<< distfun_wblrnd Weibull

distfun >> distfun > Weibull > distfun_wblstat

distfun_wblstat

Weibull mean and variance

Calling Sequence

M = distfun_wblstat ( a , b )
[M,V] = distfun_wblstat ( a , b )

Parameters

a :

a matrix of doubles, the scale parameter, a>0.

b :

a matrix of doubles, the shape parameter, b>0.

M :

a matrix of doubles, the mean

V :

a matrix of doubles, the variance

Description

Computes statistics from the Weibull distribution.

The mean and variance of the Weibull distribution are

\begin{eqnarray}
M &=& a \Gamma\left(1 + \frac{1}{b}\right) \\
V &=& a^2 \Gamma\left(1 + \frac{2}{b}\right)-M^2
\end{eqnarray}

Any scalar input argument is expanded to a matrix of doubles of the same size as the other input arguments.

Examples

[M,V]=distfun_wblstat(1:3,(1:3)^-1)
me = [1.    4.    18.]';
ve = [1.    80.    6156.]';

Authors


Report an issue
<< distfun_wblrnd Weibull