<< CL_man_apsidesLine Trajectory and maneuvers CL_man_consumption >>

CelestLab >> Trajectory and maneuvers > CL_man_biElliptic

CL_man_biElliptic

Delta V for a bi-elliptic transfer

Calling Sequence

[delta_v,dv1,dv2,dv3,anv1,anv2,anv3]=CL_man_biElliptic(ai,af,rt [,mu])

Description

Parameters

ai :

Semi-major axis of initial circular orbit [m] (1xN)

af :

Semi-major axis of final circular orbit [m] (1xN)

rt :

Radius at the position of the second maneuver [m] (1xN)

mu :

(optional) Gravitational constant [m^3/s^2] (default value is %CL_mu)

delta_v :

Total |delta-V| (=|dv1|+|dv2|+|dv3]) [m/s] (1xN)

dv1:

First delta-V, in spherical coordinates in the QSW frame [lambda;phi;dv] [rad,rad,m/s] (3xN)

dv2:

Second delta-V, in spherical coordinates in the QSW frame [lambda;phi;dv] [rad,rad,m/s] (3xN)

dv3:

Third delta-V, in spherical coordinates in the QSW frame [lambda;phi;dv] [rad,rad,m/s] (3xN)

anv1:

True anomaly at the position of the 1st maneuver : initial orbit is circular so this is an arbitrary value of 0 (1xN)

anv2:

True anomaly at the position of the 2nd maneuver (either 0 or %pi) [rad] (1xN)

anv3:

True anomaly at the position of the 3rd maneuver (either 0 or %pi) [rad] (1xN)

Authors

Bibliography

See also

Examples

// 7000 km to 98 000km through a 280 000 transfer orbit:
ai = 7000.e3;
af = 98000.e3;
rt = 280000.e3;
[delta_v,dv1,dv2,dv3,anv1,anv2,anv3]=CL_man_biElliptic(ai,af,rt)
// Check results :
kep = [ai ; 0 ; %pi/2 ; 0 ; 0 ; anv1];
kep1 = CL_man_applyDv(kep,dv1);
kep1(6) = anv2;
kep2 = CL_man_applyDv(kep1,dv2);
kep2(6) = anv3;
kep3 = CL_man_applyDv(kep2,dv3)

// Same example with a Hohmann transfer:
// more expensive !
[delta_v,dv1,dv2,anv1,anv2] = CL_man_hohmann(ai,af)
<< CL_man_apsidesLine Trajectory and maneuvers CL_man_consumption >>