Geometric random numbers
x = distfun_geornd(pr) x = distfun_geornd(pr,[m,n]) x = distfun_geornd(pr,m,n)
a matrix of doubles, the probability of getting success in a Bernoulli trial. pr in (0,1].
a 1-by-1 matrix of floating point integers, the number of rows of x
a 1-by-1 matrix of floating point integers, the number of columns of x
a matrix of doubles, the random numbers in the set {0,1,2,3,...}.
Generates random variables from the Geometric distribution function.
Any scalar input argument is expanded to a matrix of doubles of the same size as the other input arguments.
Note - The output argument x belongs to the set {0,1,2,3,...}.
This is not compatible with the grand(m,n,"geom",p)
function in Scilab v5,
where the choice is the set {1,2,3,...}.
In other words, the calling sequence
x = grand(m,n,"geom",pr)
is equivalent to
x = distfun_geornd(pr,m,n) + 1
// Test with expanded pr x = distfun_geornd(1 ./(1:6)) // Check expansion of pr in x = distfun_geornd(pr) N = 10; x = distfun_geornd(1 ./(1:6)) // Check x = distfun_geornd(pr,v) x = distfun_geornd(0.2,[4 5]) // Check mean and variance N = 5000; pr = 0.3; x = distfun_geornd(pr,[1 N]); RM = mean(x) RV = variance(x) [M,V] = distfun_geostat(pr) // Check actual distribution h=scf(); pr=0.7; N=10000; x=distfun_geornd(pr,1,N); Rmax=max(x); distfun_inthisto(x); h.children.children(1).children.background=-2; M=distfun_geostat(pr); x=0:Rmax; y=distfun_geopdf(x,pr); plot(x,y,"ro-"); xtitle("Geometric Random Numbers","X","Density") legend(["Empirical","Density"]); | ![]() | ![]() |
http://en.wikipedia.org/wiki/Geometric_distribution