
NISP Toolbox Manual

Version 0.1
July 2009

Michaël Baudin
Jean-Marc Martinez



Contents

Introduction 4

1 Installation 10

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Installing the toolbox from ATOMS . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Installing the toolbox from the sources . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Configuration functions 19

3 The randvar class 20

3.1 The distribution functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.2 The Oriented-Object system . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 A sample session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.2 Variable transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Uniform random number generation . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 The setrandvar class 29

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 A LHS design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.2 Other types of DOE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 The polychaos class 39

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.1 Product of two random variables . . . . . . . . . . . . . . . . . . . . . . . 40



CONTENTS 3

5.2.2 The Ishigami test case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Thanks 50

Bibliography 51



Introduction

The goal of this toolbox is to provide a tool to manage uncertainties in simulated models. This

toolbox is based on the NISP library, where NISP stands for ”Non-Intrusive Spectral Projection”.

This work has been realized in the context of the OPUS project,

http://opus-project.fr

”Open-Source Platform for Uncertainty treatments in Simulation”, funded by ANR, the french

”Agence Nationale pour la Recherche”:

http://www.agence-nationale-recherche.fr

The toolbox is released under the Lesser General Public Licence (LGPL), as all components of

the OPUS project.

The NISP library is based on a set of 3 C++ classes so that it provides an object-oriented

framework for uncertainty analysis. The Scilab toolbox provides a pseudo-object oriented interface

to this library, so that the two approaches are consistent. The NISP library is release under the

LGPL licence.

The NISP library provides three tools, which are detailed below.

• The ”randvar” class allows to manage random variables, specified by their distribution law

and their parameters. Once a random variable is created, one can generate random numbers

from the associated law.

• The ”setrandvar” class allows to manage a collection of random variables. This collection

is associated with a sampling method, such as MonteCarlo, Sobol, Quadrature, etc... It is

possible to build the sample and to get it back so that the experiments can be performed.

• The ”polychaos” class allows to manage a polynomial representation of the simulated model.

One such object must be associated with a set of experiments which have been performed.

This set may be read from a data file. The object is linked with a collection of random

variables. Then the coefficients of the polynomial can be computed by integration (quadra-

ture). Once done, the mean, the variance and the Sobol indices can be directly computed

from the coefficients.

http://opus-project.fr
http://www.agence-nationale-recherche.fr


CONTENTS 5

The figure 1 presents the NISP methodology. The process requires that the user has a numer-

ical solver, which has the form Y = f(X), where X are input uncertain parameters and Y are

output random variables. The method is based on the following steps.

• We begin by defining normalized random variables ξ. For example, we may use a random

variables in the interval [0, 1] or a Normal random variable with mean 0 and variance 1. This

choice allows to define the basis for the polynomial chaos, denoted by {Ψk}k≥0. Depending

on the type of random variable, the polynomials {Ψk}k≥0 are based on Hermite, Legendre

or Laguerre polynomials.

• We can now define a Design Of Experiments (DOE) and, with random variable transforma-

tions rules, we get the physical uncertain parameters X. Several types of DOE are available:

Monte-Carlo, Latin Hypercube Sampling, etc... If N experiments are required, the DOE

define the collection of normalized random variables {ξi}i=1,N . Transformation rules allows

to compute the uncertain parameters {Xi}i=1,N , which are the input of the numerical solver

f .

• We can now perform the simulations, that is compute the collection of outputs {Yi}i=1,N

where Yi = f(Xi).

• The variables Y are then projected on the polynomial basis and the coefficients yk are

computed by integration or regression.

Random
Variable
     ξ

Uncertain
Parameter
      X

Numerical
Solver
   Y=f(X)

Spectral
Projection
Y = Σ y ψ(ξ)

Fig. 1 : The NISP methodology

The NISP toolbox is available under the following operating systems:

• Linux 32 bits,

• Linux 64 bits,

• Windows 32 bits,

• Mac OS X.

The following list presents the features provided by the NISP toolbox.

• Manage various types of random variables:



CONTENTS 6

– uniform,

– normal,

– exponential,

– log-normal.

• Generate random numbers from a given random variable,

• Transform an outcome from a given random variable into another,

• Manage various Design of Experiments for sets of random variables,

– Monte-Carlo,

– Sobol,

– Latin Hypercube Sampling,

– various samplings based on Smolyak designs.

• Manage polynomial chaos expansion and get specific outputs, including

– mean,

– variance,

– quantile,

– correlation,

– etc...

• Generate the C source code which computes the output of the polynomial chaos expansion.

This User’s Manual completes the online help provided with the toolbox, but does not replace

it. The goal of this document is to provide both a global overview of the toolbox and to give some

details about its implementation. The detailed calling sequence of each function is provided by

the online help and will not be reproduced in this document. The inline help is presented in the

figure 2.

For example, in order to access to the help associated with the randvar class, we type the

following statements in the Scilab console.

help randvar

The previous statements opens the Help Browser and displays the helps page presented in figure

Several demonstration scripts are provided with the toolbox and are presented in the figure 4.

These demonstrations are available under the ”?” question mark in the menu of the Scilab console.

Finally, the unit tests provided with the toolbox cover all the features of the toolbox. When

we want to know how to use a particular feature and do not find the information, we can search

in the unit tests which often provide the answer.



CONTENTS 7

Fig. 2 : The NISP inline help.



CONTENTS 8

Fig. 3 : The online help of the randvar function.



CONTENTS 9

Fig. 4 : Demonstrations provided with the NISP toolbox.



Chapter 1

Installation

In this section, we present the installation process for the toolbox. We present the steps which

are required to have a running version of the toolbox and presents the several checks which can

be performed before using the toolbox.

1.1 Introduction

There are two possible ways of installing the NISP toolbox in Scilab:

• use the ATOMS system and get a binary version of the toolbox,

• build the toolbox from the sources.

The next two sections present these two ways of using the toolbox.

Before getting into the installation process, let us present some details of the the internal

components of the toolbox. The following list is an overview of the content of the directories:

• tbxnisp/demos : demonstration scripts

• tbxnisp/doc : the documentation

• tbxnisp/doc/usermanual : the LATEXsources of this manual

• tbxnisp/etc : startup and shutdow scripts for the toolbox

• tbxnisp/help/en US/scilab en US help : html pages of the help

• tbxnisp/jar : java archive for the help

• tbxnisp/macros : Scilab macros files *.sci

• tbxnisp/sci gateway : the sources of the gateway

• tbxnisp/NISP library : the sources of the NISP library



Chapter 1. Installation 11

• tbxnisp/tests : tests

• tbxnisp/tests/nonreg tests : tests after some bug has been identified

• tbxnisp/tests/unit tests : unit tests

The current version is based on the NISP Library v2.1.

1.2 Installing the toolbox from ATOMS

The ATOMS component is the Scilab tool which allows to search, download, install and load

toolboxes. ATOMS comes with Scilab v5.2. The Scilab-NISP toolbox has been packaged and is

provided mainly by the ATOMS component. The toolbox is provided in binary form, depending

on the user’s operating system. The Scilab-NISP toolbox is available for the following platforms:

• Windows 32 bits,

• Linux 32 bits, 64 bits,

• Mac OS X.

The ATOMS component allows to use a toolbox based on compiled source code, without having

a compiler installed in the system.

Installing the Scilab-NISP toolbox from ATOMS requires the following steps:

• atomsList(): prints the list of current toolboxes,

• atomsShow(): prints informations about a toolbox,

• atomsInstall(): installs a toolbox on the system,

• atomsLoad(): loads a toolbox.

Once installed and loaded, the toolbox will be available on the system from session to session, so

that there is no need to load the toolbox again: it will be available right from the start of the

session.

In the following Scilab session, we use the atomsList() function to print the list of all ATOMS

toolboxes.

--> atomsList ()

ANN_Toolbox - ANN Toolbox

dde_toolbox - Dynamic Data Exchange client for Scilab

module_lycee - Scilab pour les lycées

NISP - Non Intrusive Spectral Projection

plotlib - "Matlab -like" Plotting library for Scilab



Chapter 1. Installation 12

scipad - Scipad 7.20

sndfile_toolbox - Read & write sound files

stixbox - Statistics toolbox for Scilab 5.2

In the following Scilab session, we use the atomsShow() function to print the details about

the NISP toolbox.

-->atomsShow ("NISP")

Package : NISP

Title : NISP

Summary : Non Intrusive Spectral Projection

Version : 2.1

Depend : Category(ies) : Optimization

Maintainer(s) : Pierre Marechal <pierre.marechal@scilab.org >

Michael Baudin <michael.baudin@scilab.org >

Entity : CEA / DIGITEO

WebSite : License : LGPL

Scilab Version : >= 5.2.0

Status : Not installed

Description : This toolbox allows to approximate a given model ,

which is associated with input random variables.

This toolbox has been created in the context of the

OPUS project :

http ://opus -project.fr/

within the workpackage 2.1.1:

"Construction de méta -modèles"

This project has received funding by Agence Nationale

de la recherche :

http :// www.agence -nationale -recherche.fr/

See in the help provided in the help/en_US directory

of the toolbox for more information about its use.

Use cases are presented in the demos directory.

In the following Scilab session, we use the atomsInstall() function to download and install

the binary version of the toolbox corresponding to the current operating system. The %t option

allows to install the toolbox for all the users of this computer.

-->atomsInstall ( "NISP" , %t )

ans =

!NISP 2.1 allusers D:\ Programs\SC3623 ~1\ contrib\NISP \2.1 I !

We finally load the toolbox with the atomsLoad() function.

-->atomsLoad ("NISP")



Chapter 1. Installation 13

Start NISP Toolbox

Load gateways

Load help

Load demos

ans =

!NISP 2.1 D:\ Programs\SC3623 ~1\ contrib\NISP \2.1 !

Now that the toolbox is loaded, it will be automatically loaded at the next Scilab session.

1.3 Installing the toolbox from the sources

In this section, we present the steps which are required in order to install the toolbox from the

sources.

In order to install the toolbox from the sources, a compiler is required to be installed on the

machine. This toolbox can be used with Scilab v5.1 and Scilab v5.2. We suppose that the archive

has been unpacked in the ”tbxnisp” directory. The following is a short list of the steps which are

required to setup the toolbox.

1. build the toolbox : run the tbxnisp/builder.sce script to create the binaries of the library,

create the binaries for the gateway, generate the documentation

2. load the toolbox : run the tbxnisp/load.sce script to load all commands and setup the

documentation

3. setup the startup configuration file of your Scilab system so that the toolbox is known at

startup (see below for details),

4. run the unit tests : run the tbxnisp/runtests.sce script to perform all unit tests and check

that the toolbox is OK

5. run the demos : run the tbxnisp/rundemos.sce script to run all demonstration scripts and

get a quick interactive overview of its features

The following script presents the messages which are generated when the builder of the toolbox

is launched. The builder script performs the following steps:

• compile the NISP C++ library,

• compile the C++ gateway library (the glue between the library and Scilab),

• generate the Java help files from the .xml files,

• generate the loader script.



Chapter 1. Installation 14

-->exec C:\ tbxnisp\builder.sce;

Building sources ...

Generate a loader file

Generate a Makefile

Running the Makefile

Compilation of utils.cpp

Compilation of blas1_d.cpp

Compilation of dcdflib.cpp

Compilation of faure.cpp

Compilation of halton.cpp

Compilation of linpack_d.cpp

Compilation of niederreiter.cpp

Compilation of reversehalton.cpp

Compilation of sobol.cpp

Building shared library (be patient)

Generate a cleaner file

Generate a loader file

Generate a Makefile

Running the Makefile

Compilation of nisp_gc.cpp

Compilation of nisp_gva.cpp

Compilation of nisp_ind.cpp

Compilation of nisp_index.cpp

Compilation of nisp_inv.cpp

Compilation of nisp_math.cpp

Compilation of nisp_msg.cpp

Compilation of nisp_conf.cpp

Compilation of nisp_ort.cpp

Compilation of nisp_pc.cpp

Compilation of nisp_polyrule.cpp

Compilation of nisp_qua.cpp

Compilation of nisp_random.cpp

Compilation of nisp_smo.cpp

Compilation of nisp_util.cpp

Compilation of nisp_va.cpp

Compilation of nisp_smolyak.cpp

Building shared library (be patient)

Generate a cleaner file

Building gateway ...

Generate a gateway file

Generate a loader file

Generate a Makefile: Makelib



Chapter 1. Installation 15

Running the makefile

Compilation of nisp_gettoken.cpp

Compilation of nisp_gwsupport.cpp

Compilation of nisp_PolynomialChaos_map.cpp

Compilation of nisp_RandomVariable_map.cpp

Compilation of nisp_SetRandomVariable_map.cpp

Compilation of sci_nisp_startup.cpp

Compilation of sci_nisp_shutdown.cpp

Compilation of sci_nisp_verboselevelset.cpp

Compilation of sci_nisp_verboselevelget.cpp

Compilation of sci_nisp_initseed.cpp

Compilation of sci_randvar_new.cpp

Compilation of sci_randvar_destroy.cpp

Compilation of sci_randvar_size.cpp

Compilation of sci_randvar_tokens.cpp

Compilation of sci_randvar_getlog.cpp

Compilation of sci_randvar_getvalue.cpp

Compilation of sci_setrandvar_new.cpp

Compilation of sci_setrandvar_tokens.cpp

Compilation of sci_setrandvar_size.cpp

Compilation of sci_setrandvar_destroy.cpp

Compilation of sci_setrandvar_freememory.cpp

Compilation of sci_setrandvar_addrandvar.cpp

Compilation of sci_setrandvar_getlog.cpp

Compilation of sci_setrandvar_getdimension.cpp

Compilation of sci_setrandvar_getsize.cpp

Compilation of sci_setrandvar_getsample.cpp

Compilation of sci_setrandvar_setsample.cpp

Compilation of sci_setrandvar_save.cpp

Compilation of sci_setrandvar_buildsample.cpp

Compilation of sci_polychaos_new.cpp

Compilation of sci_polychaos_destroy.cpp

Compilation of sci_polychaos_tokens.cpp

Compilation of sci_polychaos_size.cpp

Compilation of sci_polychaos_setdegree.cpp

Compilation of sci_polychaos_getdegree.cpp

Compilation of sci_polychaos_freememory.cpp

Compilation of sci_polychaos_getdimoutput.cpp

Compilation of sci_polychaos_setdimoutput.cpp

Compilation of sci_polychaos_getsizetarget.cpp

Compilation of sci_polychaos_setsizetarget.cpp

Compilation of sci_polychaos_freememtarget.cpp



Chapter 1. Installation 16

Compilation of sci_polychaos_settarget.cpp

Compilation of sci_polychaos_gettarget.cpp

Compilation of sci_polychaos_getdiminput.cpp

Compilation of sci_polychaos_getdimexp.cpp

Compilation of sci_polychaos_getlog.cpp

Compilation of sci_polychaos_computeexp.cpp

Compilation of sci_polychaos_getmean.cpp

Compilation of sci_polychaos_getvariance.cpp

Compilation of sci_polychaos_getcovariance.cpp

Compilation of sci_polychaos_getcorrelation.cpp

Compilation of sci_polychaos_getindexfirst.cpp

Compilation of sci_polychaos_getindextotal.cpp

Compilation of sci_polychaos_getmultind.cpp

Compilation of sci_polychaos_getgroupind.cpp

Compilation of sci_polychaos_setgroupempty.cpp

Compilation of sci_polychaos_getgroupinter.cpp

Compilation of sci_polychaos_getinvquantile.cpp

Compilation of sci_polychaos_buildsample.cpp

Compilation of sci_polychaos_getoutput.cpp

Compilation of sci_polychaos_getquantile.cpp

Compilation of sci_polychaos_getquantwilks.cpp

Compilation of sci_polychaos_getsample.cpp

Compilation of sci_polychaos_setgroupaddvar.cpp

Compilation of sci_polychaos_computeoutput.cpp

Compilation of sci_polychaos_setinput.cpp

Compilation of sci_polychaos_propagateinput.cpp

Compilation of sci_polychaos_getanova.cpp

Compilation of sci_polychaos_setanova.cpp

Compilation of sci_polychaos_getanovaord.cpp

Compilation of sci_polychaos_getanovaordco.cpp

Compilation of sci_polychaos_realisation.cpp

Compilation of sci_polychaos_save.cpp

Compilation of sci_polychaos_generatecode.cpp

Building shared library (be patient)

Generate a cleaner file

Generating loader_gateway.sce...

Building help ...

Building the master document:

C:\ tbxnisp\help\en_US

Building the manual file [javaHelp] in

C:\ tbxnisp\help\en_US.

(Please wait building ... this can take a while)



Chapter 1. Installation 17

Generating loader.sce...

The following script presents the messages which are generated when the loader of the toolbox

is launched. The loader script performs the following steps:

• load the gateway (and the NISP library),

• load the help,

• load the demo.

-->exec C:\ tbxnisp\loader.sce;

Start NISP Toolbox

Load gateways

Load help

Load demos

It is now necessary to setup your Scilab system so that the toolbox is loaded automatically

at startup. The way to do this is to configure the Scilab startup configuration file. The directory

where this file is located is stored in the Scilab variable SCIHOME. In the following Scilab session,

we use Scilab v5.2.0-beta-1 in order to know the value of the SCIHOME global variable.

-->SCIHOME

SCIHOME =

C:\Users\baudin\AppData\Roaming\Scilab\scilab -5.2.0 -beta -1

On my Linux system, the Scilab 5.1 startup file is located in

/home/myname/.Scilab/scilab-5.1/.scilab.

On my Windows system, the Scilab 5.1 startup file is located in

C:/Users/myname/AppData/Roaming/Scilab/scilab-5.1/.scilab.

This file is a regular Scilab script which is automatically loaded at Scilab’s startup. If that file

does not already exist, create it. Copy the following lines into the .scilab file and configure the

path to the toolboxes, stored in the SCILABTBX variable.

exec("C:\ tbxnisp\loader.sce");

The following script presents the messages which are generated when the unit tests script of

the toolbox is launched.

-->exec C:\ tbxnisp\runtests.sce;

Tests beginning the 2009/11/18 at 12:47:45

TMPDIR = C:\Users\baudin\AppData\Local\Temp\SCI_TMP_6372_

001/004 - [tbxnisp] nisp .................. passed : ref created

002/004 - [tbxnisp] polychaos1 ............ passed : ref created



Chapter 1. Installation 18

003/004 - [tbxnisp] randvar1 .............. passed : ref created

004/004 - [tbxnisp] setrandvar1 ........... passed : ref created

--------------------------------------------------------------

Summary

tests 4 - 100 %

passed 0 - 0 %

failed 0 - 0 %

skipped 0 - 0 %

length 3.84 sec

--------------------------------------------------------------

Tests ending the 2009/11/18 at 12:47:48\ end{verbatim}



Chapter 2

Configuration functions

In this section, we present functions which allow to configure the NISP toolbox.

The nisp * functions allows to configure the global behaviour of the toolbox. These func-

tions allows to startup and shutdown the toolbox and initialize the seed of the random number

generator. They are presented in the figure 2.1.

nisp startup ()

nisp shutdown ()

level = nisp verboselevelget ()

nisp verboselevelset ( level )

nisp initseed ( seed )

Fig. 2.1 : Outline of the configuration methods.

The user has no need to explicitely call the nisp startup () and nisp shutdown () functions.

Indeed, these functions are called automatically by the etc/nisp.startup and etc/nisp.shutdown

scripts, located in the toolbox directory structure.

The nisp initseed ( seed ) is especially useful when we want to have reproductible results. It

allows to set the seed of the generator at a particular value, so that the sequence of uniform pseudo-

random numbers is deterministic. When the toolbox is started up, the seed is automatically set

to 0, which allows to get the same results from session to session.



Chapter 3

The randvar class

In this section, we present the ”randvar” class, which allows to define a random variable, and to

generate random numbers from a given distribution function.

3.1 The distribution functions

The table 3.1 gives the list of distribution functions which are available with the ”randvar” class

[2].

For the ”LogNormale” law, the distribution function is usually defined by the expected value

µ and the standard deviation σ of the underlying Normal random variable. But, when we create

a LogNormale randvar, the parameters to pass to the constructor are the expected value of the

LogNormal random variable E(X) and the standard deviation of the underlying Normale random

variable σ. The expected value and the variance of the Log Normal law are given by

E(X) = exp

(
µ+

1

2
σ2

)
(3.1)

V (X) =
(
exp(σ2)− 1

)
exp

(
2µ+ σ2

)
. (3.2)

It is possible to invert these formulas, in the situation where the given parameters are the expected

value and the variance of the Log Normal random variable. We can invert completely the previous

equations and get

µ = ln(E(X))− 1

2
ln

(
1 +

V (X)

E(X)2

)
(3.3)

σ2 = ln

(
1 +

V (X)

E(X)2

)
. (3.4)

In particular, the expected value µ of with the Normal random variable satisfies the equation

µ = ln(E(X))− σ2. (3.5)

One random variable can be specified by giving explicitely its parameters or by using default

parameters. The parameters for all distribution function are presented in figure 3.2, which also

presents the conditions which must be satisfied by the parameters.



Chapter 3. The randvar class 21

Name f(x) E(X) V (X)

”Normale” 1
2σ
√

2π
exp

(
− 1

2
(x−µ)2

σ2

)
µ σ2

”Uniforme”

{
1
b−a , if x ∈ [a, b[
0 if x /∈ [a, b[

b+a
2

(b−a)2
12

”Exponentielle”

{
λ exp (−λx) , if x > 0
0 if x ≤ 0

1
λ

1
λ2

”LogNormale”

{
1

σx
√

2π
exp

(
− 1

2
(ln(x)−µ)2

σ2

)
, if x > 0

0 if x ≤ 0
exp

(
µ+ 1

2σ
2
) (

exp(σ2)− 1
)

exp
(
2µ+ σ2

)
”LogUniforme”

{
1
x

1
ln(b)−ln(a) , if x ∈ [a, b[

0 if x /∈ [a, b[
b−a

ln(b)−ln(a)
1
2

b2−a2

ln(b)−ln(a) − E(x)

Fig. 3.1 : Distributions functions of the ”randvar” class. – The expected value is denoted by E(X) and
the variance is denoted by V (X).

Name Parameter #1 : a Parameter #2 : b Conditions

”Normale” µ = 0. σ = 1. σ > 0

”Uniforme” a = 0. b = 1. a < b

”Exponentielle” λ = 1. - -

”LogNormale” µ′ = 0.1 σ = 1.0 µ′, σ > 0

”LogUniforme” a = 0.1 b = 1.0 a, b > 0, a < b

Fig. 3.2 : Default parameters for distributions functions.



Chapter 3. The randvar class 22

3.2 Methods

In this section, we give an overview of the methods which are available in the ”randvar” class.

3.2.1 Overview

The figure 3.3 presents the methods available in the randvar class. The inline help contains the

detailed calling sequence for each function and will not be repeated here.

Constructors

rv = randvar new ( type [, options])

Methods

value = randvar getvalue ( rv [, options] )

randvar getlog ( rv )

Destructor

randvar destroy ( rv )

Static methods

rvlist = randvar tokens ()

nbrv = randvar size ()

Fig. 3.3 : Outline of the methods of the randvar class.

3.2.2 The Oriented-Object system

In this section, we present the token system which allows to emulate an oriented-object program-

ming with Scilab. We also present the naming convention we used to create the names of the

functions.

The randvar class provides the following functions.

• The constructor function randvar new allows to create a new random variable and returns

a token rv.

• The method randvar getvalue takes the token rv as its first argument. In fact, all methods

takes as their first argument the object on which they apply.

• The destructor randvar destroy allows to delete the current object from the memory of the

library.

• The static methods randvar tokens and randvar size allows to quiery the current object

which are in use. More specifically, the randvar size function returns the number of current

randvar objects and the randvar tokens returns the list of current randvar objects.



Chapter 3. The randvar class 23

In the following Scilab sessions, we present these ideas with practical uses of the toolbox.

Assume that we start Scilab and that the toolbox is automatically loaded. At startup, there

are no objects, so that the randvar size function returns 0 and the randvar tokens function returns

an empty matrix.

-->nb = randvar_size ()

nb =

0.

-->tokenmatrix = randvar_tokens ()

tokenmatrix =

[]

We now create 3 new random variables, based on the Uniform distribution function. We store

the tokens in the variables vu1, vu2 and vu3. These variables are regular Scilab double precision

floating point numbers. Each value is a token which represents a random variable stored in the

toolbox memory space.

-->vu1 = randvar_new("Uniforme")

vu1 =

0.

-->vu2 = randvar_new("Uniforme")

vu2 =

1.

-->vu3 = randvar_new("Uniforme")

vu3 =

2.

There are now 3 objects in current use, as indicated by the following statements. The token-

matrix is a row matrix containing regular double precision floating point numbers.

-->nb = randvar_size ()

nb =

3.

-->tokenmatrix = randvar_tokens ()

tokenmatrix =

0. 1. 2.

We assume that we have now made our job with the random variables, so that it is time

to destroy the random variables. We call the randvar destroy functions, which destroys the

variables.

-->randvar_destroy(vu1);

-->randvar_destroy(vu2);

-->randvar_destroy(vu3);

We can finally check that there are no random variables left in the memory space.



Chapter 3. The randvar class 24

-->nb = randvar_size ()

nb =

0.

-->tokenmatrix = randvar_tokens ()

tokenmatrix =

[]

Scilab is a wonderful tool to experiment algorithms and make simulations. It happens some-

times that we are managing many variables at the same time and it may happen that, at some

point, we are lost. The static methods provides tools to be able to recover from such a situation

without closing our Scilab session.

In the following session, we create two random variables.

-->vu1 = randvar_new("Uniforme")

vu1 =

3.

-->vu2 = randvar_new("Uniforme")

vu2 =

4.

For some reason, assume that we have lost the token associated with the variable vu2. We can

easily simulate this situation by using the clear, which destroys a variable from Scilab’s memory

space.

-->clear vu2

-->randvar_getvalue(vu2)

!--error 4

Undefined variable: vu2

It is now impossible to generate values from the variable vu2. Moreover, it may be difficult to

know exactly what went wrong and what exact variable is lost. At any time, we can use the

randvar tokens function in order to get the list of current variables. Deleting these variables

allows to clean the memory space properly, without memory loss.

-->randvar_tokens ()

ans =

3. 4.

-->randvar_destroy (3)

ans =

3.

-->randvar_destroy (4)

ans =

4.

-->randvar_tokens ()

ans =



Chapter 3. The randvar class 25

[]

3.3 Examples

In this section, we present to examples of use of the randvar class. The first example presents

the simulation of a Normal random variable and the generation of 1000 random variables. The

second example presents the transformation of a Uniform outcome into a LogUniform outcome.

3.3.1 A sample session

We present a sample Scilab session, where the ”randvar” class is used to generate samples from

the Normale law.

In the following Scilab session, we create a Normale random variable and compute samples

from this law. The nisp initseed function is used to initialize the seed for the uniform random

variable generator. Then we use the randvar new function to create a new random variable from

the Normale law with mean 1. and standard deviation 0.5. The main loop allows to compute

1000 samples from this law, based on calls to the randvar getvalue function. Once the samples

are computed, we use the Scilab function mean to check that the mean is close to 1 (which is the

expected value of the Normale law, when the number of samples is infinite). Finally, we use the

randvar destroy function to destroy our random variable.

nisp_initseed ( 0 );

rv = randvar_new("Normale" , 1.0 , 0.5 );

nbshots = 1000;

values = zeros(nbshots );

for i=1: nbshots

values(i) = randvar_getvalue(rv);

end

computed = mean (values ); // Expectation of the mean : 1.0

computed = variance (values ); // Expectation of the variance : 0.5^2

randvar_destroy(rv);

3.3.2 Variable transformations

In this section, we present the transformation of uniform random variables into other types of

variables. The transformations which are available in the ”randvar” class are presented in figure

3.4. We begin the analysis by a presentation of the theory required to perform transformations.

Then we present some of the many the transformations which are provided by the library.

We now present some additionnal details for the function randvar getvalue ( rv , rv2 , value2

). This method allows to transform a random variable sample from one law to another. The

statement



Chapter 3. The randvar class 26

Source Target

Normale

Normale

Uniforme

Exponentielle

LogNormale

LogUniforme

Source Target

LogNormale

Normale

Uniforme

Exponentielle

LogNormale

LogUniforme

Source Target

Uniforme

Uniforme

Normale

Exponentielle

LogNormale

LogUniforme

Source Target

LogUniforme

Uniforme

Normale

Exponentielle

LogNormale

LogUniforme

Source Target

Exponentielle

Exponentielle

Fig. 3.4 : Variable transformations available in the randvar class.



Chapter 3. The randvar class 27

value = randvar_getvalue ( rv , rv2 , value2 )

returns a random value from the distribution function of the random variable rv by transformation

of value2 from the distribution function of random variable rv2.

In the following session, we transform a uniform random variable sample into a LogUniform

variable sample. We begin to create a random variable rv from a LogUniform law and parameters

a = 10, b = 20. Then we create a second random variable rv2 from a Uniforme law and parameters

a = 2, b = 3. The main loop is based on the transformation of a sample computed from rv2 into

a sample from rv. The mean allows to check that the transformed samples have an mean value

which corresponds to the random variable rv.

nisp_initseed ( 0 );

a = 10.0;

b = 20.0;

rv = randvar_new ( "LogUniforme" , a , b );

rv2 = randvar_new ( "Uniforme" , 2 , 3 );

nbshots = 1000;

values = zeros(nbshots );

for i=1: nbshots

value2 = randvar_getvalue( rv2 );

values(i) = randvar_getvalue( rv , rv2 , value2 );

end

computed = mean (values );

mu = (b-a)/(log(b)-log(a))

expected = mu; // "computed" should be close to "expected"

randvar_destroy(rv);

randvar_destroy(rv2);

The transformation depends on the mother random variable rv1 and on the daughter ran-

dom variable rv. Specific transformations are provided for all many combinations of the two

distribution functions. These transformations will be analysed in the next sections.

3.4 Uniform random number generation

In this section, we present the generation of uniform random numbers.

The goal of this section is to warn users about a current limitation of the library. Indeed, the

random number generator is based on the compiler, so that its quality cannot be guaranted.

The Uniforme law is associated with the parameters a, b ∈ R with a < b. It produces real

values uniform in the interval [a, b].

To compute the uniform random number X in the interval [a, b], a uniform random number

in the interval [0, 1] is generated and then scaled with

X = a+ (b− a)X. (3.6)



Chapter 3. The randvar class 28

Let us now analyse how the uniform random number X ∈ [0, 1] is computed. The uniform

random generator is based on the C function rand, which returns an integer n in the interval

[0, RAND MAX[. The value of the RAND MAX variable is defined in the file stdlib.h and is

compiler-dependent. For example, with the Visual Studio C++ 2008 compiler, the value is

RAND MAX = 215 − 1 = 32767. (3.7)

A uniform value X in the range [0, 1[ is computed from

X =
n

N
, (3.8)

where N = RAND MAX and n ∈ [0, RAND MAX[.



Chapter 4

The setrandvar class

In this chapter, we presen the setrandvar class. The first section gives a brief outline of the

features of this class and the second section present several examples.

4.1 Introduction

The setrandvar class allows to manage a collection of random variables and to build a Design Of

Experiments (DOE). Several types of DOE are provided:

• Monte-Carlo,

• Latin Hypercube Sampling,

• Smolyak.

Once a DOE is created, we can retrieve the information experiment by experiment or the whole

matrix of experiments. This last feature allows to benefit from the fact that Scilab can natively

manage matrices, so that we do not have to perform loops to manage the complete DOE. Hence,

good performances can be observed, even if the language still is interpreted.

The figure 4.1 presents the methods available in the setrandvar class. A complete description

of the input and output arguments of each function is available in the inline help and will not be

repeated here.

More informations about the Oriented Object system used in this toolbox can be found in the

section 3.2.2.

4.2 Examples

In this section, we present examples of use of the setrandvar class. In the first example, we present

a Scilab session where we create a Latin Hypercube Sampling. In the second part, we present

various types of DOE which can be generated with this class.



Chapter 4. The setrandvar class 30

Constructors

srv = setrandvar new ( )

srv = setrandvar new ( n )

srv = setrandvar new ( file )

Methods

setrandvar setsample ( srv , name , np )

setrandvar setsample ( srv , k , i , value )

setrandvar setsample ( srv , k , value )

setrandvar setsample ( srv , value )

setrandvar save ( srv , file )

np = setrandvar getsize ( srv )

sample = setrandvar getsample ( srv , k , i )

sample = setrandvar getsample ( srv , k )

sample = setrandvar getsample ( srv )

setrandvar getlog ( srv )

nx = setrandvar getdimension ( srv )

setrandvar freememory ( srv )

setrandvar buildsample ( srv , srv2 )

setrandvar buildsample ( srv , name , np )

setrandvar buildsample ( srv , name , np , ne )

setrandvar addrandvar ( srv , rv )

Destructor

setrandvar destroy ( srv )

Static methods

tokenmatrix = setrandvar tokens ()

nb = setrandvar size ()

Fig. 4.1 : Outline of the methods of the setrandvar class



Chapter 4. The setrandvar class 31

4.2.1 A LHS design

In this section, we present the creation of a Latin Hypercube Sampling. In our example, the DOE

is based on two random variables, the first being Normal with mean 1.0 and standard deviation

0.5 and the second being Uniform in the interval [2, 3].

We begin by defining two random variables with the randvar new function.

vu1 = randvar_new("Normale" ,1.0 ,0.5);

vu2 = randvar_new("Uniforme" ,2.0 ,3.0);

Then, we create a collection of random variables with the setrandvar new function which

creates here an empty collection of random variables. Then we add the two random variables to

the collection.

srv = setrandvar_new ( );

setrandvar_addrandvar ( srv , vu1 );

setrandvar_addrandvar ( srv , vu2 );

We can now build the DOE so that it is a LHS sampling with 1000 experiments.

setrandvar_buildsample ( srv , "Lhs" , 1000 );

At this point, the DOE is stored in the memory space of the NISP library, but we do not have

a direct access to it. We now call the setrandvar getsample function and store that DOE into the

sampling matrix.

sampling = setrandvar_getsample ( srv );

The sampling matrix has 1000 rows, corresponding to each experiment, and 2 columns, cor-

responding to each input random variable.

The following script allows to plot the sampling, which is is presented in figure 4.2.

wnum = 100001

my_handle = scf(wnum);

clf(my_handle ,"reset");

plot(sampling (:,1), sampling (: ,2));

my_handle.children.children.children.line_mode = "off";

my_handle.children.children.children.mark_mode = "on";

my_handle.children.children.children.mark_size = 2;

my_handle.children.title.text = "Latin Hypercube Sampling";

my_handle.children.x_label.text = "Variable #1 : Normale ,1.0 ,0.5";

my_handle.children.y_label.text = "Variable #2 : Uniforme ,2.0 ,3.0";

The following script allows to plot the histogram of the two variables, which are presented in

figures 4.3 and 4.4.

// Plot Var #1

wnum = 100002



Chapter 4. The setrandvar class 32

Fig. 4.2 : Latin Hypercube Sampling - The first variable is Normal, the second variable is Uniform.



Chapter 4. The setrandvar class 33

my_handle = scf(wnum);

clf(my_handle ,"reset");

histplot ( 50 , sampling (:,1))

my_handle.children.title.text = "Variable #1 : Normale ,1.0 ,0.5";

// Plot Var #2

wnum = 100003

my_handle = scf(wnum);

clf(my_handle ,"reset");

histplot ( 50 , sampling (:,2))

my_handle.children.title.text = "Variable #2 : Uniforme ,2.0 ,3.0";

2.52.01.51.00.50.0-0.5-1.0

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
3.0

Variable #1 : Normale,1.0,0.5

Fig. 4.3 : Latin Hypercube Sampling - Normal random variable.

We can use the mean and variance on each random variable and check that the expected result

is computed. We insist on the fact that the mean and variance functions are not provided by

the NISP library: these are pre-defined functions which are available in the Scilab library. That

means that any Scilab function can be now used to process the data generated by the toolbox.

for ivar = 1:2

m = mean(sampling(:,ivar))

mprintf("Variable #%d, Mean : %f\n",ivar ,m)

v = variance(sampling(:,ivar))

mprintf("Variable #%d, Variance : %f\n",ivar ,v)

end

The previous script produces the following output.

Variable #1, Mean : 1.000000

Variable #1, Variance : 0.249925



Chapter 4. The setrandvar class 34

2.92.82.72.62.52.42.32.22.12.0

1.2

1.0

0.8

0.6

0.4

0.2

0.0
3.0

Variable #2 : Uniforme,2.0,3.0

Fig. 4.4 : Latin Hypercube Sampling - Uniform random variable (the LHS sampling is not a Monte-
Carlo sampling).

Variable #2, Mean : 2.500000

Variable #2, Variance : 0.083417

Our numerical simulation is now finished, but we must destroy the objects so that the memory

managed by the toolbox is deleted.

randvar_destroy(vu1)

randvar_destroy(vu2)

setrandvar_destroy(srv)

4.2.2 Other types of DOE

The following Scilab session allows to generate a Monte-Carlo sampling with two uniform variables

in the interval [−1, 1]. The figure 4.5 presents this sampling and the figures 4.6 and 4.7 present

the histograms of the two uniform random variables.

vu1 = randvar_new("Uniforme" ,-1.0,1.0);

vu2 = randvar_new("Uniforme" ,-1.0,1.0);

srv = setrandvar_new ( );

setrandvar_addrandvar ( srv , vu1 );

setrandvar_addrandvar ( srv , vu2 );

setrandvar_buildsample ( srv , "MonteCarlo" , 1000 );

sampling = setrandvar_getsample ( srv );

randvar_destroy(vu1);

randvar_destroy(vu2);



Chapter 4. The setrandvar class 35

setrandvar_destroy(srv);

Fig. 4.5 : Monte-Carlo Sampling - Two uniform variables in the interval [−1, 1].

It is easy to change the type of sampling by modifying the second argument of the setrand-

var buildsample function. This way, we can create the Petras, Quadrature and Sobol sampling

presented in figures 4.8, 4.9 and 4.10.



Chapter 4. The setrandvar class 36

0.80.60.40.20.0-0.2-0.4-0.6-0.8-1.0

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
1.0

Variable #1 : Uniforme,-1.0,1.0

Fig. 4.6 : Latin Hypercube Sampling - First uniform variable in [−1, 1].

0.80.60.40.20.0-0.2-0.4-0.6-0.8-1.0

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
1.0

Variable #2 : Uniforme,-1.0,1.0

Fig. 4.7 : Latin Hypercube Sampling - Second uniform variable in [−1, 1].



Chapter 4. The setrandvar class 37

Fig. 4.8 : Petras sampling - Two uniform variables in the interval [−1, 1].

Fig. 4.9 : Quadrature sampling - Two uniform variables in the interval [−1, 1].



Chapter 4. The setrandvar class 38

Fig. 4.10 : Sobol sampling - Two uniform variables in the interval [−1, 1].



Chapter 5

The polychaos class

5.1 Introduction

The polychaos class allows to manage a polynomial chaos expansion. The coefficients of the

expansion are computed based on given numerical experiments which creates the association

between the inputs and the outputs. Once computed, the expansion can be used as a regular

function. The mean, standard deviation or quantile can also be directly retrieved.

The tool allows to get the following results:

• mean,

• variance,

• quantile,

• correlation, etc...

Moreover, we can generate the C source code which computes the output of the polynomial chaos

expansion. This C source code is stand-alone, that is, it is independent of both the NISP library

and Scilab. It can be used as a meta-model.

The figure 5.1 presents the most commonly used methods available in the polychaos class.

More methods are presented in figure 5.2. The inline help contains the detailed calling sequence

for each function and will not be repeated here. More than 50 methods are available and most of

them will not be presented here.

More informations about the Oriented Object system used in this toolbox can be found in the

section 3.2.2.

5.2 Examples

In this section, we present to examples of use of the polychaos class.



Chapter 5. The polychaos class 40

Constructors

pc = polychaos new ( file )

pc = polychaos new ( srv , ny )

pc = polychaos new ( pc , nopt , varopt )

Methods

polychaos setsizetarget ( pc , np )

polychaos settarget ( pc , output )

polychaos setinput ( pc , invalue )

polychaos setdimoutput ( pc , ny )

polychaos setdegree ( pc , no )

polychaos getvariance ( pc )

polychaos getmean ( pc )

Destructor

polychaos destroy (pc)

Static methods

tokenmatrix = polychaos tokens ()

nb = polychaos size ()

Fig. 5.1 : Outline of the methods of the polychaos class

5.2.1 Product of two random variables

In this section, we present the polynomial expansion of the product of two random variables.

We analyse the Scilab script and present the methods which are available to perform the sensi-

tivity analysis. This script is based on the NISP methodology, which has been presented in the

Introduction chapter. We will use the figure 1 as a framework and will follow the steps in order.

In the following Scilab script, we define the function Example which takes a vector of size 2

as input and returns a scalar as output.

function y = Exemple (x)

y(1) = x(1) * x(2);

endfunction

We now create a collection of two stochastic (normalized) random variables. Since the ran-

dom variables are normalized, we use the default parameters of the randvar new function. The

normalized collection is stored in the variable srvx.

vx1 = randvar_new("Normale");

vx2 = randvar_new("Uniforme");

srvx = setrandvar_new ();

setrandvar_addrandvar ( srvx , vx1 );

setrandvar_addrandvar ( srvx , vx2 );



Chapter 5. The polychaos class 41

Methods

output = polychaos gettarget ( pc )

np = polychaos getsizetarget ( pc )

polychaos getsample ( pc , k , ovar )

polychaos getquantile ( pc , k )

polychaos getsample ( pc )

polychaos getquantile ( pc , alpha )

polychaos getoutput ( pc )

polychaos getmultind ( pc )

polychaos getlog ( pc )

polychaos getinvquantile ( pc , threshold )

polychaos getindextotal ( pc )

polychaos getindexfirst ( pc )

ny = polychaos getdimoutput ( pc )

nx = polychaos getdiminput ( pc )

p = polychaos getdimexp ( pc )

no = polychaos getdegree ( pc )

polychaos getcovariance ( pc )

polychaos getcorrelation ( pc )

polychaos getanova ( pc )

polychaos generatecode ( pc , filename , funname )

polychaos computeoutput ( pc )

polychaos computeexp ( pc , srv , method )

polychaos computeexp ( pc , pc2 , invalue , varopt )

polychaos buildsample ( pc , type , np , order )

Fig. 5.2 : More methods from the polychaos class



Chapter 5. The polychaos class 42

We create a collection of two uncertain parameters. We explicitely set the parameters of each

random variable, that is, the first Normal variable is associated with a mean equal to 1.0 and

a standard deviation equal to 0.5, while the second Uniform variable is in the interval [1.0, 2.5].

This collection is stored in the variable srvu.

vu1 = randvar_new("Normale" ,1.0 ,0.5);

vu2 = randvar_new("Uniforme" ,1.0 ,2.5);

srvu = setrandvar_new ();

setrandvar_addrandvar ( srvu , vu1 );

setrandvar_addrandvar ( srvu , vu2 );

The first design of experiment is build on the stochastic set srvx and based on a Quadrature

type of DOE. Then this DOE is transformed into a DOE for the uncertain collection of parameters

srvu.

degre = 2;

setrandvar_buildsample ( srvx , "Quadrature" , degre );

setrandvar_buildsample ( srvu , srvx );

The next steps will be to create the polynomial and actually perform the DOE. But before

doing this, we can take a look at the DOE associated with the stochastic and uncertain collection

of random variables. We can use the setrandvar getsample twice and get the following output.

-->setrandvar_getsample(srvx)

ans =

- 1.7320508 0.1127017

- 1.7320508 0.5

- 1.7320508 0.8872983

0. 0.1127017

0. 0.5

0. 0.8872983

1.7320508 0.1127017

1.7320508 0.5

1.7320508 0.8872983

-->setrandvar_getsample(srvu)

ans =

0.1339746 1.1690525

0.1339746 1.75

0.1339746 2.3309475

1. 1.1690525

1. 1.75

1. 2.3309475

1.8660254 1.1690525



Chapter 5. The polychaos class 43

1.8660254 1.75

1.8660254 2.3309475

These two matrices are a 9×2 matrices, where each line represents an experiment and each column

represents an input random variable. The stochastic (normalized) srvx DOE has been created

first, then the srvu has been deduced from srvx based on random variable transformations.

We now use the polychaos new function and create a new polynomial pc. The number of input

variables corresponds to the number of variables in the stochastic collection srvx, that is 2, and the

number of output variables is given as the input argument ny. In this particular case, the number

of experiments to perform is equal to np=9, as returned by the setrandvar getsize function. This

parameter is passed to the polynomial pc with the polychaos setsizetarget function.

ny = 1;

pc = polychaos_new ( srvx , ny );

np = setrandvar_getsize(srvx);

polychaos_setsizetarget(pc,np);

In the next step, we perform the simulations prescribed by the DOE. We perform this loop in

the Scilab language and make a loop over the index k, which represents the index of the current

experiment, while np is the total number of experiments to perform. For each loop, we get the

input from the uncertain collection srvu with the setrandvar getsample function, pass it to the

Exemple function, get back the output which is then transferred to the polynomial pc by the

polychaos settarget function.

for k=1:np

inputdata = setrandvar_getsample(srvu ,k);

outputdata = Exemple(inputdata );

mprintf ( "Experiment #%d, input =[%s],\t output = %f\n", k,

strcat(string(inputdata), " ") , outputdata )

polychaos_settarget(pc ,k,outputdata );

end

The previous script produces the following output.

Experiment #1, input =[0.1339746 1.1690525] , output = 0.156623

Experiment #2, input =[0.1339746 1.75], output = 0.234456

Experiment #3, input =[0.1339746 2.3309475] , output = 0.312288

Experiment #4, input =[1 1.1690525] , output = 1.169052

Experiment #5, input =[1 1.75], output = 1.750000

Experiment #6, input =[1 2.3309475] , output = 2.330948

Experiment #7, input =[1.8660254 1.1690525] , output = 2.181482

Experiment #8, input =[1.8660254 1.75], output = 3.265544

Experiment #9, input =[1.8660254 2.3309475] , output = 4.349607



Chapter 5. The polychaos class 44

We can compute the polynomial expansion based on numerical integration so that the coef-

ficients of the polynomial are determined. This is done with the polychaos computeexp function,

which stands for ”compute the expansion”.

polychaos_setdegree(pc,degre);

polychaos_computeexp(pc,srvx ,"Integration");

Everything is now ready for the sensitivity analysis. Indeed, the polychaos getmean returns

the mean while the polychaos getvariance returns the variance.

average = polychaos_getmean(pc);

var = polychaos_getvariance(pc);

mprintf("Mean    = %f\n",average );

mprintf("Variance    = %f\n",var);

mprintf("Indice de sensibilité  du 1er ordre\n");

mprintf("    Variable X1 = %f\n",polychaos_getindexfirst(pc ,1));

mprintf("    Variable X2 = %f\n",polychaos_getindexfirst(pc ,2));

mprintf("Indice de sensibilite Totale\n");

mprintf("    Variable X1 = %f\n",polychaos_getindextotal(pc ,1));

mprintf("    Variable X2 = %f\n",polychaos_getindextotal(pc ,2));

The previous script produces the following output.

Mean = 1.750000

Variance = 1.000000

Indice de sensibilité du 1er ordre

Variable X1 = 0.765625

Variable X2 = 0.187500

Indice de sensibilite Totale

Variable X1 = 0.812500

Variable X2 = 0.234375

In order to free the memory required for the computation, it is necessary to delete all the

objects created so far.

polychaos_destroy(pc);

randvar_destroy(vu1);

randvar_destroy(vu2);

randvar_destroy(vx1);

randvar_destroy(vx2);

setrandvar_destroy(srvu);

setrandvar_destroy(srvx);

5.2.2 The Ishigami test case

In this section, we present the Ishigami test case.



Chapter 5. The polychaos class 45

The function Exemple is the model that we consider in this numerical experiment. This

function takes a vector of size 3 in input and returns a scalar output.

function y = Exemple (x)

a=7.;

b=0.1;

s1=sin(x(1));

s2=sin(x(2));

y(1) = s1 + a*s2*s2 + b*x(3)*x(3)*x(3)*x(3)*s1;

endfunction

We create 3 uncertain parameters which are uniform in the interval [−π, π] and put these

random variables into the collection srvu.

rvu1 = randvar_new("Uniforme",-%pi ,%pi);

rvu2 = randvar_new("Uniforme",-%pi ,%pi);

rvu3 = randvar_new("Uniforme",-%pi ,%pi);

srvu = setrandvar_new ();

setrandvar_addrandvar ( srvu , rvu1);

setrandvar_addrandvar ( srvu , rvu2);

setrandvar_addrandvar ( srvu , rvu3);

The collection of stochastic variables is created with the function setrandvar new. The calling

sequence srvx = setrandvar new( nx ) allows to create a collection of nx=3 random variables

uniform in the interval [0, 1]. Then we create a Petras DOE for the stochastic collection srvx and

transform it into a DOE for the uncertain parameters srvu.

nx = setrandvar_getdimension ( srvu );

srvx = setrandvar_new( nx );

degre = 9;

setrandvar_buildsample(srvx ,"Petras",degre );

setrandvar_buildsample( srvu , srvx );

We use the polychaos new function and create the new polynomial pc with 3 inputs and 1

output.

noutput = 1;

pc = polychaos_new ( srvx , noutput );

The next step allows to perform the simulations associated with the DOE prescribed by the

collection srvu.

np = setrandvar_getsize(srvu);

polychaos_setsizetarget(pc,np);

for k=1:np

inputdata = setrandvar_getsample(srvu ,k);



Chapter 5. The polychaos class 46

outputdata = Exemple(inputdata );

polychaos_settarget(pc ,k,outputdata );

end

We can now compute the polynomial expansion by integration.

polychaos_setdegree(pc,degre);

polychaos_computeexp(pc,srvx ,"Integration");

Everything is now ready so that we can do the sensitivy analysis, as in the following script.

average = polychaos_getmean(pc);

var = polychaos_getvariance(pc);

mprintf("Mean        = %f\n",average );

mprintf("Variance    = %f\n",var);

mprintf("Indice de sensibilité  du 1er ordre\n");

mprintf("    Variable X1 = %f\n",polychaos_getindexfirst(pc ,1));

mprintf("    Variable X2 = %f\n",polychaos_getindexfirst(pc ,2));

mprintf("    Variable X3 = %f\n",polychaos_getindexfirst(pc ,3));

mprintf("Indice de sensibilite Totale\n");

mprintf("    Variable X1 = %f\n",polychaos_getindextotal(pc ,1));

mprintf("    Variable X2 = %f\n",polychaos_getindextotal(pc ,2));

mprintf("    Variable X3 = %f\n",polychaos_getindextotal(pc ,3));

The previous script produces the following output.

Mean = 3.500000

Variance = 13.842473

Indice de sensibilité du 1er ordre

Variable X1 = 0.313953

Variable X2 = 0.442325

Variable X3 = 0.000000

Indice de sensibilite Totale

Variable X1 = 0.557675

Variable X2 = 0.442326

Variable X3 = 0.243721

We now focus on the variance generated by the variables #1 and #3. We set the group to

the empty group with the polychaos setgroupempty function and add variables with the poly-

chaos setgroupaddvar function.

groupe = [1 3];

polychaos_setgroupempty ( pc );

polychaos_setgroupaddvar ( pc , groupe (1) );

polychaos_setgroupaddvar ( pc , groupe (2) );

mprintf("Part de la variance d’’un groupe de variables\n");

mprintf("    Groupe X1 et X2 =%f\n",polychaos_getgroupind(pc));



Chapter 5. The polychaos class 47

The previous script produces the following output.

Part de la variance d’un groupe de variables

Groupe X1 et X2 =0.557674

The function polychaos getanova prints the functionnal decomposition of the normalized vari-

ance.

polychaos_getanova(pc);

The previous script produces the following output.

1 0 0 : 0.313953

0 1 0 : 0.442325

1 1 0 : 1.55229e-009

0 0 1 : 8.08643e-031

1 0 1 : 0.243721

0 1 1 : 7.26213e-031

1 1 1 : 1.6007e-007

We can compute the density function associated with the output variable of the function. In

order to compute it, we use the polychaos buildsample function and create a Latin Hypercube

Sampling with 10000 experiments. The polychaos getsample function allows to quiery the poly-

nomial and get the outputs. We plot it with the histplot Scilab graphic function, which produces

the figure 5.3.

polychaos_buildsample(pc,"Lhs" ,10000 ,0);

sample_output = polychaos_getsample(pc);

histplot (50, sample_output)

xtitle("Fonction Ishigami - Histogramme normalisé ");

We can plot a bar graph of the sensitivity indices, as presented in figure 5.4.

for i=1:nx

indexfirst(i)= polychaos_getindexfirst(pc,i);

indextotal(i)= polychaos_getindextotal(pc,i);

end

my_handle = scf (10002);

bar(indextotal ,0.2,’blue ’);

bar(indexfirst ,0.15,’yellow ’);

legend (["totale" "premier ordre"],pos =1);

xtitle("Fonction Ishigami - Indice de sensibilité ");



Chapter 5. The polychaos class 48

151050-5-10

0.12

0.10

0.08

0.06

0.04

0.02

0.00
20

Fonction Ishigami - Histogramme normalisé

Fig. 5.3 : Ishigami function - Histogram of the output variable on a LHS design with 10000 experiments



Chapter 5. The polychaos class 49

Fig. 5.4 : Ishigami function - Sensitivity indices



Chapter 6

Thanks

Many thanks to Allan Cornet, who helped us many times in the creation of this toolbox.



Bibliography

[1] M. Grinstead, Charles and Laurie Snell, J. Introduction to probabilities, Second Edition.

American Mathematical Society, 1997.

[2] Didier Pelat. Bases et méthodes pour le traitement des données (Bruits et Signaux). Master

M2 Recherche : Astronomie?astrophysique, 2006.


	Introduction
	Installation
	Introduction
	Installing the toolbox from ATOMS
	Installing the toolbox from the sources

	Configuration functions
	The randvar class
	The distribution functions
	Methods
	Overview
	The Oriented-Object system

	Examples
	A sample session
	Variable transformations

	Uniform random number generation

	The setrandvar class
	Introduction
	Examples
	A LHS design
	Other types of DOE


	The polychaos class
	Introduction
	Examples
	Product of two random variables
	The Ishigami test case


	Thanks
	Bibliography

