<< Binomial Binomial distfun_binofitmm >>

Distfun >> Distfun > Binomial > distfun_binocdf

distfun_binocdf

Binomial CDF

Calling Sequence

p = distfun_binocdf(x,N,pr)
p = distfun_binocdf(x,N,pr,lowertail)

Parameters

x :

a matrix of doubles, the number of successes. x belongs to the set {0,1,2,3,...,N}

N :

a matrix of doubles , the total number of binomial trials . N belongs to the set {1,2,3,4,.......}

pr :

a matrix of doubles, the probability of success in a Bernoulli trial. pr in [0,1].

lowertail :

a 1-by-1 matrix of booleans, the tail (default lowertail=%t). If lowertail is true (the default), then considers P(X<=x) otherwise P(X>x).

p :

a matrix of doubles, the probability.

Description

Computes the cumulative distribution function of the Binomial distribution function.

Any scalar input argument is expanded to a matrix of doubles of the same size as the other input arguments.

Examples

// Check with x scalar, N scalar, pr scalar
computed = distfun_binocdf(100,162,0.5)
expected = 0.9989567

// Check with expanded x
computed = distfun_binocdf([5 15],100,0.05)
expected = [0.6159991 0.9999629]

// Check with expanded N
computed = distfun_binocdf(5,[50 100],0.05)
expected = [0.9622238 0.6159991]

// Check with expanded pr
computed = distfun_binocdf(5,50,[0.05 0.1])
expected = [0.9622238 0.6161230]

// Check with two arguments expanded
computed = distfun_binocdf([5 10],[50 100],0.05)
expected = [0.9622238 0.9885276]

// Check with all the arguments expanded
computed = distfun_binocdf([5 10],[50 100],[0.05 0.1])
expected = [0.9622238 0.5831555]

//Plot the function
scf();
x = (0:20)';
p1=distfun_binocdf(x,20,0.5);
p2=distfun_binocdf(x,20,0.7);
p3=distfun_binocdf(x,40,0.5);
legendspec=["pr=0.5, N=20","pr=0.7, N=20","pr=0.5, N=40"];
distfun_plotintcdf(x,[p1,p2,p3],["b" "g" "r"],legendspec);
xtitle("Binomial CDF")

//check upper tail
p = distfun_binocdf(3,10,0.1)
lt_expected = 0.9872048

q = distfun_binocdf(3,10,0.1,%f)
ut_expected = 0.0127952

Bibliography

http://en.wikipedia.org/wiki/Binomial_distribution

Authors


Report an issue
<< Binomial Binomial distfun_binofitmm >>