let X be a real-valued random variable with density function f(x)

and expectation mu = E(X). The variance σ2 = V (X) is defined by

σ2 = V (X) = E((X − µ)2). (3.5)

In practice, it may be convenient to compute the variance with the equivalent formula

V (X) =

∫
x∈R

(x− µ)2f(x)dx. (3.6)

One can proove that the variance can be computed from the formula

V (X) = E(X2)− µ2. (3.7)

3.2 The distribution functions

The table 3.1 gives the list of distribution functions which are available with the ”randvar” class

[2].

For the ”LogNormale” law, the parameters given when creating such a variable are µ′, the

expected value of the LogNormale law and σ, the variance of the underlying Normale law. The

mean µ associated with the Normal law is computed from the equation

µ = ln(µ′)− σ2. (3.8)

Chapter 3. The ”randvar” class 11

Name Parameter #1 Parameter #1 Conditions

”Normale” µ = 0. σ = 1. σ > 0

”Uniforme” a = 0. b = 1. a < b

”Exponentielle” λ = 1. - -

”LogNormale” µ′ = 0.1 σ = 1.0 µ′, σ > 0

”LogUniforme” a = 0.1 b = 1.0 a, b > 0, a < b

Fig. 3.2 : Default parameters for distributions functions

One random variable can be specified by giving explicitely its parameters or by using default

parameters. The parameters for all distribution function are presented in figure 3.2, which also

presents the conditions which must be satisfied by the parameters.

3.2.1 Derivation of the ”LogNormale” and ”LogUniforme” laws

The LogNormale distribution function is presented in many textbooks. Since the LogUniforme

law, which is not so common, is based on the same principles, we choosed to present the derivation

of this type of laws.

Let X be a continuous random variable with cumulative distribution function FX and density

function fX . Let Y be the random variable computed from Y = exp(X). We are going to compute

the cumulative distribution function FY and the density function fY of the variable Y and define

it as the Log-f law.

The cumulative distribution function FY is defined by

FY (x) = P (Y ≤ x) (3.9)

= P (exp(X) ≤ x) (3.10)

= P (X ≤ ln(x)) (3.11)

= FX(ln(x)). (3.12)

Therefore, the cumulative distribution function FY is

FY (x) =

∫ ln(x)

−∞
fX(t)dt. (3.13)

We now make the change of variable s = exp(t). This implies t = ln(s) and therefore dt = 1
s
ds.

We have

FY (x) =

∫ x

0

1

s
fX(ln(s))ds, (3.14)

which implies that the distribution function fY satisfies

fY (x) =
1

x
fX(ln(x)). (3.15)

Chapter 3. The ”randvar” class 12

We can now apply equation 3.15 in order to compute the LogNormale and LogUniforme

distribution functions.

The Normale distribution function is

fX(x) =
1

2σ
√

2π
exp

(
−(x− µ)2

2σ2

)
. (3.16)

We apply 3.15 and we get the LogNormale distribution function

fY (x) =
1

2xσ
√

2π
exp

(
−(ln(x)− µ)2

2σ2

)
. (3.17)

The Uniforme distribution function is

fX(x) =
1

b′ − a′
, x ∈ [a′, b′], (3.18)

for a′, b′ ∈ R. We apply 3.15 and we get the LogNormale distribution function

fY (x) =
1

x

1

b′ − a′
, ln(x) ∈ [a′, b′]. (3.19)

To get the final form of the LogNormale distribution function, we define the parameters

a = exp(a′), b = exp(b′), (3.20)

where a, b > 0. These equalities can be reversed so that

a′ = ln(a), b′ = ln(b). (3.21)

If we plug the previous equality into 3.19, we get the LogUniforme distribution function

fY (x) =
1

x

1

ln(b)− ln(a)
, x ∈ [a, b], (3.22)

where a, b > 0.

3.2.2 Methods

In this section, we give an overview of the methods which are available in the ”randvar” class.

The figure 3.3 presents the methods available in the ”randvar” class. The detailed analysis of

each method is presented in figure 3.4.

3.2.3 A sample session

We present a sample Scilab session, where the ”randvar” class is used to generate samples from

the Normale law.

In the following Scilab session, we create a Normale random variable and compute samples

from this law. The nisp initseed function is used to initialize the seed for the uniform random

Chapter 3. The ”randvar” class 13

rvlist = randvar tokens ()

nbrv = randvar size ()

rv = randvar new (type [, options])

value = randvar getvalue (rv [, options])

randvar destroy (rv)

randvar getlog (rv)

Fig. 3.3 : Outline of the methods of the ”randvar” class

variable generator. Then we use the randvar new function to create a new random variable from

the Normale law with mean 1. and standard deviation 0.5. The main loop allows to compute

1000 samples from this law, based on calls to the randvar getvalue function. Once the samples

are computed, we use the Scilab function mean to check that the mean is close to 1 (which is the

expected value of the Normale law, when the number of samples is infinite). Finally, we use the

randvar destroy function to destroy our random variable.

1 n i s p i n i t s e e d (0) ;
2 rv = randvar new (”Normale ” , 1 . 0 , 0 . 5) ;
3 nbshots = 1000 ;
4 va lue s = zeros (nbshots) ;
5 for i =1: nbshots
6 va lue s (i) = randvar getva lue (rv) ;
7 end
8 computed = mean (va lue s) ; // Exact va lue : 1 .0
9 computed = variance (va lue s) ; // Exact va lue 0.5ˆ2

10 randvar dest roy (rv) ;

3.2.4 Variable transformations

In this section, we give some additionnal explanations for the function randvar getvalue (rv , rv2

, value2). In short, this method allows to transform a random variable sample from one law to

another.

More specifically, this method allows to compute a new sample from the law associated with

the current random variable rv. This sample is based on a transformation of the value value2,

which is expected to be computed from the law associated to rv2.

In the following session, we transform a uniform random variable sample into a LogUniform

variable sample. We begin to create a random variable rv from a LogUniform law and parameters

a = 10, b = 20. Then we create a second random variable rv2 from a Uniforme law and parameters

a = 2, b = 3. The main loop is based on the transformation of a sample computed from rv2 into

a sample from rv. The mean allows to check that the transformed samples have an mean value

which corresponds to the random variable rv.

Chapter 3. The ”randvar” class 14

rvlist = randvar tokens ()

returns the current list of random variables

nbrv = randvar size ()

returns the number of random variables currently in use

rv = randvar new (”Normale”)

returns a Normale random variable with default parameters

rv = randvar new (”Normale” , mu , sigma)

returns a Normale random variable with parameters mu and sigma

rv = randvar new (”Uniforme”)

returns a Uniforme random variable with default parameters

rv = randvar new (”Uniforme” , a , b)

returns a Uniforme random variable with parameters a and b

rv = randvar new (”Exponentielle”)

returns a Exponentielle random variable with default parameters

rv = randvar new (”Exponentielle” , lambda)

returns a Exponentielle random variable with parameter lambda

rv = randvar new (”LogNormale”)

returns a LogNormale random variable with default parameters

rv = randvar new (”LogNormale” , mu , sigma)

returns a LogNormale random variable with parameters mu and sigma

rv = randvar new (”LogUniforme”)

returns a LogUniforme random variable with default parameters

rv = randvar new (”LogUniforme” , a , b)

returns a LogUniforme random variable with parameters a and b

value = randvar getvalue (rv)

returns a random value from the distribution function of the current random variable

value = randvar getvalue (rv , rv2 , value2)

returns a random value from the distribution function of the random variable rv

by transformation of value2 from the distribution function of random variable rv2

randvar destroy (rv)

destroys the current random variable

randvar getlog (rv)

prints a log for the current random variable

Fig. 3.4 : Methods of the ”randvar” class

Chapter 3. The ”randvar” class 15

1 n i s p i n i t s e e d (0) ;
2 a = 10 . 0 ;
3 b = 20 . 0 ;
4 rv = randvar new (”LogUniforme ” , a , b) ;
5 rv2 = randvar new (”Uniforme ” , 2 , 3) ;
6 nbshots = 1000 ;
7 va lue s = zeros (nbshots) ;
8 for i =1: nbshots
9 value2 = randvar getva lue (rv2) ;

10 va lue s (i) = randvar getva lue (rv , rv2 , value2) ;
11 end
12 computed = mean (va lue s) ;
13 mu = (b−a)/ (log (b)−log (a))
14 expected = mu; // ”computed ” shou ld be c l o s e to ”expec ted ”
15 randvar dest roy (rv) ;
16 randvar dest roy (rv2) ;

The transformation depends on the mother random variable rv1 and on the daughter ran-

dom variable rv. Specific transformations are provided for all many combinations of the two

distribution functions. These transformations will be analysed in the next sections.

3.3 Analysis of the distributions

In this section, we analyse the algorithms which are used in the ”randvar” class. For each distri-

bution, we present the random number generator principles. We also present the transformations

which allow to transform a given outcome from one distribution to another distribution.

3.3.1 Uniforme random number generation

In this section, we present the generation of uniform random numbers.

The Uniforme law is associated with the parameters a, b ∈ R with a < b. It produces real

values uniform in the interval [a, b].

To compute the uniform random number X in the interval [a, b], a uniform random number

in the interval [0, 1] is generated and then scaled with

X = a+ (b− a)X. (3.23)

Let us now analyse how the uniform random number X ∈ [0, 1] is computed. The uniform

random generator is based on the C function rand, which returns an integer n in the interval

[0, RAND MAX[. The value of the RAND MAX variable is defined in the file stdlib.h and is

compiler-dependent. For example, with the Visual Studio C++ 2008 compiler, the value is

RAND MAX = 215 − 1 = 32767. (3.24)

Chapter 3. The ”randvar” class 16

Source Target

Normale

Normale

Uniforme

Exponentielle

LogNormale

LogUniforme

Source Target

LogNormale

Normale

Uniforme

Exponentielle

LogNormale

LogUniforme

Source Target

Uniforme

Uniforme

Normale

Exponentielle

LogNormale

LogUniforme

Source Target

LogUniforme

Uniforme

Normale

Exponentielle

LogNormale

LogUniforme

Source Target

Exponentielle

Exponentielle

Fig. 3.5 : Variable transformations available in the ”randvar” class

A uniform value X in the range [0, 1[is computed from

X =
n

N
, (3.25)

where N = RAND MAX and n ∈ [0, RAND MAX[.

3.3.2 Normale law random number generation

3.4 Variable transformations

In this section, we present the transformation of uniform random variables into other types of vari-

ables. We begin the analysis by a presentation of the theory required to perform transformations.

Then we present the transformations which are provided by the library.

The transformations which are available in the ”randvar” class are presented in figure 3.5.

3.4.1 Functions of a random variable

In this section, we present a theorem which allows to compute the c.d.f. of a transformed variable.

Chapter 3. The ”randvar” class 17

Proposition 3.4.1 Let X be a continuous random variable associated with the cumulative density

function FX . Assume that φ : R→ R is a strictly increasing function on the range of X. Let us

define the random variable Y by the equation

Y = φ(X). (3.26)

Therefore, the cumulative density function FY of the variable Y satisfies

FY (y) = FX(φ−1(y)). (3.27)

If φ is strictly decreasing on the range of X, therefore the cumulative density function FY satisfies

FY (y) = 1− FX(φ−1(y)). (3.28)

Proof Assume that φ is an increasing function. By definition of the cumulative density function

FY satisfies

FY (y) = P (Y ≤ y) (3.29)

= P (φ(X) ≤ y) (3.30)

= P (X ≤ φ−1(y)) (3.31)

= FX(φ−1(y)), (3.32)

which concludes the first part of the proof. Assume now that φ is a decreasing function. By

definition of the cumulative density function FY satisfies

FY (y) = P (Y ≤ y) (3.33)

= P (φ(X) ≤ y) (3.34)

= P (X ≥ φ−1(y)) (3.35)

= 1− P (X < φ−1(y)) (3.36)

= 1− FX(φ−1(y)), (3.37)

which concludes the proof.

3.4.2 Transformation from Uniform to other c.d.f.

The previous theorem leads to an important application, which allows to transform any uniform

random variable into a target variable.

Proposition 3.4.2 Assume that X is a uniform variable in the interval [0, 1]. Assume that

FY is a given cumulative distribution function. It implies that FY is strictly increasing, so that

the variable Y = φ(X) = F−1
Y (X) is defined. Therefore, the variable Y is associated with the

distribution function FY .

Chapter 3. The ”randvar” class 18

Proof Let us denote by GY the distribution function of the variable Y . Recall that the uniform

cumulative distribution function is FX(x) = x. By proposition 3.4.1, we have

GY (y) = FX(φ−1(y)) (3.38)

= φ−1(y) (3.39)

= FY (y), (3.40)

which concludes the proof.

3.4.3 Inverse of the standard Normale c.d.f.

In this section, we present the standard Normale cumulative distribution function and analyse

how the inverse of this function is computed in the library. Indeed, the inverse of the standard

Normale c.d.f. is required in many variable transformations.

Consider the Normale cumulative distribution function with parameters µ and σ > 0, denoted

by Fµ,σ and defined by

Fµ,σ(x) =

∫
−∞,x

1

σ
√

2π
exp

(
−(t− µ)2

2σ2

)
dt. (3.41)

The standard Normale cumulative distribution function is denoted by F0,1(x) and is associated

with µ = 0 and σ = 1.

The standard Normale cumulative distribution function is computed from the error function

erf with

F0,1(x) =
1

2
+

1

2
erf

(
x√
2

)
. (3.42)

The erf function is computed by a polynomial expansion which guarantees a minimum relative

relative error on the value of the function.

The inverse function F−1
0,1 is required in variable transformations, in particular to transform a

uniform random variable into a standard Normale variable. Indeed, assume that X is a uniform

variable in the interval [0, 1]. Therefore, the variable

Y = F−1
0,1 (X) (3.43)

is standard Normale variable.

We now present the Newton method which allow to compute the inversion of the function

F−1
0,1 . Given the variable Y ∈ [0, 1], we want to find X ∈ R as the solution of the equation

F0,1(X)− Y = 0. (3.44)

Assume that X0 is an initial guess for the solution and consider the sequence

Xn+1 = Xn + ∆X, (3.45)

Chapter 3. The ”randvar” class 19

where n is a positive integer and ∆X ∈ R is unknown. Newton’s method proceeds by considering

a linear approximation of the function F0,1 is the neighbourhood of Xn. We have

F0,1(X
n+1) ≈ F0,1(X

n) + ∆XF ′0,1(X
n). (3.46)

The method computes ∆X so that the following equation is satisfied

F0,1(X
n) + ∆XF ′0,1(X

n) = Y, (3.47)

which leads to

∆X =
Y − F0,1(X

n)

F ′0,1(X
n)

. (3.48)

Once ∆X is determined the iterate Xn+1 is computed from

Xn+1 = Xn + ∆X. (3.49)

The derivative of the function F0,1 is

F ′0,1(X) = f0,1(X) =
1

σ
√

2π
exp

(
−X

2

2

)
, (3.50)

where f0,1 is the density function of the Normale law.

3.4.4 Transformations from Uniforme law

Assume that X is a uniform random variable in the interval [a, b]. The first step of the trans-

formation is a scaling, which allows to remove the dependency from the parameters a, b of the

original random variable X. To accomplish this, we compute a random number X uniform in the

interval [0, 1] by

X =
X − a
b− a

. (3.51)

Given a target distribution function, the goal is to compute a variable Y defined by

Y = g(X), (3.52)

where g is a function which is to be defined. The function g depends on the target distribution

function and we will present one function g for each target distribution.

From Uniforme Into Uniforme Assume that the target distribution function is the LogUni-

forme law, with parameters a′, b′ > 0 and a < b. The variable

Y = a′ + (b′ − a′)X (3.53)

is associated with a Uniforme distribution function with parameters a′, b′.

Chapter 3. The ”randvar” class 20

From Uniforme Into LogUniforme Assume that the target distribution function is the Lo-

gUniforme law, with parameters a′, b′ > 0 and a < b. The variable

X̃ = ln(a′) + (ln(b′)− ln(a′))X (3.54)

is associated with a uniform distribution function in the interval [ln(a′), ln(b′)]. The variable

Y = exp(X̃) (3.55)

= exp(ln(a′) + (ln(b′)− ln(a′))X) (3.56)

is associated with a LogUniforme distribution function with parameters a′, b′.

From Uniforme Into Normale Assume that the target distribution function is the Normale

law, with parameters µ and σ > 0.

The variable

X̃ = F−1
0,1

(
X
)

(3.57)

is associated with a standard Normale cumulative distribution function. The inversion of the

function F−1
0,1 is based on the algorithm presented in section 3.4.3.

It can be prooved that the variable

Y = µ+ σX̃ (3.58)

= µ+ σF−1
0,1

(
X
)

(3.59)

is associated with a Normale c.d.f. with parameters µ and σ.

Indeed, consider the function φ defined by

φ(X̃) = µ+ σX̃. (3.60)

The inverse function φ−1 satisfies the equality

φ−1(y) =
y − µ
σ

. (3.61)

By hypothesis, we have σ > 0 which implies that the function φ is increasing. The proposition

3.4.1 states that Y is associated with the c.d.f. defined by

FY (y) = FX̃(φ−1(y)), (3.62)

where FX̃ is the standard Normale c.d.f.. We have

FY (y) =

∫ y−µ
σ

−∞

1√
2π

exp

(
−s

2

2

)
ds. (3.63)

Chapter 3. The ”randvar” class 21

Let us consider the change of variable

t = σs+ µ. (3.64)

The previous equality can be transformed into

s =
t− µ
σ

, (3.65)

which leads to ds = 1
σ
dt. If we plug this equality into 3.63, we get

FY (y) =

∫ y

−∞

1

σ
√

2π
exp

(
−1

2

(
t− µ
σ

)2
)
dt. (3.66)

The previous equality is the definition of the Normale c.d.f. with parameters µ and σ.

3.5 References and notes

The definitions and notations in section 3.1 are inspired from [1], chapter 2, section 2.2 ”Continuous

Density Functions”. The proposition 3.4.1 and its proof are given in [1], chapter 5, section 5.2,

”Functions of a Random Variable”.

Chapter 4

The ”setrandvar” class

Chapter 5

The ”polychaos” class

Chapter 6

Thanks

Many thanks to Allan Cornet and Bernard Hugueney, who helped me many times in the creation

of this toolbox.

Bibliography

[1] M. Grinstead, Charles and Laurie Snell, J. Introduction to probabilities, Second Edition.

American Mathematical Society, 1997.

[2] Didier Pelat. Bases et méthodes pour le traitement des données (Bruits et Signaux). Master

M2 Recherche : Astronomie?astrophysique, 2006.

Index

cumulative distribution function, 8

density function, 8

distribution function, 8

variance, 9

	Introduction
	Overview
	Installation
	Architecture of the directories
	Configuration
	NISP Library

	The "randvar" class
	Introduction
	The distribution functions
	Derivation of the "LogNormale" and "LogUniforme" laws
	Methods
	A sample session
	Variable transformations

	Analysis of the distributions
	Uniforme random number generation
	Normale law random number generation

	Variable transformations
	Functions of a random variable
	Transformation from Uniform to other c.d.f.
	Inverse of the standard Normale c.d.f.
	Transformations from Uniforme law

	References and notes

	The "setrandvar" class
	The "polychaos" class
	Thanks
	Bibliography

