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October 18, 2013

This document defines the Functional Mock-up Interface (FMI), version 2.0 RC1. FMl is a tool independent
standard to support both model exchange and co-simulation of dynamic models using a combination of xml-
files and C-code (either compiled in DLL/shared libraries or in source code). The first version, FMI 1.0, was
published in 2010. The FMI development was initiated by Daimler AG with the goal to improve the exchange
of simulation models between suppliers and OEMs. As of today, development of the standard continues
through the participation of 16 companies and research institutes. FMI 1.0 is supported by over 35 tools and
is used by automotive and non-automotive organizations throughout Europe, Asia and North America.

On the Downloads page (https://www.fmi-standard.org/downloads), this specification, as well as supporting
C-header and xml schema files, and an FMI compliance checker are provided. In addition, sample models

(exported from different tools in FMI format) are provided to assist tool vendors to ensure compatibility with
other tools, as well as a test suite to check whether connected FMUs are appropriately handled by a tool.

Contact the FMI development group at contact@fmi-standard.orqg.
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History / Road Map
Version Date Remarks

1.0 2010-01-26 First version of FMI for Model Exchange

1.0 2010-10-12 First version of FMI for Co-Simulation

2.0 Beta 3 2011-11-14 First Public Beta Version of FMI for Model Exchange and Co-Simulation
for version 2.0

2.0 Beta 4 2012-08-10 Second Public Beta Version of FMI for Model Exchange and Co-Simulation
for version 2.0

2.0 RC1 2013-10-18 First Public Release Candidate of FMI for Model Exchange and Co-

Simulation for version 2.0. It is not planned to modify anything in this

specification before the release, with exception of bug fixes.

Changes with respect to 2.0 Beta 4:

e Redesigned interface in order that artifical and real algebraic loops of
connected FMUs can be handeled also during initialization and at
events in an efficient way (for ModelExchange).

e Development of Modelica library FMUTest to test connected FMUs.

e Unifying function calls of Model Exchange and Co-Simulation, for
example replacing fmilnstantiateModel and fmilnstantiateSlave by one
function call fmilnstantiate.

e Introducing discrete states.

e Redesign of <ModelStructure> in the xml-file.

o Verifying the specification with a Dymola prototype.

Please, report issues that you find with this specification to the public FMI issue tracking system:

https://trac.fmi-standard.org
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License of this document

Copyright © 2008-2011; MODELISAR consortium and
2012-2013 Modelica Association Project “FMI”

This document is provided “as is" without any warranty. It is licensed under the CC-BY-SA (Creative
Commons Attribution-Sharealike 3.0 Unported) license, which is the license used by Wikipedia. Human-
readable summary of the license text from htip://creativecommeons.orgllicenses/by-
sal3-0/http://creativecommons.org/licenses/by-sa/3.0/:

You are free:
e to Share — to copy, distribute and transmit the work, and
¢ to Remix — to adapt the work

Under the following conditions:

o Attribution — You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the work.)

e Share Alike — If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license

The legal license text and disclaimer is available at:

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Note:

¢ Article (3a) of this license requires that modifications of this work must clearly label, demarcate or
otherwise identify that changes were made.

e The C header and XML-schema files that accompany this document are available under the BSD
licensethttedhmeonencourecorallicensecibed lecnsa himlP-Clause license
(http://www.opensource.org/licenses/bsd-license.html) with the extension that modifications must be
also provided under the BSD license.

¢ If you have improvement suggestions, please send them to the FMI development group at

info@functional-mockup-interfacecontact@fmi-standard.org.
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Abstract

This document defines the Functional Mock-up Interface (FMI), version 2.0 to (a) exchange dynamic
models between tools and (b) define tool coupling for dynamic system simulation environments.

FMI for Model Exchange (chapter 3)

The intention is that a modeling environment can generate C code of a dynamic system model that can
be utilized by other modeling and simulation environments. Models are described by differential,
algebraic and discrete equations with time-, state- and step-events. If the C code describes a continuous
system, then this system is solved with the integrators of the environment where it is used. The models
to be treated by this interface can be large for usage in offline or online simulation, or can be used in
embedded control systems on micro-processors.

FMI for Co-Simulation (chapter 4)

The intention is to provide an interface standard for coupling twe-ermereof simulation tools in a co-
simulation environment. The data exchange between subsystems is restricted to discrete communication
points. In the time between two communication points, the subsystems are solved independently from
each other by their individual solver. Master algorithms control the data exchange between subsystems
and the synchronization of all simulation solvers (slaves). Both, rather simple master algorithms, as well
as more sophisticated ones are supported. Note, that the master algorithm itself is not part of the FMI
standard.

FMI Common Concepts (chapter 2)

The two interface standards have many parts in common. In particular, it is possible to utilize several
instances of a model and/or a co-simulation tool and to connect them hierarchically-together. The
interfaces are independent of the target environment because no header files are used that depend on
the target environment (with exception of the data types of the target platform). This allows generating
one dynamic link library that can be utilized in any environment on the same platform. A model, a co-
simulation slave or the coupling part of a tool, is distributed in one zip file called FMU (Functional Mock-
up Unit) that contains several files:

(1) An XML file contains the definition of all exposed variables in the FMU and other static information. It is
then possible to run the FMU on a target system without this information, in other words with no
unnecessary overhead.

(2) All needed model equations or the access to co-simulation tools are provided with a small set of easy to
use C functions. A new caching technique allows a more efficient evaluation of the model equations than
in other approaches. These C functions can either be provided in source and/or binary form. Binary forms
for different platforms can be included in the same medelFMU zip file.

(3) The model equations or the co-simuation tool can be either provided directly in the FMU, or the FMU
contains only a generic communication module that communicates with an external tool that evaluates or
simulates the model. In the XML file information about the capabilities of the FMU are present, for
example to characterize the ability of a co-simulation slave to support advanced master algorithms such
as the usage of variable communication step sizes, higher order signal extrapolation, or others.

(4) Further data can be included in the EMUzipFMU zip file, especially a model icon (bitmap file),
documentation files, maps and tables needed by the FMU, and/or all object libraries or dynamic link
libraries that are utilized.

A growing set of tools supports FMI. The actual list of tools is available at:
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https://www.fmi-standard.org
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About FMI 2.0

This version 2.0 is a major enhancement compared to FMI 1.0, where the FMI 1.0 Model Exchange and
Co-Simulation standards have been merged, and many improvements have been incorporated, often
due to practical experience when using the FMI 1.0 standards. New features are usually optional (need
neither be supported by the tool that exports an FMU, nor by the tool that imports an FMU). Details are
provided in appendix A.3.1. The appendix of the FMI 1.0 specification has been mostly moved in an
extended and improved form to a companion document

“FunctionalMockuplnterface-ImplementationHints.pdf’

where practical information for the implementation of the FMI standard is provided.

Conventions used in this Document

¢ Non-normative text is given in square brackets in italic font: [especially examples are defined in this
style.].

e Arrays appear in two forms:

o In the end-user/logical view, one- and two-dimensional arrays are used. Here the convention of
linear algebra, the control community and the most important tools in this area is utilized, in other
words the first element along one dimension starts at index one. In all these cases-of{a});, the
starting index is also explicitly mentioned at the respective definition of the array. Example: In the
modelDescription. XML file, the inpuis—outputs;states-and-derivatives-areset of exposed variables
is defined as ordered sets where the first element is referenced with index one (these indices are,
for example, used to define the sparseness structure of partial derivative matrices).

o In the implementation view, one-dimensional C-arrays are used. In order to access an array

element the C-convention is used;-in-otherwords-the firstelementof-array<is-acecess-with-=<101

and. For example, the first element of input argument x for function setContinuousStates(..)
isx[0].
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1. Overview

The FMI (Functional Mock-up Interface) defines an interface to be implemented by an executable called
FMU (Functional Mock-up Unit). The FMI functions are used (called) by a simulation environment to
create one or more instances of the FMU and to simulate them, typically together with other models. An
FMU may either be-self-integratinghave it's own solvers (FMI for Co-Simulation, chapter 4) or require the
simulation environment to perform numerical integration (FMI for Model Exchange, chapter 3). The goal
of this interface is that the calling of an FMU in a simulation environment is reasonably simple. No
provisions are provided in this document how to generate an FMU from a modeling environment;-with-the
exception-of. Hints for implementation can be found in the companion document
“FunctionalMockuplinterface-ImplementationHints.pdf*.

The EMI for Model Exchange interface defines an interface to the model of a dynamic system described
by differential, algebraic and discrete-time equations and to provide an interface to evaluate these
equations as needed in different simulation environments, as well as in embedded control systems, with
explicit or implicit integrators and fixed or variable step-size. The interface is designed to allow the
description of large models.

The EMI for Co-Simulation interface is designed both for the coupling of simulation tools (simulator
coupling, tool coupling), and coupling with subsystem models, which have been exported by their
simulators together with its solvers as runnable code. The goal is to compute the solution of time
dependent coupled systems consisting of subsystems that are continuous in time (model components
that are described by differential-algebraic equations) or time-discrete (model components that are
described by difference equations, for example discrete controllers). In a block representation of the
coupled system, the subsystems are represented by blocks with (internal) state variables x(#) that are
connected to other subsystems (blocks) of the coupled problem by subsystem inputs u(#) and subsystem
outputs y(f).

In case of tool coupling, the modular structure of coupled problems is exploited in all stages of the
simulation process beginning with the separate model setup and pre-processing for the individual
subsystems in different simulation tools. During time integration, the simulation is again performed
independently for all subsystems restricting the data exchange between subsystems to discrete
communication points. Finally, also the visualization and post-processing of simulation data is done
individually for each subsystem in its own native simulation tool.

The two interfaces have large parts in common. These parts are defined in chapter 2. In particular:

e FMI Application Programming Interface (C)
All needed equations or tool coupling computations are evaluated by calling standardized “C”
functions. “C” is used, because it is the most portable programming language today and is the only
programming language that can be utilized in all embedded control systems.

e FMI Description Schema (XML)
The schema defines the structure and content of an XML file generated by a modeling environment.
This XML file contains the definition of all variables of the FMU in a standardized way. It is then
possible to run the C code in an embedded system without the overhead of the variable definition
(the alternative would be to store this information in the C code and access it via function calls, but
this is neither practical for embedded systems nor for large models). Furthermore, the variable
definition is a complex data structure and tools should be free how to represent this data structure in
their programs. The selected approach allows a tool to store and access the variable definitions
(without any memory or efficiency overhead of standardized access functions) in the programming
language of the simulation environment, usuallysuch as C++, C#, Java, or Python. Note, there are
many free and commercial libraries in different programming languages to read XML files into an




Functional Mock-up Interface 2.0 RC1
October 18, 2013
Page 11 of 161

appropriate data structure, see for example
hitpHen-wikipedia-org/wikiXML#Parsershttp://en.wikipedia.org/wiki/ XML#Parsers, and especially the
efficient open source parser SAX (http:Hsax-sourceforge-nets

http/len-wikipedia-org/wiki/Simple— ARl for XMLhttp://sax.sourceforge.net/,
http://en.wikipedia.org/wiki/Simple APl for XML).

An FMU (in other words a model without integrators, a runnable model with integrators, or a tool coupling
interface) is distributed in one zip file. The zip file contains (more details are given in section 2.3):

e The FMI Description File (in XML format).

e The C sources of the FMU, including the needed run-time libraries used in the model, and/or
binaries for one or several target machines, such as Windows dynamic link libraries (.dll) or
Linux shared object libraries (.s0). The latter solution is especially used if the FMU provider
wants to hide the source code to secure the contained know-how or to allow a fully automatic
import of the FMU in another simulation environment. An FMU may contain physical parameters
or geometrical dimensions, which should not be open. On the other hand, some functionality
requires source code.

e Additional FMU data (like tables, maps) in FMU specific file formats.

A schematic view of an FMU is shown in the next figure:

t,,p,inital values (a subset of v(¢,)) I 1‘

f,,p.inital values (a subset of v(z,)) I 1‘ vy
Enclosing Model *
t time
p parameters of type Real, Integer, Boolean, String
u inputs of type Real, Integer, Boolean, String
u | v all exposed variables
—p| ¥ outputs of type Real, Integer, Boolean, String
FMU instance
(model exchange or co-simulation)

Figure 1: Data flow between the environment and an FMU. For details, see chapters 3 and 4.
Blue arrows: Information provided by the FMU.
Red arrows: Information provided to the FMU.
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The-publications—currentlyPublications available for FMI are referenced-in-section-5-"Literature’:
Especially-Andersson-etal—2011Bastian-et-al—2011;available from https://www.fmi-
standard.org/literature, especially Blochwitz et.al. 2041-Brembeck-et-al—2011Noll-etal2011,-Schubert
et-al-2011-Thiele2011 and Henriksson-20112012.

1.1 Properties and Guiding Ideas

In this section, properties are listed and some principles are defined that guided the low-level design of
the FMI. This shall increase self consistency of the interface functions. The listed issues are sorted,
starting from high-level properties to low-level implementation issues.

Expressivity: The FMI provides the necessary features that Modelica®, Simulink® and SIMPACK®
models' can be transformed to an FMU.

Stability: FMI is expected to be supported by many simulation tools world wide. Implementing such
support is a major investment for tool vendors. Stability and backwards compatibility of the FMI
has therefore high priority. To support this, the FMI defines 'capability flags' that will be used by
future versions of the FMI to extend and improve the FMI in a backwards compatible way,
whenever feasible.

Implementation: FMUs can be written manually or can be generated automatically from a modeling
environment. Existing manually coded models can be transformed manually to a model
according to the FMI standard.

Processor independence: It is possible to distribute an FMU without knowing the target processor. This
allows to run an FMU on a PC, a Hardware-in-the-Loop simulation platform or as part of the
controller software of an ECU, e. g. as part of an AUTOSAR SWC. Keeping the FMU
independent of the target processor increases the usability of the FMU and is even required by
the AUTOSAR software component model. Implementation: using a textual FMU (distribute the C
source of the FMU).

Simulator independence: It is possible to compile, link and distribute an FMU without knowing the target
simulator. Reason: The standard would be much less attractive otherwise, unnecessarily
restricting the later use of an FMU at compile time and forcing users to maintain simulator
specific variants of an FMU. Implementation: using a binary FMU. When generating a binary
FMU, e. g. a Windows dynamic link library (.dll) or a Linux shared object library (.s0), the target
operating system and eventually the target processor must be known. However, no run-time
libraries, source files or header files of the target simulator are needed to generate the binary
FMU. As a result, the binary FMU can be executed by any simulator running on the target
platform (provided the necessary licenses are available, if required from the model or from the
used run-time libraries).

Small run-time overhead: Communication between an FMU and a target simulator through the FMI does
not introduce significant run time overhead. This is achieved by a new caching technique (to
avoid computing the same variables several times) and by exchanging vectors instead of scalar
quantities.

Small footprint: A compiled FMU (the executable) is small. Reason: An FMU may run on an ECU
(Electronic Control Unit, for example a micro processor), and ECUs have strong memory
limitations. This is achieved by storing signal attributes (names, units, etc.) and all other static

T Modelica is a registered trademark of the Modelica Association, Simulink is a registered trademark of the MathWorks Inc.,
SIMPACK is a registered trademark of SIMPACK AG.
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information not needed for model evaluation in a separate text file (= Model Description File) that
is not needed on the micro processor where the executable might run.

Hide data structure: The FMI for Model Exchange does not prescribe a data structure (a C struct) to
represent a model. Reason: the FMI standard shall not unnecessarily restrict or prescribe a
certain implementation of FMUs or simulators (whoever holds the model data), to ease
implementation by different tool vendors.

Support many and nested FMUs: A simulator may run many FMUs in a single simulation run and/or
multiple instances of one FMU. The inputs and outputs of these FMUs can be connected with
direct feed through. Moreover, an FMU may contain nested FMUs.

Numerical Robustness: The FMI standard allows that problems which are numerically critical (for
example time and state events, multiple sample rates, stiff problems) can be treated in a robust
way.

Hide cache: A typical FMU will cache computed results for later reuse. To simplify usage and to reduce
error possibilities by a simulator, the caching mechanism is hidden from the FMlusage of the
EMU. Reason: First, the FMI should not force an FMU to implement a certain caching policy.
Second, this helps to keep the FMI simple. Implementation: The FMI provides explicit methods
(called by the simulaterFMU environment) for setting properties that invalidate cached data. An
FMU that chooses to implement a cache may maintain a set of 'dirty' flags, hidden from the
simulator. A get method, e. g. to a state, will then either trigger a computation, or return cached
data, depending on the value of these flags.

Support numerical solvers: A typical target simulator will use numerical solvers. These solvers require
vectors for states, derivatives and zero-crossing functions. The FMU directly fills the values of
such vectors provided by the solvers. Reason: minimize execution time. The exposure of these
vectors conflicts somewhat with the 'hide data structure' requirement, but the efficiency gain
justifies this.

Explicit signature: The intended operations, argument types and return values are made explicit in the
signature. For example an operator (such as 'compute_derivatives') is not passed as an int
argument but a special function is called for this. The 'const' prefix is used for any pointer that
should not be changed, including 'const char*' instead of 'char*'. Reason: the correct use of the
FMI can be checked at compile time and allows calling of the C code in a C++ environment
(which is much stricter on ‘const’ as C is). This will help to develop FMUs that use the FMI in the
intended way.

Few functions: The FMI consists of a few, 'orthogonal’ functions, avoiding redundant functions that could
be defined in terms of others. Reason: This leads to a compact, easy to use, and hence
attractive API with a compact documentation.

Error handling: All FMI methods use a common set of methods to communicate errors.

Allocator must free: All memory (and other resources) allocated by the FMU are freed (released) by the
FMU. Likewise, resources allocated by the simulator are released by the simulator. Reason: this
helps to prevent memory leaks and runtime errors due to incompatible runtime environments for
different components.

Immutable strings: All strings passed as arguments or returned are read-only and must not be modified
by the receiver. Reason: This eases the reuse of strings.

Use C: The FMI is encoded using C, not C++. Reason: Avoid problems with compiler and linker
dependent behavior. Run FMU on embedded target.
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This version of the functional mock-up interface does not have the following desirable properties. They
might be added in a future version:

The interfaceFMI for Model Exchange is for ordinary differential equations in state space form
(ODE). It is not for a general differential-algebraic equation system. However, algebraic equation
systems inside the FMU are supported (for example the FMU can report to the environment to re-run
the current step with a smaller step size since a solution could not be found for an algebraic equation
system).

Special features as might be useful for multi-body system programs, like SIMPACK, are not included.

The interface is for simulation and for embedded systems. Properties that might be additionally
needed for trajectory optimization, for example derivatives of the model with respect to parameters
during continuous integration, are not included.

No explicit definition of the variable hierarchy in the XML file.

The number of states and number of event indicators are fixed for an FMU and cannot be changed.
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2. FMI Common Concepts for Model Exchange and Co-Simulation

In this chapter, the concepts are defined that are common for “model exchange” and for “co-simulation”.
In both cases, FMI defines an input/output block of a dynamic model where the distribution of the block,
the platform dependent header file, several access functions, as well as the schema files are identical.
The definitions that are specific to the particular case are defined in chapters 3 and 4.

Below, the term FMU (Functional Mock-up Unit) will be used as common term for a model in the “FMI for
model exchange” format, or a co-simulation slave in the “FMI for co-simulation” format. Note, the
interface supports several instances of one FMU.

21

FMI Application Programming Interface

This section contains the common interface definitions to execute functions of an FMU from a C
program.

Note, the following general properties hold for an FMU:

FMI functions of one instance don't need to be thread safe.

[For example, if the functions of one instance of an FMU are accessed from more than one thread,
the multi-threaded environment that uses the FMU must guarantee that the calling sequences of
functions defined in section 0 _and section 4.2.4. are used. The FMU itself does not implement any
services to support this.]

Instances of the same FMU and instances of different FMUs must not change settings of the runtime

environment, such as CPU control registers or global settings of the operating system.

[So functions of different FMU instances can be called safely in parallel. If an FMI function changes
for example the current working directory of its process, or the floating point control word of the CPU,
it must restore the previous value before return of the function. For x86 CPUs, the floating point
control word is set using the fldcw instruction. This can be used to switch on additional exceptions
such as "floating point division by zero". An FMU might temporarily change the floating point control
word and get notified on floating point exceptions internally, but has to restore the flag and clear the
floating point status word before return of the respective FMI function.]

2.1.1 Header Files and Naming of Functions

Three header files are provided that define the interface of an FMU. In all header files the convention is
used that all C functions and type definitions start with the prefix “fmi”:

e “fmiTypesPlatform.h
contains the type definitions of the input and output arguments of the functions. This header file must
be used both by the FMU and by the target simulator. If the target simulator has different definitions in
the header file (for example “typedef float fmiReal” instead of “typedef double fmiReal’),
then the FMU needs to be re-compiled with the header file used by the target simulator. Note, the
header file platform for which the model was compiled can be inquired in the target simulator with
fmiGetTypesPlatform, see section 2.1-42.1.4.

[Example for a definition in this header file:
typedef double fmiReal;

]

e “fmiFunctionTypes.h"
contains typedef£ definitions of all function prototypes of an FMU. When dynamically loading an FMU,
these definitions can be used to type-cast the function pointers to the respective function definition.
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[Example for a definition in this header file:
typedef fmiStatus fmiSetTimeTYPE (fmiComponent, fmiReal);

]

e “fmiFunctions.h’”
contains the function prototypes of an FMU that can be accessed in simulation environments and that
are defined in chapters 2, 3, and 4. This header file includes “fmiTypesPlatform.h ”and
“fmiFunctionTypes.h”. Note, the header file version number for which the model was compiled, can
| be inquired in the target simulator with fmiGetversion, see section 2-4-42.1.4.

[Example for a definition in this header file?:
| BliEsxpertFMI Export fmiSetTimeTYPE fmiSetTime;
]

The goal is that both textual and binary representations of FMUs are supported and that several FMUs
might be present at the same time in an executable (for example FMU A may use an FMU B). In order
for this to be possible, the names of the functions in different FMUs must be different or function pointers
must be used. To support the first variant macros are provided in “fmiFunctions.h” to build the actual
function names by using a function prefix that depends on how the FMU is shipped. Typically, FMU
functions are used as follows:

// FMU is shipped with C source code, or with static link library
| #define FEMI FUNCTION_PREFIX MyModel_

#include "fmiFunctions.h"

< usage of the FMU functions >

// FMU is shipped with DLL/SharedObject
| #define —FUNCTION _PREFI

#include "fmiFunctions.h"

< usage of the FMU functions >

‘ A function that is defined as “fmiGetReal” is changed by the macros to the actualfollowing function
name:

e FMU is shipped with C source code, or with static link library:
The constructed function name is “MyModel fmiGetReal”, in other words the function name is
prefixed with the model name and an “_". As FMI FUNCTION PREFIX the “modelldentifier” attribute
defined in “<fmiModelDescription:><ModelExchange’>, Or
“<fmiModelDescription:><CoSimulation”> is used, together with “_" at the end (see sections
3.3.1 and 4.3.1). A simulation environment can therefore construct the relevant function names by
generating code for the actual function call. In case of a static link library, the name of the library is
MyModel.lib on Windows, and libMyModel.a on Linux, in other words the “modelldentifier” attribute is
used as library name.

e FMU is shipped with DLL/SharedObject:
The constructed function name is “fmiGetReal”, in other words it is not changed. A simulation
environment will then dynamically load this library and will explicitly import the function symbols by
providing the FMI function names as strings. The name of the library is MyModel.dll on Windows or
MyModel.so on Linux, in other words the “modelldentifier” attribute is used as library name.

2 For Microsoft and Cygwin compilers, ‘FMI_Export®isdefinedas “* declspec (dllexport)*“and for Gnu-Compilers
“FMI_Export“isdefinedas“ attribute ((visibility("default")))"in orderto exportthe name for
dynamic loading. Otherwise it is an empty definition.
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[An FMU can be optionally shipped so that it basically contains only the communication to another tool
(needsExecutionTool = true, see section 4-3-1)-4.3.1). This is particularily common for co-simulation
tasks. In FMI 1.0, the function names are always prefixed with the model name and therefore a
DLL/Shared Object has to be generated for every model. FMI 2.0 improves this situation since model
names are no longer used as prefix in case of DLL/Shared Objects: Therefore one DLL/Shared Object
can be used for all models in case of tool coupling. If an FMU is imported into a simulation environment,
this is usually performed dynamically (based on the FMU name, the corresponding FMU is loaded during
execution of the simulation environment) and then it does not matter whether a model name is prefixed
or not.]

Since “modelIdentifier”is used as prefix of a C-function name it must fulfill the restrictions on C-
function names (only letters, digits and/or underscores are allowed). [For example if modelName =
“A.B.C*" then modelldentifier might be “A_B_C*]. Since “modelIdentifier” is also used as name in a
file system, it must also fulfill the restrictions of the targeted operating systemssystem. Basically, this
means that it should be short. For example the Windows API only supports full path-names of a file up to
260 characters (see: hitp://msdn-microsoft.comlen-

ushHibrary/aa365247%28\ S-85%29-aspxhttp://msdn.microsoft.com/en-
us/library/aa365247%28VS.85%29.aspx).

2.1.2 Platform Dependent Definitions (fmiTypesPlatform.h )

To simplify porting, no C types are used in the function interfaces, but the alias types defined in this
section. All definitions in this section are provided in the header file “fmiTypesPlatform.h ”

#define fmiTypesPlatform "standard32default"
A definition that can be inquired with fmiGetTypesPlatform. H-defineslt is used to uniquely

identify the platferm-for-which-this-header file is-provided--A-platform-is-a-combinationused for

compilation of machire—compiler—and-eperating-system-—a binary. [The “default” definition
“standard32” definesbelow is suitable for most common platforms. It is recommended to use this

“default” definition for all binary FMUs. Only for source code FMUs, a standard-32-bit
platform:change might be useful in some cases.]:

fmiComponent : 32bitan opaque object pointer

fmiComponentEnvironment: 32—bitan opaque object pointer

fmiFMUstate : 32—bitan opaque object pointer

fmivalueReference : 32Pbitvalue handle type

fmiReal : 64Pbitreal data type

fmiInteger : 32—bitinteger data type

fmiBoolean : 32—bitdatatype to be used with fmiTrue and
fmiFalse

fmiString : 32bit-pointer to a character string

fmiByte : —8Dbitsmallest addressable unit of the machine

(typically one byte)

typedef void* fmiComponent;
This is a pointer to an FMU specific data structure that contains the information needed to
process the model equations or to process the co-simulation of the respective slave. This data
structure is implemented by the environment that provides the FMU, in other words the calling
environment does not know its content and the code to process it must be provided by the FMU
generation environment and must be shipped with the FMU.

typedef void* fmiComponentEnvironment;
This is a pointer to a data structure in the simulation environment that calls the FMU. Via this


http://msdn.microsoft.com/en-us/library/aa365247%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa365247%28VS.85%29.aspx
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pointer, data from the modelDescription. XML file [(for example mapping of valueReferences to
variable names)] can be transferred between the simulation environment and the logger function
(see section 2.1.5).

typedef void* fmiFMUstate;
This is a pointer to a data structure in the FMU that saves the internal FMU state of the actual or
a previous time instant. This allows to restart a simulation from a previous FMU state (see section

2.1.7)2.1.8)

typedef unsigned int fmiValueReference;
This is a handle to a (base type) variable value of the model. Handle and base type (such as
fmiReal) uniquely identify the value of a variable. Variables of the same base type that have the
same handle, always have identical values, but other parts of the variable definition might be
different [(for example min/max attributes)].

All structured entities, like records or arrays, are “flattened” into a set of scalar values of type
fmiReal, fmiInteger etc. An fmivalueReference references one such scalar. The coding of
fmiValueReference is a “secret” of the environment that generated the FMU. The interface to
the equations only provides access to variables via this handle. Extracting concrete information
about a variable is specific to the used environment that reads the Model Description File in
which the value handles are defined.

If a function in the following sections is called with a wrong “fmivalueReference” value [(for
example setting a constant with a fmiSetReal (. .) function call)], then the function has to return
with an error (fmiStatus = fmiError, see section 2.1.3).

typedef double fmiReal ;  // Reatnumber {64 bitsyData type for floating
point real numbers
typedef int fmiInteger; // Irnteger number {32 bits)yData type for signed

integer numbers
typedef int fmiBoolean; // Data type for Boolean number

(32—bit,numbers

// (only two values: fmiFalse, fmiTrue)

typedef const char* fmiString ; // €haeraseter stringData type for character

strings
// ('"\0' terminated, UTF8 encoded)
typedef char fmiByte ;o // Byt

8—bits)yData type for the smallest

addressable unit,

// typically one byte

#define fmiTrue 1

#define fmiFalse O
These are the basic data types used in the interfaces of the C functions. More data types might
be included in future versions of the interface. In order to keep flexibility, especially for embedded
systems or for high performance computers, the exact data types or the word length of a number
are not standardized. Instead, the precise definition (in other words the header file
“fmiTypesPlatform.h ”)is provided by the environment where the FMU shall be used. In most
cases, the definition above will be used. If the target environment has different definitions and
the FMU is distributed in binary format, it must be newly compiled and linked with this target
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header file.

If an fmiString variable is passed as input argument to a FMI function and the FMU needs
to use the string will-be-used-afterlater, the FMI function has-returned;must copy the string must
be-copied{nrot-only-the-peinter)before it returns and steredstore it in the internal FMU memory,
because there is no guarantee for the lifetime of the string after the function has returned.

If an fmistring variable is passed as output argument from a FMI function and the string
shall be used in the target environment, the target environment must copy the whole string must
be-copied-(not only the pointer). The memory of this string may be deallocated by the next call to
any of the FMI interface functions (the string memory might also be just a buffer, that is reused)

2.1.3 Status Returned by Functions

This section defines the “status” flag (an enumeration of type fmistatus defined in file
“fmiFunctionTypes.h”) that is returned by all functions to indicate the success of the function call:

typedef enum { fmiOK,
fmiWarning,
fmiDiscard,
fmiError,
fmiFatal,
fmiPending } fmiStatus;
Status returned by functions. The status has the following meaning

e fmiOK — all well

e fmiWarning — things are not quite right, but the computation can continue. Function “1ogger” was
called in the model (see below) and it is expected that this function has shown the prepared
information message to the user.

e fmiDiscard — this return status is only possible, if explicitly defined for the corresponding function
(currently®: fmiSetReal, fmiSetInteger, fmiSetContinuousStates, fmiGetReal,
fmiGetDerivatives, fmiGetEventIndicators, fmiDoStep):

For “model exchange”: It is recommended to perform a smaller step size and evaluate the model
equations again, for example because an iterative solver in the model did not converge or because a
function is outside of its domain (for example sqrt(<negative number>)). If this is not possible, the
simulation has to be terminated.

For “co-simulation”; fmiDiscard is returned also if the slave is not able to return the required
status information. The master has to decide if the simulation run can be continued.

In both cases, function “logger” was called in the FMU (see below) and it is expected that this
function has shown the prepared information message to the user if the FMU was called in debug
mode (1oggingOn = fmiTrue). Otherwise, “1ogger” should not show a message.

e fmiError —the FMU encountered an error. The simulation cannot be continued with this FMU
instance.
For “model exchange”: £miFreeMedelinstancefmiFreelnstance must be called afterwards.
For “co-simulation”; If one of the functions (except fmiDoStep) returns fmiError, the simulation
cannot be continued and fmiFreeInstance must be called afterwards.
Further processing is possible after this call; especially other FMU instances are not affected.
Function “1ogger” was called in the FMU (see below) and it is expected that this function has shown

3 fmiSetReal, fmiSetinteger and fmiSetContinuousStates could check whether the input arguments are in their validity range. If
not, these functions could return with fmiDiscard.
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the prepared information message to the user.

e fmiFatal —the model computations are irreparably corrupted for all FMU instances. Function
“logger” was called in the FMU (see below) and it is expected that this function has shown the
prepared information message to the user. It is not possible to call any other function for any of the
FMU instances.

e fmiPending — is returned only from the co-simulation interface, if the slave executes the function in
an asynchronous way. That means the slave starts to compute but returns immediately. The master
has to call fmiGetStatus (..., fmiDoStepStatus) to determine, if the slave has finished the
computation. Can be returned only by fmiDoStep and by fmiGetStatus (see section 4-2.4%.4.2.3).

2.1.4 Inquire Platform and Version Number of Header Files

This section documents functions to inquire information about the header files used to compile its
functions.

const char* fmiGetTypesPlatform() ;
Returns the rame-of-the-set-of (compatible)}-platforms-ofstring to uniquely identify the
“fmiTypesPlatform.h” header file which-was-used to-compilefor compilation of the functions of
the FMU. The function returns a pointer to thea static variable “£miplatfermstring specified by
“fmiTypesPlatform” defined in this header file. The standard header file, as documented in this
specification, has version“standard32fmiTypesPlatform set to “default” (so this function
usually returns “standard32default”).

const char* fmiGetVersion();
Returns the version of the “fmiFunctions.h” header file which was used to compile the
functions of the FMU. The function returns “fmiversion” which is defined in this header file. The
standard header file as documented in this specification has version “2.0” (so this function
usually returns “2.0%).

2.1.5 Creation, Destruction and Logging of FMU Instances

This section documents functions that deal with instantiation, destruction and logging of FMUs.

fmiComponent £fmitnstantiat fmiInstantiate (fmiString instanceName,

fmiType fmuType,
fmiString fmuGUID,

fmiString fmuResourcelocation,

const fmiCallbackFunctions* functions,
fmiBoolean visible,
fmiBoolean loggingOn) ;

typedef enum {fmiModelExchange,

fmiCoSimulation

}fmiType;

functi donti | fined below:
ThefunctionsreturnThe function returns a new instance of an FMU. If a null pointer is

returned, then instantiation failed. In that case, “functions->1ogger” was called with
detailed information about the reason. An FMU can be instantiated many times-— (provided
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capability flag canBeInstantiatedOnlyOncePerProcess = false).

This function must be called successfully, before any of the following functions can be called.
For co-simulation, this function call has to perform all actions of a slave which are necessary
before a simulation run starts (for example loading the model file, compilation...).

Argument instanceName is a unique identifier for the FMU instance. It is used to name the
instance, for example in error or information messages generated by one of the fmixxx
functions. It is not allowed to provide a null pointer and this string must be non-empty (in
other words must have at least one character that is no white space). [If only one FMU is
simulated, as instanceName attribute modelName or <ModelExchange/CoSimulation
~modelIdentifier=".."> fromthe XML schema fmiModelDescription might be
used.]

Argument fmuType defines the type of the FMU:

e = fmiModelExchange: FMU with initialization and events; between events simulation of
continuous systems is performed with external integrators from the environment
(see section 3).

e = fmiCoSimulation: Black box interface for co-simulation without events in the

environment (see section 4).

Argument fmuGUID is used to check that the modelDescription.XML file (see section 2.3) is
compatible with the C code of the FMU. It is a vendor specific globally unique identifier of the
XML file (for example it is a “fingerprint” of the relevant information stored in the XML file). It
is stored in the XML file as attribute “guid” (see section 2.2.1) and has to be passed to the
fmilastantiatexXoXfmilnstantiate function via argument £muGUID. It must be identical to the
one stored inside the fmilnstantiatexoXXfmilnstantiate function. Otherwise the C code and the
XML file of the FMU are not consistent to each other. This argument cannot be null.

Argument fmuResourceLocation is an URI according to the IEFEF-REC3986IETF RFC3986

syntax to indicate the abselute-pathlocation to the “Reseurceresources” directory of the

unzipped FMU archive. The following pretecolsschemes must be understood_ by the FMU:

o Mandatory: “file:/2” with absolute path (either including or omitting the authority
component

o Optional: “http:#2%", “https:/2”, “ftp4~”

o Reserved: “fmi:/Z” for FMI for PLM.

[Example: An FMU is unzipped in directory “C:\temp\MyFMU”, then

fmuResourcelLocation = “"file://:///C:/temp/MyFMU/resources’—Functions

fmilnstantiateModel-andfmilnstantiateSlave-are” or "file:/C./temp/MyFMU/resources”.

Function fmilnstantiate is then able to read all needed resources from this directory, for

example maps or tables used by the FMU.]

Argument functions prevideprovides callback functions to be used from the FMU functions
to utilize resources from the environment (see type fmiCallbackFunctions below).

Argument visible = fmiFalse defines that the interaction with the user should be
reduced to a minimum (no application window, no plotting, no animation, etc.), in other words
the FMU is executed in batch mode. If visible = fmiTrue, the FMU is executed in
interactive mode and the FMU might require to explicitly acknowledge start of simulation /
instantiation / initialization (acknowledgment is non-blocking).

If loggingOn=fmiTrue, debug logging is enabled. If 1oggingOn=fmiFalse, debug logging
is disabled.


http://datatracker.ietf.org/doc/rfc3986/
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typedef struct {

void (*logger) (fmiComponentEnvironment componentEnvironment,
fmiString instanceName,
fmiStatus status,
fmiString category,
fmiString message, ...);
void* (*allocateMemory) (size_t nobj, size_t size);
void (*freeMemory) (void* obj);
void (*stepFinished) (fmiComponentEnvironment componentEnvironment,
fmiStatus status);
fmiComponentEnvironment componentEnvironment;

} fmiCallbackFunctions;

The struct contains pointers to functions provided by the environment to be used by the
FMU. Additionally, a pointer to the environment is provided (componentEnvironment) that
needs to be passed to the “logger” function, in order that the logger function can utilize data
from the environment, such as mapping a valueReference to a string. In the unlikely case
that fmiComponent is also needed in the logger, it has to be passed via argument
componentEnvironment. Argument componentEnvironment may be a null pointer.

The componentEnvironment pointer is also passed to the stepFinished (. .) functionin
order that the environment can provide an efficient way to identify the slave that called
stepFinished(..).

In the default fmiFunctionTypes.h file, typedefs for the function definitions are present to
simplify the usage. This is non-normative. The functions have the following meaning:

Function logger:

Pointer to a function that is called in the FMU, usually if a fmixxx function does not behave
as desired. If “logger” is called with “status = fmiOK”, then the message is a pure
information message. “instanceName” is the instance name of the model that calls this
function. “category” is the category of the message. The meaning of “category” is defined
by the modeling environment that generated the FMU. Depending on this modeling
environment, none, some or all allowed values of “category” for this FMU are defined in the
modelDescription.XML file via element
f*<fmiModelDescription+><LogCategories’>", see section 62.2.4. Only messages are
provided by function 1ogger that have a category according to a call to
fmiSetDebuglLogging (see below). Argument “message” is provided in the same way and
with the same format control as in function “print £” from the C standard library. [Typically,
this function prints the message and stores it optionally in a log file.]

All string-valued arguments passed by the FMU to the logger may be deallocated by the
FMU directly after function 1ogger returns. The environment must therefore create copies of
these strings if it needs to access these strings later.

The logger function will append a line break to each message when writing messages
after each other to a terminal or a file (the messages may also be shown in other ways, for
example as separate text-boxes in a GUI). The caller may include line-breaks (using "\n")
within the message, but should avoid trailing line breaks.

Variables are referenced in a message with “#<Type><ValueReference>#" where
<Type>is “r" for fmiReal, “iI’ for fmiInteger, “b” for fmiBoolean and “s” for fmiString. If
character “#’shall be included in the message, it has to be prefixed with “#”, so “#” is an
escape character. [Example:

“wr
|



void
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A message of the form

“#r1365# must be larger than zero (used in IO channel ##4)”
might be changed by the 1ogger function to

“pbody.m must be larger than zero (used in IO channel #4)”
if “body.m” is the name of the fmiReal variable with fmiValueReference =
1365.]

Function allocateMemory:

Pointer to a function that is called in the FMU if memory needs to be allocated. If attribute
“canNotUseMemoryManagementFunctions = true”in
<fmiModelDescription+><ModelExchange / CoSimulation;>, then function
allocateMemory is not used in the FMU and a void pointer can be provided. If this attribute
has a value of “false” (which is the default), the FMU must not use malloc, calloc or
other memory allocation functions. One reason is that these functions might not be available
for embedded systems on the target machine. Another reason is that the environment may
have optimized or specialized memory allocation functions. allocateMemory returns a
pointer to space for a vector of nobj objects, each of size “size” or NULL, if the request
cannot be satisfied. The space is initialized to zero bytes [(a simple implementation is to use
calloc from the C standard library)].

Function freeMemory:

Pointer to a function that must be called in the FMU if memory is freed that has been
allocated with allocateMemory. If a null pointer is provided as input argument ob7, the
function shall perform no action [(a simple implementation is to use free from the C
standard library; in ANSI C89 and C99, the null pointer handling is identical as defined
here)]. If attribute “canNotUseMemoryManagementFunctions = true”in
<fmiModelDescription+><ModelExchange / CoSimulation;>, then function
freeMemory is not used in the FMU and a veidnull pointer can be provided.Funetion

stepFinished-

Function stepFinished:

Optional call back function to signal if the computation of a communication step of a co-
simulation slave is finished. A null pointer can be provided. In this case fmiDoStep has
to be carried out synchronously. If a pointer to a function is provided, it must be called
by the FMU after a completed communication step.

fmiFreelInstance (fmiComponent c);

Disposes the given instance, unloads the loaded model, and frees all the allocated memory
and other resources that have been allocated by the functions of the FMU interface. If a null

“« _n

pointer is provided for “c”, the function call is ignored (does not have an effect).

fmiStatus fmiSetDebuglogging (fmiComponent ¢, fmiBoolean loggingOn,

size_t nCategories, const fmiString categories([]);
If loggingOn=£fmiTrue, debug logging is enabled, otherwise it is switched off.
If loggingOn=fmiTrue and nCategories > 0, then only debug messages according to
the categories argument shall be printed via the logger function. Vector categories has
nCategories elements. The allowed values of “category” are defined by the modeling
environment that generated the FMU. Depending on the generating modeling environment,
none, some or all allowed values for “categories” for this FMU are defined in the
modelDescription.XML file via element “fmiModelDescription.LogCategories”, see
section 0:2.2.4.
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2.1.6 Initialization, Termination, and Resetting an FMU

This section documents functions that deal with initialization, termination, and resetting of an FMU.

fmiStatus fmiSetupExperiment (fmiComponent c,

fmiBoolean toleranceDefined,
fmiReal tolerance,
fmiReal startTime,
fmiBoolean stopTimeDefined,
fmiReal stopTime) ;

Informs the FMU to setup the experiment. This function can be called after
fmiInstantiate and before fmiEnterInitializationMode is called. Arguments
toleranceDefined and tolerance depend on the FMU type:

fmuType = fmiModelExchange:
If “tolerancebDefined = fmiTrue” then the modelis called with a numerical
integration scheme where the step size is controlled by using “tolerance” for error
estimation (usually as relative tolerance). In such a case, all numerical algorithms used
inside the model (for example to solve non-linear algebraic equations) should also
operate with an error estimation of an appropriate smaller relative tolerance.

fmuType = fmiCoSimulation:

If “toleranceDefined = fmiTrue”then the communication interval of the slave is
controlled by error estimation. In case the slave utilizes a numerical integrator with
variable step size and error estimation, it is suggested to use “tolerance” for the error
estimation of the internal integrator (usually as relative tolerance).

An FMU for Co-Simulation might ignore this argument.

The arguments startTime and stopTime can be used to check whether the model is valid
within the given boundaries or to allocate memory which is necessary for storing results.
Argument startTime is the starting time of initializaton. If stopTimeDefined = fmiTrue,
then stopTime is the defined stop time and if the environment tries to compute past
stopTime the FMU has to return fmiStatus = fmiError. If stopTimeDefined =
fmiFalse, then no stop time is defined and argument stopTime is meaningless.

fmiStatus fmiEnterInitializationMode (fmiComponent c);
Informs the FMU to enter Initialization Mode. Before calling this function, all variables with
attribute <Scalarvariable initial = "exact" Oor "approx"> can be set with the
“fmiSetxxx” functions (the Scalarvariable attributes are defined in the Model
Description File, see section 2.2.7). Setting other variables is not allowed. Furthermore,
fmiSetupExperiment must be called at least once before calling

fmiEnterInitializationMode, in order that startTime is defined.

fmiStatus fmiExitInitializationMode (fmiComponent c);
Informs the FMU to exit Initialization Mode.
For fmuType = fmiModelExchange, this function switches off all initialization equations
and the FMU enters implicitely Event Mode, that is all continuous-time and active discrete-
time equations are available.

fmiStatus fmiTerminate (fmiComponent c);
Informs the FMU that the simulation run is terminated. After calling this function, the final
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values of all variables can be inquired with the fmiGetxxX (..) functions. It is not allowed
to call this function after one of the functions returned with a status flag of fmiError or
fmiFatal.

fmiStatus fmiReset (fmiComponent c);
Is called by the environment to reset the FMU after a simulation run. Before starting a new
run, fmiEnterInitializationMode has to be called.

2-4:62.1.7 Getting and Setting Variable Values

All variable values of an FMU are identified with a variable handle called “value reference”. The handle is
defined in the modelDescription.xML file (as attribute “valueReference” in element
“ScalarvVariable”). Element “valueReference” might not be unique for all variables. If two or more
variables of the same base data type (such as fmiReal) have the same valueReference, then they
have identical values but other parts of the variable definition might be different [(for example min/max
attributes)].

The actual values of the variables that are defined in the modelDescription.XML file can be inquired
after initialization-of the FMU-calling fmiEnterInitializationMode with the following functions:

fmiStatus fmiGetReal (fmiComponent c, const fmiValueReference vr[], size t nvr,
fmiReal valuel]);

fmiStatus fmiGetInteger (fmiComponent ¢, const fmivValueReference vr[], size t nvr,
fmiInteger valuel[]);

fmiStatus fmiGetBoolean (fmiComponent c, const fmiValueReference vr[], size_t nvr,
fmiBoolean valuel[]);

fmiStatus fmiGetString (fmiComponent c, const fmiValueReference vr[], size_t nvr,
fmiString valuel]):;

Get actual values of variables by providing thetheir variable handlesreferences. [These functions

are especially used to get the actual values of output variables if a model is connected with other

models. Since state derivatives are also ScalarVariables, it is possible to get the value of a state
derivative. This is useful when connecting FMUs together. Furthermore, the actual value of every
variable defined in the modelDescription. XML file can be determined at the actually defined time
instant (see section 2-2-72.2.7).]

o Argument “vr” is a vector of “nvr” value handles that define the variables that shall be
inquired.

e Argument “value” is a vector with the actual values of these variables.

o The strirgstrings returned by fmiGetString must be copied in the target environment,
because the allocated memory for this-stringthese strings might be deallocated by the next call
to any of the fmi interface functions or it might be an internal string buffer that is reused.

e Note: fmiStatus = fmiDiscard is possible for fmiGetReal only, but not for
fmiGetInteger, fmiGetBoolean, fmiGetString, because these are discrete-time variables
and their values can only change at an event instant where fmiDiscard does not make
sense.

It is also possible to set the values of certain variables at particular instants in time using the following
functions:

fmiStatus fmiSetReal (fmiComponent c, const fmiValueReference vr[], size_t nvr,
const fmiReal valuel]);

fmiStatus fmiSetInteger (fmiComponent c, const fmiValueReference vr[], size_t nvr,
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const fmilInteger valuel[]);

fmiStatus fmiSetBoolean (fmiComponent c, const fmiValueReference vr([], size_t nvr,
const fmiBoolean valuel[]);

fmiStatus fmiSetString (fmiComponent c, const fmiValueReference vr[], size_t nvr,
const fmiString valuel]);

Set independent parameters, inputs, start values and re-initialize caching of variables that

depend on these variables.

e Argument “vr” is a vector of “nvr” value handles that define the variables that shall be set.

e Argument “value” is a vector with the actual values of these variables.

e All strings passed as arguments to fmiSetString must be copied inside this function,
because there is no guarantee of the lifetime of strings, when this function returns.

o Note: fmiStatus = fmiDiscard is only possible for fmiSetReal and fmiSetInteger.

Restrictions on using the “fmiSetReal/Integer/Boolean/String” functions
o For model exchange (see also section 3-2:40):

1. The setting is with respect to the time defined with the last call to fmiSetTime.

2. These functions shall not be called on constants {(<Scalarvariable
~variability="constant"):">).

3. These functions can be called on inputs {(<ScalarVariable —causality =
"input™)">), and on tunable parameters (causality="parameter",
variability="tunable"), after calling £mifnstantiateMedetfmilnstantiate and
before £miFreeMedelfmiFreelnstance.

4. Additionally, these functions can be called on variables that have a “<ScalarvVariable
<{ype>/> <Real/Integer/Boolean/String/Enumeration start’=...>" attribute,
after calling £mifnstantiateMedelfmiInstantiate and before calling

£oma T
THtE=—

aitiatizeMedelfmiEnterInitializationMode. If these functions are not called
on a variable with a “start” attribute, then the “start” value of this variable in the C
functions is this “start” value (so this start value must be stored both in the XML file
and in the C functions).

e For co-simulation (see also section 64.2.4):

1. The setting is with respect to the beginning of a communication time step.
2. These functions can only be called after calling

nstantiateStavefmiInstantiate and before

s StavefmiFreeInstance.

3. These functions shall not be called on constants {(<ScalarVariable ~variability =
"constant!}">).

4. These functions can be called on inputs {(<ScalarVariable -causality =
"input}">), and on tunable parameters (causality="parameter",
variability="tunable"), after calling £mifrnstantiateStiavefmilnstantiate and
before £miTerminateSiavefmiTerminate.

5. For non-tunable parameters {(<ScalarVariable —causality = "parameter'“and

iables" variability = "fixed™)">) the functions can only be called
between £mifnstantiateStave andfmitnitializeStavefmilnstantiate and

Q |

LS EPS
oCaTratvat

fmiExitInitializationMode.
If no set function is called for a variable, it is initialized by the slave to its default value.

For co-simulation FMUs, additional functions are defined in section 4-2.31.1.1 to set and inquire
derivatives of variables with respect to time in order to allow interpolation.
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24-72.1.8 Getting and Setting the Complete FMU State

The FMU has an internal state consisting of all values that are needed to continue a simulation. This
internal state consists especially of the values of the continuous-time states, discrete-time states,
iteration variables, parameter values, input values, delay buffers, file identifiers and FMU internal status
information. With the functions of this section, the internal FMU state can be copied and the pointer to
this copy is returned to the environment. The FMU state copy can be set as actual FMU state, in order to

continue the simulation from it. [Examples;forusing-thisfeature

[Examples, for using this feature:

o For iterativeforvariable step-size control of co-simulation master algorithms (get the FMU state for every
accepted communication step; if the follow-up step is not accepted, restart co-simulation from this FMU
state).

e For nonlinear Kalman filters (get the FMU state just before initialization; in every sample period, set new
continuous states from the Kalman filter algorithm based on measured values; integrate to the next sample
instant and inquire the predicted continuous states that are used in the Kalman filter algorithm as basis to
set new continuous states).

e For nonlinear model predictive control (get the FMU state just before initialization; in every sample period,
set new continuous states from an observer, initialize and get the FMU state after initialization. From this
state, perform many simulations that are restarted after the initialization with new input signals proposed by
the optimizer).]

Furthermore, the FMU state can be serialized and copied in a byte vector: [This can be, for example
used to perform an expensive steady-state initialization, copy the received FMU state in a byte vector
and store this vector on file. Whenever needed, the byte vector can be loaded from file, can be
deserialized and the simulation is restarted from this FMU state, in other words from the steady-state
initialization.]

fmiStatus fmiGetFMUstate (fmiComponent c, fmiFMUstate* FMUstate);
fmiStatus fmiSetFMUstate (fmiComponent c, fmiFMUstate FMUstate);
fmiStatus fmiFreeFMUstate (fmiComponent c, fmiFMUstate* FMUstate);

fmiGetFMUstate makes a copy of the internal FMU state and returns a pointer to this copy
(FMUstate). If on entry *FMUstate == NULL, a new allocation is required. If *FMUstate !=
NULL, then *FMUstate points to a previously returned FMUstate that has not been modified
since. In particular, fmiFreeFMUstate had not been called with this FMUstate as an argument.
[Function fmiGetFMUstate typically reuses the memory of this FMUstate in this case and
returns the same pointer to it, but with the actual FMUstate.]

fmiSetFMUstate copies the content of the previously copied FMUstate back and uses it as
actual new FMU state. The FMUstate copy does still exist.

fmiFreeFMUstate frees all memory and other resources allocated with the fmiGetFMUstate
call for this FMUstate. The input argument to this function is the FMUstate to be freed. If a null
pointer is provided, the call is ignored. The function returns a null pointer in argument FMUstate.

These functions are only supported by the FMU, if the optional capability flag
eanGetAndSetFMUstatein-<fmiModelDescription+> <ModelExchange / CoSimulation
canGetAndSetFMUstate in = "true"> in the XML file is explicitly set to true (see sections
3.3.1 and 4.3.1).

fmiStatus fmiSerializedFMUstateSize (fmiComponent c, fmiFMUstate FMUstate,

size t *size);
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fmiStatus fmiSerializeFMUstate (fmiComponent c, fmiFMUstate FMUstate,
fmiByte serializedStatel[], size t size);
fmiStatus fmiDeSerializeFMUstate (fmiComponent c,
const fmiByte serializedStatel],
size t size, fmiFMUstate* FMUstate);
fmiSerializedFMUstateSize returns the size of the byte vector, in order that FMUstate can
be stored in it. With this information, the environment has to allocate an fmiByte vector of the
required length size.

fmiSerializeFMUstate serializes the data which is referenced by pointer FMUstate and
copies this data in to the byte vector serializedState of length size, that must be provided by
the environment.

fmiDeSerializeFMUstate deserializes the byte vector serializedsState of length size,
constructs a copy of the FMU state and returns FMUstate, the pointer to this copy. [The
simulation is restarted at this state, when calling fmiSetFMUState with FMUstate.]

These functions are only supported by the FMU, if the optional capability flags
canGetAndSetFMUstate and canSerializeFMUstate in
<fmiModelDescription+><ModelExchange / CoSimulation> in the XML file are explicitly
set to true (see sections 3.3.1 and 4.3.1).

2-182.1.9 Getting Partial Derivatives

It is optionally possible to provide evaluation of partial derivatives irfor an FMU. For Model Exchange,
this means computing the partial derivatives at a particular time instant. For Co-Simulation, this means to
compute the partial derivatives at a particular communication point. Twe-funections-areOne function is
provided {Hto-computeto compute directional derivatives. This function can be used to construct the
desired partial derivative matrices-and-{(2)-to-compute-directional-partial-derivatives.

fmiStatus £miGetPartiatberivativesfmiGetDirectionalDerivative (fmiComponent c,

const fmiValueReference vUnknown ref[], size t nUnknown,

e Q4 E=EET (k. Mo+ v =1 mant) [
freiStetus— tMatrixhterent)
Ffrna O~~~ T 70 v~ A Ao A AT N 7d A~
e e S R B R L o e e
const fmiValueReference vKnown ref[] , size t nKnown,
T gk Ao+ Frna Tt~y e
e B e e
FriTrteger +-const fmiReal watwe)y-dvKnownl|],
FaE A e S e fmiReal

dvUnknown[])

X 1) =508, 00, 0

YCont (t) gcont (X(t) ucont (t) udlSL‘ (t) t)
This function computes the dlrectlonalwh&eum%eenunuee&mput&eﬁtype%eai—umape
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datarTheA, B, derivatives of an FMU. An FMU has different Modes [Initialization, Event
and Continuous-Time Mode] and in every Mode an FMU might be described by different
equations and different unknowns. The precise definitions are given in the mathematical
descriptions of Model Exchange (section 3.1) and Co-Simulation (section 4.1). In every Mode, the
general form of the FMU equations are:

Vunknown = h(vknown' Vrest)

®  Vy.knowndS the vector of unknown Real variables computed in the actual Mode

[for example continuous-time outputs and state derivatives in Continuous-Time Mode, or
Real (continuous-time and discrete-time) outputs, and state derivatives in Event Mode].

°*  Viqown S the vector of Real input variables of function h that changes its value in the actual
Mode [for example continuous-time inputs in Continuous-Time Model.

* v, is the set of input variables of function h that either changes its value in the actual Mode
but are non-Real variables, or do not change their values in this Mode, but change their
values in other Modes [for example discrete-time inputs in Continuous-Time Mode].

If the capability attribute “providesDirectionalDerivative”is true,

fmiGetDirectionalDerivative computes a linear combination of the partial derivatives of h
with respect to the selected input variables v ,own:
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oh

AVyprown = Vinown

a known
Accordingly, it computes the directional derivative vector Av,,,xnown_(dvUnknown) from the seed

vector Avy,own(dvKnown).

[The variable relationships are different in different modes. For example, during Continuous-Time
Mode, a continuous-time output y does not depend on discrete-time inputs (because they are
held constant between events). However, at Event Mode, y depends on discrete-time inputs.]

The function may compute the directional derivatives by numerical differentiation taking into

account the sparseness of the matrixequation system, or (preferred) by analytic derivatives—via

Example:
Assume an FMU has the output equations
1] _ [gl(xt Uy, Uz, Uy)
a g2(x,uy)

and this FMU is connected, so that y,,u,,us; appear in an algebraic loop. Then the nonlinear
solver needs a Jacobian and this Jacobian can be computed (without numerical
differentiation) provided the partial derivative of y, with respect to u,_and u,_is available.
Depending on the environment where the FMUs are connected, these derivatives can be

provided
e—with one wrapper function around function fmiGetDirectionalDerivative to compute the

directional derivatives with respect to these two variables (in other words v, xnown = V1.
Vinown = {Uy,U3}) and then the environment calls this wrapper function with Av,,..» = {1,0}.to
compute the partial derivative with respect to u,_and Avy,,... = {0,1}_to compute the partial

derivative with respect to u, orNumeHea#mtegrate#&eﬁst#methed&need—the%maw

(b) with two direct function calls of fmiGetDirectionalDerivative (in other words

Vunknown = Y10 Vknown = U1, AVknown = 1..8Nd Vyngnown = Y1, Vknown = Uzs AVknown = 1).

Note, a direct implementation of this function with analytic derivatives provides:

(a) The directional derivative for all input variables;

. 0 0 0 0
so in the above example: Ay, = I8 A+ L8 Ay ==L & - Au, +ﬁ-Au4
Ox ou, Ou, Ou,

(b) Initializes all seed-values to zero;

so in the above example: Ax=Au, = Au, =Au, =0

(c) Computes the directional derivative with the seed-values provided in the function
arguments; so in the above example: Avy,inown = Ay, (Ax = 0,Auy = 1,Aus = 1,Au, = 0)
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o

O

% (t) = f(X(l), ucont (t)ﬁ udisc (t)7 t)
YCont (t) = gcont (X(t)9 u(:(mt (t)7 udisc (t)9 t)

= hEXEi a’ Yoo (i a’ W iic Ei )’i)

[Note, function fmiGetDirectionalDerivative can be utilized for the following purposes:

e Numerical integrators of stiff methods need matrix g—fL
X
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e [fthe FMU is connected with other FMUs, the partial derivatives of the state derivatives and outputs with
respect to the continuous states and the inputs are needed in order to compute the Jacobian for the
system of the connected FMUSs.

e [fthe FMU shall be linearized, the same derivatives as in the previous item are needed.

e [fthe FMU is used as the model for an extended Kalman filter, Z—f and % are needed.
X X

If a dense matrix shall be computed, the columns of the matrix can be easily constructed by succe ssive

f
calls of fmiGetPartialDerivatives. For example, constructing the system Jacobian A = a— as dense

ox
matrix can be performed in the following way (in pseudo-code notation):
m = M fmiInstantiate ("m", ...) // "m" 1is the instance name
// "™ " is the MODEL IDENTIFIER
nx = ... // number of states, from XML file

// If required at this step, compute the Jacobian as dense matrix

// Set time, states and inputs

M fmiSetTime (m, time)

M fmiSetContinuousStates (m, x, nx)

M fmiSetReal/Integer/Boolean/String(m, ...)

// Construct the Jacobian elements A[:,:] columnwise

for i in 1:nx loop

M fmiGetDirectionalDerivative (m, x ref[i], 1, xd ref, nx, 1.0, ci);

Al:,1] = ci

end for;

If the sparsity of a matrix shall be taken into account, then the matrix can be constructed in the following
way:

1. The incidence information of the matrix (whether an element is zero or not zero) is extracted from the

xml file from element <ModelStructure>.

2. A so called graph coloring algorithm is employed to determine the columns of the matrix that can be
computed by one call of fmiGetDirectionalDerivative. Efficient graph coloring algorithms are freely
available, such as library ColPack (http.//www.cscapes.org/coloringpage/) written in C/C++ (LGPL),
or the routines by Coleman, Garbow, Moré: “Software for estimating sparse Jacobian matrices’,
ACM Transactions on Mathematical Software - TOMS , vol. 10, no. 3, pp. 346-347, 1984. See e.q.
http://www.netlib.org/toms/618.

3. For the columns determined in (2), one call to fmiDirectionalDerivative is made. After each such call,
the elements of the resulting directional derivative vector are copied into their correct locations of the
partial derivative matrix.

More details and implementational notes are available from (Akesson et.al. 2012).

1

2.2 FMI Description Schema

All static information related to an FMU is stored in the text file modelDescription.xML in XML format.
Especially, the FMU variables and their attributes such as name, unit, default initial value etc. are stored
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in this file. The structure of this XML file is defined with the schema file “fmiModelDescription.xsd”.
This schema file utilizes the following helper schema files:

fmiAnnotation.xsd
fmiAttributeGroups.xsd

fmiScalarVariable.xsd
fmiType.xsd
fmivVariableDependency.xsd
fmiUnit.xsd

In this section these schema files are discussed. The normative definition are the above mentioned
schema files*. Below, optional elements are marked with a “dashed” box. The required data types (like:

xs:normalizedString) are defined in the XML-schema standard: hitp:/Awww-w3-org/TROMLschema-
2Lhttp://www.w3.0org/TR/XMLschema-2/. The types used in the fmi schema files are:

XML Description (http:/Awwww3.org/TRAXMLschema- Mapping to C
2thttp://www.w3.org/TR/XMLschema-2/)
xs:double IEEE double-precision 64-bit floating point type double

[In order to not loose precision, a number of this type
should be stored on an XML file with at least 16
significant digits; for example 2/3 should be stored as
0.6666666666666667]

xs:int Integer number with maximum value 2147483647 and int
minimum value -2147483648 (32 bit Integer)

xs:unsignedint Integer number with maximum value 4294967295 and unsigned int
minimum value 0 (unsigned 32 bit Integer)

xs:boolean Boolean number. Legal literals: false, true, 0, 1 char

xs:string Any number of characters char*®

xs:normalizedString | String without carriage return, line feed, and tab characters | char*

xs:dateTime Date, time and time zone (for details see the link above). tool specific

Example: 2002-10-23T12:00:00Z
(noon on October 23, 2002, Greenwich Mean Time)

The first line of an XML file, such as modelDescription.xml, must contain the encoding scheme of the
XML file;-sueh-as. It is required that the encoding scheme is always UTF-8:

<?XML version="1.0" encoding="UTF-8"?>

are"1SO-8859-1"or“UTF-8"-The FMI schema files (* xsd) are also stored in “UTF 8”.
[Note, the definition of an encoding scheme is a prerequisite, in order for the XML file to contain letters
outSIde of the 7 bit ANSI ASCII character set, such as German um/auts or ASIan characters H-anether

#ansfe;med%%&a&mg—them—#em—ﬂe—beea&seFuﬂhermore note the FMI ca///ng lnterface

requires that strings are encoded in UTF-8._Since the *.xml files are also required to be encoded in UTF-
8, string variables need not to be transformed when reading from the xml-files in to C string variables.].

The special values NAN, +INF, -INF for variables values are not allowed in the FMI xml files.

4 Note, the screenshots of this section have been generated from the schema files with the tool “Altova XMLSpy”
(www.altova.com). With the enterprise edition of XMLSpy it is possible to automatically generate C++, C# and Java code that
reads an XML file of fmiModelDescription.xsd. An efficient open source XML parser is SAX (http://sax.sourceforge.net/,
http://en.wikipedia.org/wiki/Simple AP| for XML). All data from the XML file is only defined via “attributes” and not via
“elements”. Therefore, only an “attribute” handler needs to be defined for a SAX parser.
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Note, child information items, such as “elements” in a “sequence” are ordered lists according to

document order, whereas attribute information items are unordered sets (see
http/Awww-w3-org I RXML-infoset/#infoitem-element)-http://www.w3.org/TR/XML-
infoset/#infoitem.element). The FMI schema is based on ordered lists in a sequence
parsing must preserve this order. [For example the information stored in
ModelVariables.Derivatives is only correct if this property is fulfilled].

and therefore

2.2.1 Definition of an FMU (fmiModelDescription)

This is the root-level schema file and contains the following definitio
elements in the schema file. Data is defined by attributes to these el

fmiModelDescription EI{—"-—)EI—

n (the figure below contains all
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On the top level, the schema consists of the following elements (see figure above):

Element-Name Description

ModelExchange If present, the FMU is based on “FMI for Model Exchange” [(in other
words the FMU includes the model or the communication to a tool
that provides the model, and the environment provides the simulation
engine)].

CoSimulation If present, the FMU is based on “FMI for Co-Simulation” [(in other
words the FMU includes the model and the simulation engine, or a
communication to a tool that provides the model and the simulation
engine, and the environment provides the master algorithm to run
coupled FMU co-simulation slaves together)].

UnitDefinitions A global list of unit and display unit definitions [for example to convert
display units into the units used in the model equations]. These
definitions are used in the XML element “Modelvariables”.

TypeDefinitions A global list of type definitions that are utilized in “Modelvariables”.
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LogCategories

A global list of log categories that can be set to define the log
information that is supported from the FMU.

DefaultExperiment

Providing default settings for the integrator, such as stop time and
relative tolerance.

VendorAnnotations

Additional data that a vendor might want to store and that other
vendors might ignore.

ModelVariables

The central FMU data structure defining all variables of the FMU that
are visible/accessible via the FMU functions.

ModelStructure

Defines the structure of the model. Especially, the ordered lists of
inputs;outputs, (continuous-time and discrete-time) states and
outputsisinitial unknowns (the unknowns during Initialization Mode)
are defined here. Furthermore, the dependency of the unkowns from
the knowns can be optionally defined. [This information can be, for
example used to compute efficiently a sparse Jacobian for simulation
or to utilize the input/output dependency in order to detect that in
some cases there are actually no algebraic loops when connecting
FMUs together].

At least one element of ModelExchange or CoSimulation must be present to identify the type of the
FMU. If both elements are defined, different types of models are included in the FMU. The details of
these elements are defined in section 3.3.1 and section 4.3.1.

The XML attributes of fmiModelDescription are:
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El aftributes

FmiVersion

Ivpe |xsnormalized=tring
fized | 2.0

modellame
bype | xestring

Clazs narne of FMU, .. "&.B.2" (zeveral FMU instances are
possible]

guid
tvpe |xs:nnrmalizedﬂtring

Fingerprint of ral-Ale content to verfy that xral-fle and
C-hunctions are comnpatible ta aach other

Infarmation on intellectual property copawtight Far this FRL, such
a5 @ My Cornmpany 20117

Infarrnation on intelectual property licensing For this FMU, such
as “BSD license”, "Proprietary”, or "Public Dormain'

. generationTool !

! variableHamingConvention ;

VIvpe rEinormalizedstring

ydefault flat

Eenum flat structurec :

fmiModelDescription E'_ EderivedEly restriction
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E attriputes

FmiVersion

[vpe |xenormalized=tring
fizedd | 2.0

modellame
Iype | xzatring

Clazs narne of FMU, &g, "&.B.C" (zeveral FMU instances are
possible]

guid
[ype |><s:nn:nrmalizedString

Fingarprint of ral-Ale content to verfy that xml-fle and
C-functions are comnpatible ta each other

Infarmation on intellectual praperty copytight Far this FRL, such
as "@ My Company 2011

Infarrnation on intellectual praperty licensing For this FMU, such
as "BSD license”, "Proprietary”, or "Public Domain'

. generationTool !

! variableHamingConvention ;
Ivpe rzinormalizedString

s default flat

fmiModelDescription [ | iderivecBy restricion |

E EMLIM flat structurecd :

Attribute-Name

Description

fmiVersion Version of “FMI for Model Exchange or Co-Simulation” that was used to
generate the XML file. The value for this version is “2.0”.

modelName The name of the model as used in the modeling environment that
generated the XML file, such as
“Modelica.Mechanics.Rotational. Examples.CoupledClutches”.

guid The “Globally Unique IDentifier” is a string that is used to check that the

XML file is compatible with the C functions of the FMU. Typically when
generating the XML file, a fingerprint of the “relevant” information is
stored as guid and in the generated C-function.
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description Optional string with a brief description of the model.

author Optional string with the name and organization of the model author.

version Optional version of the model, for example “1.0”.

copyright Optional information on the intellectual property copyright for this FMU.
[Example: copyright = “© My Company 20117].

license Optional information on the intellectual property licensing for this FMU.
[Example: license = “BSD license <license text or link to license>"].

generationTool Optional name of the tool that generated the XML file.

generationDateAndTime

Optional date and time when the XML file was generated. The format is
a subset of “xs:dateTime” and should be: “YYYY-MM-DDThh:mm:ssZ"
(with one “T” between date and time; “Z” characterizes the Zulu time
zone, in other words Greenwich meantime).

[Example: "2009-12-08T14:33:222"] .

variableNamingConvention

Defines whether the variable names in “Modelvariables /

ScalarVariable / name” andin “TypeDefinitions / Type /

name” follow a particular convention. For the details, see section 2.2.9.

Currently standardized are:

o “flat”: Alist of strings (the default).

e “structured”: Hierarchical names with “.” as hierarchy separator,
and with array elements and derivative characterization.

numberOfEventIndicators

The (fixed) number of event indicators for an FMU based on FMI for
Model Exchange.
For Co-Simulation, this value is ignored.

» 5w

[Attributes “numberOfScalarVariables”, “numberOfContinuousStates”, “numberOfinputs”,
“numberOfOutputs” available in FMI 1.0 have been removed for FMI 2.0, since this information can be
deduced from the remaining data in the XML file]

2.2.2 Definition of Units (fmiUnit)

[In this section the units of the variables are (optionally) defined. Unit support is important for technical
systems since otherwise it is very easy for errors to occur. Unit handling is a difficult topic and there
seems to be no method available that is really satisfactory for all applications such as unit check, unit
conversion, unit propagation or dimensional analysis. In FMI a pragmatic approach is used that takes
into account that every software system supporting units has potentially its own specific technique to
describe and utilize units. The approach used here is slightly different to FMI 1.0 to reduce the need for
standardized string representations.]

Element “UnitDefinitions” of fmiModelDescription is defined as:
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—_—
frniUnit _|

B aributes

— |Ivpe |xs:nurmalized5‘tring

| name
| Marne of unit that is unique ta this FMU, 2.g. "M, "MHm",
|

L " =", The warable walues of FrniSerdds and frniGets are with

|

|

|

_ |

| UnitDefinitions [} TE" — ﬂjif u mt _______ :
|

|

|

0.o po E Baselnit

—@EH B.azellnit_walue = Factor®nit_value + offset
1
—

|
I g

|:|__|:6 DisplayUnit_walue = Factor*Unit_walue + offset

B atritutes |

name
Lype |xs:nnrmalized5‘tring

Marne of unit that is unique to this FMU, &g, "Ham", "MHm", |
"5z, The varable values of FriSerddd and FriGetdil are with
respect ko this unit, |

E UnitDefinitions E} ’,/—H-—NI_':_I—
----------------- iy

0.

=

Iype
--E Baselnit

Bazeldnit_walue = Factor*Unit_walue + offset

-7 —we— [T DisplayUnit

iy St

I:I..D:; Dizplaylnit_walue = Factor*nit_value + offset

It consists of zero or more Unit definitions. A Unit is defined by its name attribute such as “N.m” or
“N*m” or “Nm”, which must be unique with respect to all other defined units. If a variable is associated
with a Unit, then the value of the variable has to be provided with the fmisetxxx functions or is
returned by the fmiGetxxx functions with respect to this unit. [The purpose of the name is to uniquely
identify a unit and, for example use it to display the unit in menus or in plots. Since there is no standard
to represent units in strings, and there are different ways how this is performed in different tools, no
specific string representation of the unit is required.]

Optionally, a value given in unit unit can be converted to a value with respect to unit Baseunit utilizing
the conversion factor and offset attributes:
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[ attributes

-
hype [wsint
vilefault [0 !

A

-
hype [wsint
ilefault [0 !

Baselnit_walue =
Factor*Init_value + offset

-
vhepe [ wsing

L —
vhepe [ wsing

ype

Hype
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B atriputes

kg !
thype [ weint
etaut]a

Bazelnit_walue =
Factor*Unit_value + offzet

- 1
thype [ weint

-
thype [ weint

ttype

vpe

olefault (O

Besides factor and offset, the BaseUnit definition consists of the exponents of the 7 Sl base units
“kg”, “m”, “s”, “A”, “K”, “mol”, “cd”, and of the exponent of the Sl derived unit “rad”. [ Depending on the
analysis/operation carried out, the Sl derived unit “rad” is or is not utilized, see dis cussion below. The
additional “rad” base unit helps to handle the often occurring quantities in technical systems that depend
on an angle.]

A value with respect to Unit (abbreviated as “Unit_value”) is converted with respect to BaseUnit
(abbreviated as “BaseUnit_value”) by the equation:

BaseUnit_value = factor*Unit_value + offset
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[For example if pp., is @ pressure value in Unit “bar” and pp, is the pressure value in BaseUnit, then
5
Ppra = 10 Pbar
and therefore factor = 1.0e5 and offset = 0.0.

In the following table several unit examples are given (note, if in column “exponents” the definition
“kgmz/sz“is present, then the attributes of BaseUnit are: “kg=1, m=2, s=-27):

Quantity Unit.name Unit.BaseUnit
(examples) | exponents factor offset
‘ 2,2
Torque "N.m" kg ni /s 1.0 0.0
4 2.2
Energy "gn kg-mz/SZ 1.0 0.0
kg
Pressure "bar" mk;2 1.0e5 0.0
m-s’
Angle "deq od 0.01745329251994330 -
(= pi/180)
Angular velocity "rad/s" rad/s 1.0 0.0
Angular velocity "rpm" rad/s 0- loi;i;i?ié?%% 0.0
Frequency S rad/s 6.283185307.179586 0.0
(= 2*pi)
Temperature nop - 0.5555555555555556 | 255.3722222222222
(= 5/9) (= 273.15-32*%5/9)

Per cent by length "$/m" 1/m 0.01 0.0
Parts per million "ppm" 1 1.0e-6 0.0
Length "km" m 1000 0.0
Length "yd" m 0.9144 0.0

Note, “Hz” is typically used as uUnit.name for a frequency quantity, but it can also be used as
DisplayUnit for an angular velocity quantity (since “revolution/s”).

The BaseUnit definitions can be utilized for different purposes (the following application examples are
optional and a tool may also completely ignore the Unit definitions):

Signal connection check:

When two signals v1 and v2 are connected together, and on at least one of the signals no BaseUnit
element is defined, then the connection equation “v2 = v1” holds (if v1 is an output of an FMU and v2 is
an input of another FMU, with fmiGetxxX the value of v1 is inquired and used as value for v2 by calling
fmiSetxXX).
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When two signals v1 and v2 are connected together, and for both of them BaseUnit elements are
defined, then they must have identical exponents of their BaseUnit. If factor and offset are also
identical, again the connection equation “v2 = v1” holds. If factor and offset are not identical, the tool
may either trigger an error or, if supported, perform a conversion, in other words use the connection
equation (in this case the relativeQuantity of the TypeDefinition, See below, has to be taken into
account in order to determine whether of £set shall or shall not be utilized, since absolute or relative
quantities):

factor(vl) *vl + offset(vl) = factor(v2)*v2 + offset(v2)

As a result, wrong connections can be detected (for example connecting a force with an angle signal
would trigger an error) and conversions between, say, US and Sl units can be either automatically
performed or, if not supported, an error is triggered as well. Note, this approach is not satisfactory for
variables belonging to different quantities that have, however, the same BaseUnit, such as quantities
“Energy” and “Torque”, or “AngularVelocity” and “Frequency”. To handle such cases quantity definitions
have to be taken into account (see TypeDefinitions) and quantity names need to be standardized.

This approach allows a general treatment of units, without being forced to standardize the grammar and
allowed values for units (for example in FMI 1.0, a unit could be defined as “N.m” in one FMU and as
“N*m” in another FMU and a tool would have to reject a connection, since the units are not identical, In
FMI 2.0 the connection would be accepted, provided both elements have the same BaseUnit definition).

Dimensional analysis of equations:

In order to check the validity of equations in a modeling language, the defined units can be used for
dimensional analysis, by using the BaseUnit definition of the respective unit. For this purpose, the
BaseUnit “rad” has to be treated as “1”. Example:

J*a =1t — [kg.m?]*[rad/s?] = [kg.m*/s]). // o.k. (‘rad” is treated as “1”)
J*a =1 — [kg.m’]*[rad/s?] = [kg.m/s?]). // error, since dimensions do not agree

Unit propagation:

If unit definitions are missing for signals, they might be deduced from the equations where the signals
are used. If no unit computation is needed, “rad” is propagated. If a unit computation is needed and one
of the involved units has “rad” as a BaseUnit, then unit propagation is not possible. Examples:

e a=b+c, and Unit of ¢ is provided, but not unit of a and b:
The unit definition of ¢ (in other words Unit.name, BaseUnit, DisplayUnit) is also used for a and
b. For example if BaseUnit(c) = “rad/s”, then BaseUnit(a) = BaseUnit(b) = “rad/s”.

e a=b*c, and Unit of a and of c is provided, but not Unit of b:
If “rad” is either part of the BaseUnit of “a” and/or of “c”, then the BaseUnit of b cannot be deduced
(otherwise it can be deduced). Example: If BaseUnit(a)=”kg.m/sZ” and BaseUnit(c)=”m/sz”, then the
BaseUnit(b) can be deduced to be “kg”. In such a case Unit.name of b cannot be deduced from the
Unit.name of a and ¢, and a tool would typically construct the Unit.name of b from the deduced

BaseUnit.

]

Additionally to the unit definition, optionally a set of display units can be defined that can be utilized for
input/output of a value:
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El atriputes

name

ype |xs:nnrmalized8tring

Exarnple: =Unit name="rad"f=, =DisplaywUnit name="deg"
Factor="C7.29.."=

{Loisplayunit £3 octor ————
l——:

Dizplawldnit_value = Factor*nit_value + offsat :WLM:
idefault |1 !

ype

El attributes

name

type |xs:nnrmalizedﬂtring

Example: =Unit name="rad"f=, =DisplayUnit name="deg"
Factor="57.29..."I=

DisplayUnit Factor

Dizplaylnit_value = Factar*nit_value + offset Wfvpe |

'vpe

A value with respect to Unit (abbreviated as “Unit_value”) is converted with respect to DisplayUnit
(abbreviated as “DisplayUnit_value”) by the equation:

DisplayUnit_value = factor*Unit_value + offset
[“offset” is, for example needed for temperature units.]

[For example if Tk is the temperature value of Unit.name (in “K”) and T is the temperature value of
DisplayUnit (in “°F”), then

Te=1(9/5) * (Tx-273.15) + 32
and therefore factor = 1.8 (=9/5) and offset = -459.67 (= 32 - 273.15*9/5).

Both the pisplayUnit.name definitions as well as the Unit.name definitions are used in the
ScalarVariable elements. Example for a definition:

<Unit name="rad/s">
<BaseUnit s="-1" rad="1"/>
<DisplayUnit name="deg/s" factor= "57.29577951308232"/>
<DisplayUnit name="rev/min" factor= "9.549296585513721"/>
</Unit>

<Unit name="bar">
<BaseUnit kg="1", m="-1", s="-2", factor="1.0e5", offset="0"/>
</Unit>

<Unit name="Re">
<BaseUnit/> // unit = "1"
// (dimensionless, all exponents of BaseUnit are zero)
</Unit>
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<Unit name="Euro/PersonYear"/> // no mapping to BaseUnit defined

]

The schema definition is present in a separate file “fmiUnit.xsd”.

2.2.3 Definition of Types (fmiType)

Element “TypeDefinitions” of fmiModelDescription is defined as:

fmisimple Type

| B attriputes

name
— | Iyvpe |xs:nurmalized5‘tring

K == - - SimpleType .J-.
------------------ R CE type |fmiSimpIeType 'T'

.

| B attriputes

| name
| — |lype | wanormalizedString
|

i o . - SimpleType |

-t TypeDefinitions I —ana —

----------------- El- x-_x-;,l’:J_ type |fmiSimpIeType ér_l—r
0.0

This element consists of a set of “simpleType” definitions according to schema “fmiSimpleType” in file
“fmiType.xsd”. One “SimpleType” has a type “name” and “description" as attributes and one of
Real, Integer, Boolean, String, Of Enumeration must be present. The latter have the following
definitions:
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B attriputes
El arp fmiRealAttributes

quantity !

! t':.fpeJ xznormalizedstring !

Drefault display unit, provided the conversion
of walues in "unit” to values in "displaylnit” is
defined in UnitDefnitions § Unit § DisplayUnit,

' relativeQuantity |
Etype & hoolean

IF relativeQuantity =true, offset For displayLinit
rust be ignored,

B stiripwtes

E urp fmilntegerAttributes

! unbounded

eT

i bype  |xs:boolean
default | false

Set ta true, e.q., For crank angle, IF true and
watable iz a state, relative tolarance should be

hype |xsint

zera on this warable, il e
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Bl atriputes
El orp FmiRealAttributes

 quantity !
! t':.fpeJ wenormalizedString !

L 1

tfype | xsnormalizedString |

- s s s s s s s s s a

y displaylUnit b

Drefault display unit, provided the conwversion
of values in "unit" to walues in "displaylnit" iz
defined in UnitCehnitions § Unit [ DisplayUnit,

Iype ¥z hoolean
Real vdetault | false

IF relativeQuantivy =true, offset For displayUnit
rnust be ignored.

Bl attributes

E orp FmilntegerAttributes

, nominal ]
,
.

[ype | xadouble !

! unbounded

Iype & hoolean
vdefault | false

Integer [

Sek ta true, e.3., For crank angle, IF troe and
wakable iz a state, relative tolerance should be

zero on this varable, e [xsint |

[The attributes of “Real” and “Integer” are collected in the attribute groups “fmiRealAttributes” and
“fmilntegerAttributes” in file “fmiAttributeGroups.xsd”, since these attributes are reused in the
ScalarVariable element definitions below.]

Bl astributes

Bl atributes

name
type |xs:nurmalized5‘tring

LT value
o = m= bype [escint

Must be a unique nurber in the same enumeration

Fooocoodooos

, deseription
Vyvpe | xestring
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B attrivutes

B sttribuites

name
Iype |xs:nu:urmalized51ring

Pl value
- e 5H| Htem []

TS type | xstint

Must be 2 unique number in the same enurmeration

These definitions are used as default values in element scalarvariables]|, in order that, say, the
definition of a “Torque” type does not have to be repeated over and over again]. The attributes and
elements have the following meaning:

Name Description

quantity Physical quantity of the variable, for example “Angle”, or “Energy”. The
quantity names are not standardized.

unit Unit of the variable defined with UnitDefinitions.Unit.name thatis used
for the model equations [, for example “N.m”: in this case a Unit.name =
"N.m" must be present under UnitDefinitions].

displayUnit Default display unit. The conversion to the “unit” is defined with the element
“fmiModelDescription / UnitDefinitions”. If the corresponding
“displayUnit” is not defined here, then “unit” is used for input/output and
displayUnit is ignored.

relativeQuantity |If this attribute is true, then the “offset” of “displayUnit” must be ignored
(for example 10 degree Celsius = 10 Kelvin if “relativeQuantity = true”
and not 283,15 Kelvin).

min Minimum value of variable (variable Value = min). If not defined, the
minimum is the largest negative number that can be represented on the
machine. The min definition is an information from the FMU to the
environment defining the region in which the FMU is designed to operate, see
also comment after this table.

max Maximum value of variable (variableValue < max). If not defined, the
maximum is the largest positive number that can be represented on the
machine. The max definition is an information from the FMU to the
environment defining the region in which the FMU is designed to operate, see
also comment after this table.

nominal Nominal value of variable. If not defined and no other information about the

nominal value is available, then nominal = 1 is assumed.

[The nominal value of a variable can be, for example used to determine the

absolute tolerance for this variable as needed by numerical algorithms:
absoluteTolerance = nominal *relative Tolerancetolerance™0.01}

where tolerance is, €.9., the relative tolerance defined in
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<DefaultExperiment>, see section 2.2.5.]

unbounded If true, indicates that the variable gets during time integration much larger
than its nominal value nominal. [Typical examples are the monotonically
increasing rotation angles of crank shafts and the longitudinal position of a
vehicle along the track in long distance simulations. This information can, for
example, be used to increase numerical stability and accuracy by setting the
corresponding bound for the relative error to zero (relative tolerance = 0.0), if
the corresponding variable or an alias of it is a continuous state variable.]

Item Items of an enumeration as a sequence of “name” and “value” pairs. The
values can be any integer number, but must be unique within the same
enumeration (in order that the mapping between “name” and “value” is
bijective).

[Attributes ,min“ and ,max* can be set for variables of type Real, Integer or Enumeration. The question is
how fmiSetReal, fmiSetinteger, fmiGetReal, fmiGetinteger shall utilize this definition. There are several
conflicting requirements:

¢ Avoiding forbidden regions (e.qg. if ,u” is an input and ,sqrt(u)“is computed in the FMU, min=0 on ,u“ shall
guarantee that only values of ,u“in the allowed regions are provided).

e Numerical algorithms (ODE-solver, optimizers. nonlinear solvers) do not guarantee constraints. If a
variable is outside of the bounds, the solver tries to bring it back into the bounds. As a consequence,
calling fmiGetReal during an iteration of such a solver might return values that are not in the defined
min/max region. After the iteration is finalized, it is only guaranteed that a value is within its bounds upto a
certain numerical precision.

¢ In debug mode checks on min/max should be performed. For maximum performance on a real-time
system the checks might not be performed.

The approach in FMI is therefore that min/max definitions are an information from the FMU fto the

environment defining the region in which the FMU is designed to operate. The environment is free to utilize

this information (typically, in debug mode of the environment the min/max is checked in the cases as stated
above). In any case, it is expected that the FMU handles variables appropriately where the region definition is
critical. For example, dividing by an input (so the input should not be in a small range of zero) or taking the
square root of an input (so the input should not be negative) may either result in fmiError, or the FMU is able
to handle this situation in other ways.

If the FMU is generated so that min/max shall be checked whenever meaningful (e.g. for debug purposes)
then the following strategy should be used:

If fmiSetReal or fmiSetInteger is called violating the min/max attribute settings of the corresponding
variable, the following actions are performed:

e On afixed or tunable parameter fmiStatus = fmiDiscard is returned.

e On an input, the FMU decides what to return (If no computation is possible, it could return
fmiStatus = fmiDiscard, in other situations it may return fmiWarning or fmiError, or fmiOK, if it
is uncritical).

If an FMU defines min/max values for Integer and Enumerations (local and output variables), then the
expected behavior of the FMU is that fmiGetInteger returns values in the defined range.

If an FMU defines min/max values for Reals, then the expected behavior of the FMU is that fmiGetReal
returns values at the solution (accepted steps of the integrators) in the defined range with a certain
uncertainty related to the tolerances of the numerical algorithms.

]
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2.2.4 Definition of Log Categories (fmiModelDescription.LogCategories)

Element “LogCategories” of “fmiModelDescription is defined as:

B sttriputes

Log categaries awailable in FRILI

__________________

e

5 Standardized names: "logEvents",
0.«

"logSingularinearsystarns”,
"lagManlinearSystems",
"logCrynamicStateSelection”

B stiributes

name

type |x5:nurmﬂlized String

LogCategories defines an unordered set of category strings that can be utilized to define the log output
via function “logger”, see section 2.1.5. A tool is free to use any normalizedString for a category value.
There are, however, the following standardized names and these names should be used if a tool
supports the corresponding log category:

Category name

Description

logEvents

Log all events (during initialization and simulation).

logSingularLinearSystems

Log the solution of linear systems of equations if the solution is singular
(and the tool picked one solution of the infinitely many solutions).

logNonlinearSystems

Log the solution of nonlinear systems of equations.

logDynamicStateSelection

Log the dynamic selection of states.

logStatusWarning Log messages when returning fmiWarning status from any function.
logStatusDiscard Log messages when returning fmiDiscard status from any function.
logStatusError Log messages when returning fmiError status from any function.
logStatusFatal Log messages when returning fmiFatal status from any function.
logStatusPending Log messages when returning fmiPending status from any function.
logAll Log all messages.

[This approach to define LogCategories has the following advantages:

1. A simulation environment can present the possible log categories in a menu and the user can select the
desired one (in the FMI 1.0 approach, there was no easy way for a user to figure out from a given FMU
what log categories could be provided). Note, since element LogCategories is optional, an FMU does not
need to expose its log categories.

2. The log output is drastically reduced, because via fmiSetDebuglLogging exactly the categories are set
that shall be logged and therefore the FMU only has to print the messages with the corresponding
categories to the 1ogger function. In FMI 1.0 it was necessary to provide all log output of the FMU to the
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logger and then a filter in the 1ogger could select what to show to the end-user. The approach
introduced in FMI 2.0 is therefore much more efficient.

2.2.5 Definition of a Default Experiment (fmiModelDescription-DefaultExperiment)

Element “DefaultExperiment” of fmiModelDescription is defined as:

B sttricutes

‘ype | xerdouble !

Default relative integration tolerance

B atiributes

' startTime

DefaultExperiment consists of the optional default start time, stop time-and, relative tolerance, and step
size for the first simulation run. A tool may ignore this information. However, it is convenient for a user that
startTime, stopTime-and, tolerance and stepSize have already a meaningful default value for the
model at hand. Furthermore, for CoSimualtion the stepSize defines the preferred

communciationStepSize.

2.2.6 Definition of Vendor Annotations (fmiModelDescription-VendorAnnotations)

Element “VendorAnnotations” of fmiModelDescription is defined as:
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| fmiAnnotation |
| B sttriputes |
| name |
______________________ | M epe remormalizedString i
i VendorAnnotations _ P M F taal that can interpret th
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tools) Mmoo - J
L = e
| fmiAnnotation |
| B sttricutes |
| name |
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i VendorAnnotations _ P M F tonl that can interprat th
| VendorAmetations ¢, 5 oo s ot o b ||
yvpe | fmisnnotation . QL)
------------------ Taol specific annatation (gnored s
Taol specific data fignored by other | = by I:ItI'IF:Er taals), (9 Tany Hany |
T S o o .
L = e

VendorAnnotations consist of an ordered set of annotations that are identified by the name of the tool
that can interpret the “any” element. The “any” element can be an arbitrary XML data structure defined
by the tool.

2.2.7 Definition of Model Variables (fmiModelDesecription-ModelVariables)

The “Modelvariables” element of fmiModelDescription is the central part of the model description.
It provides the static information of all exposed variables and is defined as:

—_—

—
fmiScalarVariable

|
|

7!

-I ModelVariables El— Jt-:—iEI—

0.0

ScalarVariable

| Integer [

Integer

bype |fmiSu:aIar'x-"ariabIe

R
LlJ
i
L

IE

Enumeration

|
|
|
|
Boolean !
|
|
|
|
|

Additional data of the scalar warable, 2.q.,
|_ For the dialag rmenu or the graphical layout |
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r—————————
fmiScalarVariable _|

|
|
|

‘I ModeMariables E}----.:’____“El_ Scalarvariable %'_:7
|
|
|
|
|
|
L

Rt tvpe | fmiscalarvariable

0.=

The “Modelvariables” element consists of an ordered set of “Scalarvariable” elements (see figure
above). The first element has index = 1, the second index=2, etc. This ScalarVariable index is
used in element ModelStructure to uniquely and efficiently refer to Scalarvariable definitions. A
“scalarvVariable” represents a variable of primitive type, like a real or integer variable. For simplicity,
only scalar variables are supported in the schema file in this version and structured entities (like arrays
or records) have to be mapped to scalars. The schema definition is present in a separate file
“fmiScalarVariable.xsd”. The attributes of “scalarvariable” are:
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—_—
| fmiScalarVariable |
| = attriputes |
| name |

[y |xs:narmalized5‘tring |
| Unique identifier of varable, &g, "abormod[z,4]. #1253 "
| ! valueReference . |
|| o [xsnsignedit |
Required For FMI: Identifier For watiable waluez in FMI |
| function calls (nat necessarily unique with respect to all
| wariables) |
Iype wanormalizedstring . |
| VEOLIT parameter input output local :
| | rdefaut |local I |
ierivedBy restiction : |
| patarnetar: indepandent parameter
| inputfoutput: can be used in connections |
local: dependent wariable calculated Frorn other wariables
|| | | variability : |
| e w& normalizedstring ! |
ETILIT constant fixed tunable dizcrete continuous ¢
| vdefaut cortinuous : |
| cervedBy restriction D
1 initial . |
ScalarVariable | e wE narmalizedstring ;
“oe | fmiScalar'yariable EILIT exact approx calculated | |
nderivecBy |restriction ] |
| Defines wariable initialization, IF not provided, initial is
| deduced From causality and wariabilicy (details see |
specification) |
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E atributes

name

type | x=:normalizedString

Unigue identifier of variable, 2.0, "a.bomod[3,4).°#123c

valueReference
type | x5 unsignedint

'ype *snormalizedString !
Enum parameter calculatedParameter input output local independent |
' default lpcal !
+ derivedBy | restriction :

© variability
! type *&:normalizedString

default continuous
derivedBy | restriction

.
.
1
.
| EnUM constant fixed tunable discrete continuocus
.
.
h
1

previous
type | xs:unsignedint
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Attribute-Name

Description

name

The full, unigue name of the variable. Every variable is uniquely identified within an FMU
instance by this name- or by its Scalarvariable index (the element position in the
ModelVariables list; the first list element has index=1).

valueReference

A handle of the variable to efficiently identify the variable value in the model interface.
This handle is a secret of the tool that generated the C functions. It is not required to be
unique. The only guarantee is that valueReference is sufficient to identify the
respective variable value in the call of the C functions. This implies that it is unique for a
particular base data type (Real, Integer/Enumeration, Boolean, String) with
exception of variables that have identical values (such variables are also called “alias”
variables). This attribute is “required”. However,since-the-fmisSealarVariable-schema

description

An optional description string describing the meaning of the variable.

causality

Enumeration that defines the causality of the variable. Allowed values of this

enumeration:

e "parameter": Independent parameter (an-independenta data value that is constant
during the simulation)- and is provided by the environment and cannot be used in
connections). variability must be "fixed" or "tunable:". initial must be
exact Or not present (meaning exact).

e "calculatedParameter": A data value that is constant during the simulation and
is computed during initialization or when tunable parameters change. variabilit
must be "fixed" or "tunable". initial mustbe "calculated" or not present
(meaning calculated).

e "input": The variable value can be provided from another model_or slave.

initial must be exaet-6£not present (—meamng%tmﬂaﬂy—the—vala&ef—the
variable-is-setto-its-= = r=-value-{see-below}or apor

e "output": The variable value can be used by another model_or slave. The
algebraic relationship to the inputs is defined via the
inputbependeneydependencies attribute of
<fmiModelDescription+><ModelStructure+-><Outputs+Lutput><Unknown>.

e "Jlocal": Local variable that is calculated from other variables. It is not allowed to
use the variable value in another model or slave.
e "independent": The independent variable (usually “time”). All variables are a

function of this independent variable. variability must be "continuous".
The default is “1ocal”.

variability

Enumeration that defines the time dependency of the variable, in other words it defines
the time instants when a variable can change its value. [The purpose of this attribute is
to define when a result value needs to be inquired and to be stored. For example
discrete variables change their values only at event instants (ModelExchange) or at a
communication point (CoSimulation) and it is therefore only necessary to inquire them
with fmiGetXXX and store them at event times]. Allowed values of this enumeration:

e "constant™: The value of the variable never changes.
e "fixed": The value of the variable is fixed after initialization, in other words after
frifaitiati fmiExitInitializationMode was called the variable value
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does not change anymore.

e "tunable": The value of the variable is constant between externally-triggered
eventsexternal events (ModelExchange) and between Communication Points
(CoSimulation) due to changing variables with causality = "parameter" or
"input" and variability = "tunable".Whenever a parameter Or input
signal with variability = "tunable" changes, then an event is triggered
externally (ModelExchange) or the change is performed at the next Communication
Point (CoSimulation) and the ewtput-andlecal-variables with variability =

"tunable" and causality = "calculatedParameter" or "output" must be
newly computed.

e "discrete™:
ModelExchange: The value of the variable is constant between external and internal
events (= time, state, step events defined implicitly in the FMU).
CoSimulation: By convention, the variable is from a “real” sampled data system and
its value is only changed at Communication Points (also inside the slave).

e "continuous": Nerestrictions-on-value-changes—Only a variable of type = “Real”
can be “continuous”.
ModelExchange: No restrictions on value changes.
CoSimulation: By convention, the variable is from a differential

The default is “continuous”.
[Note, the information about continuous states is defined with element

fmiModelDescription.ModelStructure.Derivatives]

initial

Enumeration that defines how the variable is initialized:

e ="exact": The variable is initialized with the start value (provided under Real,
Integer, Boolean, String Of Enumeration).

e ="approx": The variable is an iteration variable of an algebraic loop and the
iteration at initialization starts with the start value

e ="calculated" The variable is calculated from other variables during initialization.
It is not allowed to provide a “start” value.

If initial is not present, it is defined by the table below based on causality and

variability. lf initial =exact Or approx, a start value must be provided. If

initial = calculated, it is not allowed to provide a start value.

previous

If present, this variable is a discrete-time state. The value of this state at the previous
super-dense time instant is stored in the variable with index previous.

[For example, if there are 10 ScalarVariables and previous = 3 for ScalarVariable 8, then
at a super-dense time instant ScalarVariable 8 holds the value of this discrete state at
the actual time instant and ScalarVariable 3 holds the value of this state from the
previous super-dense time instant.]

canHandleMultipleSetPerTimeInstant

Only for variables with variability = "input":

If present with value = false then only one fmiSetXXX call is allowed at one super dense
time instant (model evaluation) on this variable. That is, this input is not allowed to
appear in a (real) algebraic loop requiring multiple calls of fmiSetXXX on this variable,
for example due to a Newton iteration.

[This flag must be set by FMUs where discrete-time states are directly updated when
assigned (xd := f(xd) instead of xd = f(previous(xd)), and at least one output depends on
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this input and on discrete states.

It is strongly recommended that such an FMU checks the fulfillment of the
requirement by itself during run-time, because an environment might not be able to
check it: Usually, there is a generic mechanism to import an FMU in an environment, but
the mechanism to connect FMUs together is unrelated to the import mechanism. For
example, there is no mechanism in the Modelica lanquage to formulate a connection
restriction for C-functions (the FMU) called in a Modelica model.]

fmiSetXXX can be called on any variable before initialization i(before calling

fmiEnterInitializationMode) if

e initial ="exact"or"approx"[in order to set the corresponding start valuel.

fmiSetXXX can be called on any variable during initialization if

e initial ="exact"[in order to set the corresponding start value], or if

e causality ="input", provided variability # "constant" [in order to provide new values for

inputs

fmiSetXXX can be called on any variable after initialization if(after calling

fmiExitInitializationMode) if

e variability ="tunable"
[in order to change the value of the tunable parameter or input at an event instant}- or at a
Communication Point], or if

"
7.

e causality ="input;"', provided variability = "discrete" Or "continuous”
[in order to provide new values for inputs]

If initial is not present, its value is defined by the following tables based on the values of causality

and variability. [Note, “BC” means that the variable is a-dependentparameterwhich-is-computed
from independentparameters, inputs and/or constants.]:

causality
parameter | calculated [input| output | local | independent
Parameter
constant -- -- - (A) (A) -
| 2| fixed (A) "B | @] ® | ® =
% © | tunable (A) (AB) )| (B) (B) -
gy discrete -- - (D) (©) (©) -
S | @ | continuous - -- (D) (©) (C) (E)
i
with
initial
defautdefault possible
values
(A) |exact exact
@) [caremarea [0
exact,
(C)|calculated |approx,
calculated
D)|--- approx
(E)[-—- i




Functional Mock-up Interface 2.0 RC1
October 18, 2013
Page 61 of 161

Note, for causality = "independent”, itis neither allowed to define an initial value nor a start value.




Functional Mock-up Interface 2.0 RC1
October 18, 2013
Page 62 of 161

The following combinations of variability/causality settings are allowed:

causality
parameter | calculated |input| output | local |in nden
Parameter
constant - (a) - (a) (7-- (a)] (429) (14) - (c
o | 8 fixed (1) (3) (85) | (#310) | (15) =(c)
Z |© | tunable (2) (4) (96) | (#411) | (16) —-(c)
8[| discrete = (b) G-(b) |@07) | 3512) | (1N ~(c
S | € | continuous - (b) (6-(b) | (H8)| (#613) | (18) (19)
(®)]

[Discussion of the combinations that are not allowed:

Explanation why this combination is not allowed

(@)

The combination “constant / parameter”,
input” does not make sense, since parameters and inputs are set from the environment,
whereas a constant has always a value.

5

constant / calculatedParameter” and “constant /

(b)

73

The combination “discrete / parameter”, “discrete / calculatedParameter” and “continuous /
parameter” does not make sense, since causality = “parameter” defines-an-independent
parameterand “calculatedParameter” define variables that deesdo not depend on time-{if-itis

-, whereas

“discrete” and “continuous” defines a variable where the value can change during simulation.

(c)

For an “independent” variable only variability = continuous” makes sense.

Discussion of the combinations that are allowed:

Setting Example
(1) | fixed parameter Non-tunable independent parameter
(12) | fixedtunable Tunable independent parameter (changing such a parameter
parameter triggers an external event (ModelExchange) or takes effect at the
next Communication Point (CoSimulation), and tunable
calculatedParameter/output/local variables might change their
values). ; 2
(3) | fixed dependent Non-tunable dependent parameter (variable that is computed
parameter directly or indirectly from constants or parameters).
(24) | tunable dependent | Tunable dependent parameter (changing an independent parameter
parameter {ehanging-such-a-parameter-triggers an external event;
(ModelExchange) or takes effect at the next Communication Point
(CoSimulation), and tunable dependent parameters and tunable
output/local variables might change their values).
(35) | fixed input Non-tunable independent parameter from another model.
(46) | tunable input Tunable independent parameter from another model
(distribution of parameters through model connections).
(87) | discrete input Discrete input variable from another model.
(68) | continuous input Continuous input variable from another model.
(#9) | constant output Variable where the value never changes and that can be used in
another model,
(810) | fixed output ParameterQutput that depends on fixed parameters and/or fixed
inputs and can be used in another model (for example there is an
equation y = p, where the output y is set to a parameterlocal
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variable p, that in turn depends on other fixed parameters).
(911) | tunable output ParameterQutput that depends on tunable parameters and is

computed in the FMU. Can be used in another model.

(1012) | discrete output Discrete variable that is computed in the FMU. Can be used in
another model.

(#113) | continuous output Continuous variable that is computed in the FMU and can be used
in another model.

(1214) | constant local Variable where the value never changes. Cannot be used in another
model.

(1315) | fixed local ParameterlLocal variable that depends on fixed parameters and is
computed in the FMU. Cannot be used in another model.

(#416) | tunable local ParameterlLocal variable that depends on tunable parameters and is
computed in the FMU. Cannot be used in another model.

(1517) | discrete local Discrete variable that is computed in the FMU and cannot be used
in another model.

(1618) | continuous local Continuous variable that is computed in the FMU and cannot be
used in another model.

(19) | continuous All variables are a function of the continuous-time variable marked
independent as ‘independent”. Usually, this is “time”.

How to treat tunable variables:

A parameter p is a variable that does not change its value during simulation, in other words dp/dt = 0. If
the parameter "p" is changing, then Dirac impulses are introduced since dp/dt of a discontinuous
constant variable "p" is a Dirac impulse. Even if this Dirac impulse would be modeled correctly by the
modeling environment, it would introduce unwanted “vibrations:”. Furthermore, in many cases the model
equations are derived under the assumption of a constant value (like mass or capacity), and the model

7l

equations would be different if “p” would be time varying.

EMI for Model Exchange:
Therefore, “tuning a parameter” during simulation does not mean to “change the parameter online” during
simulation. Instead, this is a short hand notation for:

1. Stop the simulation at an event instant
(usually, a step event, in other words after a successful integration step).

2. Change the values of the tunable parameters.
3. Compute all parameters that depend on the tunable parameters.

4. Newly start the simulation using as initial values the current values of all previous variables and the
new values of the parameters.

Basically this means that a new simulation run is started from the previous FMU state with changed
parameter values. With this interpretation, changing parameters online is “clean”, as long as these
changes appear at an event instant.

EMI for Co-Simulation:

Changing of tunable parameters is allowed before an fmiDoStep call (so whenever an input can be set
with fmiSetxxx) and before fmiExitInitializationMode is called (so before and during Initialization
Mode). The FMU internally carries out event handling if necessary.

]

Variables of the same base type (like fmiReal) that have identical valueReference definitions are
called “alias” variables. For “alias” variables several natural restrictions hold:
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1. Variables with causality = "parameter" or "input" cannot be alias variables [since these variables
are “independent” variables and alias means that there is a constraint equation between variables (= the
values are the same), and then the variables are no longer “independent’.

2. At most one variable of the same alias set of variables can have a start attribute. [since “start”
variables are independent initial values.]

The aliasing of variables only means that the “value” of the variables is always identical. However,
aliased variables may have different attributes, like min/max/nominal values or description texts. [ For
example if v1, v2 are two alias variables with v1=v2 and v1.max=10 and v2.max=5, then the FMU will
trigger an error if either v1 or v2 becomes larger than 5.]

[The dependency definition in fmiModelDescription.ModelStructure iS completely unrelated to the
alias definition. In particular, the “direct dependency” definition can be a super set of the “real” direct
dependency definition, even if the “alias” information shows that this is too conservative. For example if it
is stated that the output y1 depends on input u1 and the output y2 depends on input u2, and y1 is an
alias to y2, then this definition is fine, although it can be deduced that in reality neither y1 nor y2 depend
on any input.].

Type specific properties are defined in the required choice element, where exactly one of “Real”,

“Integer”, “Boolean”, “String”, “Enumeration” must be present in the XML file:



B atriputes

IF prezent, name of type defined with TypeDefinitions §
Simnple Type providing defaults,

Bl arp fmiRealAttributes

! typeJ xzinormalizedString !

! typeJ xznormalizedString !

[refFault display unit, prowided the conversion of walues in
"unit" to walues in "displayinit” is defined in
UnitDefnitions [ Unit | DisplayUnit,

E relativeQuantity
thype | xshoolean

yoefault | falze

ignared,

ype
yefault | false

Cet to brue, &.q., For ceank angle, IF true and wvariable is 2
state, relative tolerance should be zero on this warable,

tyvpe | xendouble |

‘Yalue before initialization, iF initial=exact oF apprax

B sttripwtes

 declaredType ]

IF prasent, narme of type defined with
Typelefinitions | SinpleType
provviding defaults,

'bype | xstboolean |

‘Yalue before initialization, iF
initial=exact or approx
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B sttriputes

IF prezent, narne of type definad with
Typelefinitions | SirnpleTywpe
providing defaults,

Bl wrp fmilntegerAttributes

[1:]
=

bype | weint !

“alue before initialization, if
initial=exact or approx

El atriputes

IF prasent, narme of type defined with
Typebefnitions [ SirmpleTyvpe

providing deFaults,

‘alue before initialization, if
initial=exact or approx
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[E] attributes

declaredType
Iype |xs:nurmalized5‘tring

If present, name of type defined with
TypeDefinitions [ SirmplaTwpe
prowiding defaults,

E quantity .

hype | wsint !

“alue befare initialization, if

initial=eract or approx




[ atiributes

relativeQuantity .
x=:boolean .

[
!
]
i,
=]
w
=
]

derivative
type | xs:unsignedint
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B stiributes
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B atiributes E atributes

=l attributes

declaredType

Ly

s normalizedString

Enumeration [-]

The attributes are defined in section 2.2.3 (“fmiType”), except:

Attribute-Name

Description

declaredType

If present, name of type defined with TypeDefinitions/ SimpleType
(fmiType). The value defined in the corresponding TypeDefinition (see section
2.2.3) is used as default. [If, for example “min” is present both in Real (of
TypeDefinition)and in “Real” (of ScalarVariable), then the “min” of
ScalarVariable is actually used.] For Real, Integer, Boolean, String,
this attribute is optional. For Enumeration it is required, because the
Enumeration items are defined in TypeDefinitions / SimpleType.

start

Initial or guess value of variable. This value is also stored in the C functions-
[Therefore, calling fmiSetXXX to set start values is only necessary, if a different
value as stored in the xml file is desired.] The interpretation of start is defined by
ScalarVariable/ initial. A different start value can be provided with an
fmiSetxxX function before £mifrnitializefmiExitInitializationMode is
called (but not for “constant” variables).

[The standard approach is to set the start value before

fmiEnterInitializationMode. However, if the initialization shall be modified in
the calling environment (e.q. changing from initialization of states to steady-state
initialization), it is also possible to use the start value as iteration variable of an
algebraic loop: Via an additional condition in the environment, such as x = 0, the
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actual start value is determined.]

If initial = exact Or approx, a start value must be provided.

If initial = calculated, itis not allowed to provide a start value.

Variables with causality = "parameter" or "input", as well as variables with
variability = "constant", must have a "start" value.

e If causality = "parameter", the start-value is the value of this
it.independent parameter:

o Ifcausality = "input", the start value is used by the model as value of
the input, if the input is not set by the environment.

o Ifvariability = "constant", the start value is the value of the constant.

e If causality = "output"exor "local" then the start value is either an
“initial” or a “guess” value, depending on the setting of attribute "initial™".

derivative

If present, this variable is the derivative of variable with ScalarVariable index

"derivative". [For example, if there are 10 ScalarVariables and derivative = 3 for
ScalarVariable 8, then ScalarVariable 8 is the derivative of ScalarVariable 3 with
respect to the independent variable (usually time). This information might be
especially used if an input or an output is the derivative of another input or output,
or to define the states.]

The state derivatives of an FMU are listed under element
<ModelStructure><Derivatives>. All ScalarVariables listed in this element
must have attribute derivative (in order that the continuous-time states are
uniquely defined).

reinit

Can only be present for a continuous-time state.
If true, state can be reinitialized at an event by the FMU
If false, state will not be reinitialized at an event by the FMU

min / max

The optional attributes “min” and “max” in element “Enumeration” restrict the
allowed values of the enumeration. The min/max definitions are an information
from the FMU to the environment defining the region in which the FMU is
designed to operate, see also comment in section 2.2.3. [If, for example an
Enumeration is defined with “name1 = -4”, “‘name2 = 17, “name3 = 57, “‘name4 =
11” and min=-2, max = 5, then only “‘name2” and “‘name3” are allowed].

With element “Annotations” additional, tool specific data can be defined:

| H attrivutes |
| name |
R . | [ ssnarmalizedstring i
i CODLITTELET R Mame of tool that can interprat |
thype | fmidnnotation 1 A the annatation
= 0. Toal specific annatation P .
Additional data of the scalar | (ignored by ather tools), —@B L any Hany | |

watable, e.g., Forthe digleg 7T T AN e e
rmeny ar the graphical layaout L - - _ " J
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| B sttribuites

name |

Iype |xs:nu:urmalized51ring

Marne of taol that can interprat

yoe [imiArnlation T 11 ey (e ennereten
L 0. Tool speific annotation Jv——— .
#dditional data of the scalar | fignared by other tools), == Jany wany
vatiable, e.g., For the dialog Rt J
rmenu ar the graphical layaut L - - J

With Tool.name the name of the tool is defined that can interpret the “any” element. The “any” element
can be an arbitrary XML data structure defined by the tool. [ Typically, additional data is defined here how
to build up the menu for the variable, including the graphical layout and enabling/disabling an input field
based on the values of other parameters.]

2.2.8 Definition of the Model Structure (fmiModelDeserption-ModelStructure)

The structure of the model is defined in element “ModelStructure” within “fmiModelDescription”.
The required part defines an ordering of the inputs;-outputs, and(exposed) derivatives, and(exposed)
discrete-time states, and defines the association-of-every{continuous)-state-with-its-derivative-unknowns
that are available during Initialization [Therefore, when linearizing an FMU, every tool will use the same
ordering for the inputs—outputs, states, and derivatives for the linearized model. The ordering of the
inputs should be performed in this case according to the ordering in ModelVariables.] A ModelExchange
FMU must expose all derivatives of its continuous-time states in element <berivatives>. A Co-
Simulation FMU need not to expose these state derivatives. [If a Co-Simulation FMU exposes its state
derivatives, they are usually not utilized for the co-simulation, but, e.q., to linearize the FMU at a
communication point.]

The optional part defines in which way derivatives, discrete-time states and outputs depend on inputs,
continuous-time states and states-discrete-time states at the current super dense time instant
(ModelExchange) or at the current Communication Point (CoSimulation). [A simulation environment can
utilize this information to improve the efficiency, e.g., when connecting FMUs together, or when
computing the partial derivative of the derivatives with respect to the states in the simulation engine-}.].

Fhereguired-partof-ModelStructure has the following definition-{:




{ Modelstructure =

TS, EXposed Denvatlves

=

and the initiz] wnknowns,

dependency of these varia

— [+
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Qutputs M

type | fmivariableDependency T

outputs, Ex

The & rdienc, - = Tir
=T, ::3:. o tik . =

Derivatives
tvpe | fmivariableDependency

..a":"-:\-:-' e Ewvent Mode

Commaunication Points {CoSimulation).

Discrete states

tvpe | fmivariableDependency |

exposed Linknowns in Initialzation Mode st

OUtpULs |, all expised  OOMTIMOWES St
0 MOt Nave IR

fmiVariableDependency

[ erioures |

index
type | *z:unsignedint

dependencies

type *=2:un=ignedint

derivedBy |list

Defines the dependency of the Unknown (d
ec) on the Knowns in Continue e
on Paints 'E.:n':"

dependenciesKind
derivedBy | list

{onhy for Rea
v (onhy for Rea
5 present, “dependendies” must be present and

umiber of list elements.




Elements of the InitialUnknowns list:
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B sttributes

index

tvpe | xs:unsignedint

dependencies

x=:unzsignedint

b

Note, that attribute derivativeisnotrequiredbutgives-optionakbinformation):dependenciesKind for

element InitialUnknowns has less enumeration values as dependenciesKind in the other lists.

variables with cauzalivy="input"
(First definition has index = 11

E Ordered list of all inputs, e,

. s Derivative T

bype |fmi"-.-"ariahIeDependency I

T rdered Izt of alt dervatives and i @
! associabed states (First definition
v has index = 1)
1
___________ -
Lol Outputs [ ------------n- — Output [+

Ordared list of all outputs, i,

type | fmivatiableDependency |

watables with causality="output"
{first definition has index = 1)

[ attributes

name

bype |xs:nnrmalized9tring

P _ - e |

E deriuati;-e-
by | xsint

1
[
[

IF prasent, this input is the dervative of the input vatiable
with index "derivative",
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T ivoraniDes ooy ostorm .

fmiVariableDependency (extension)

[ Y [ s J

Iype |fmiVariahIeDependency

[ attributes

name

bype |xs:nu:urmalized51ring

Scalarariable narme of state derivative

state
Iype | xsnormalizedstring

Scalarariable narme af state

v arabioDen endomey (oo N

fmiVariableDependency (extenzion)

Output

bype |fmiVariabIeDependency

%]T aftributes ]

B atirivutes |

name

Lype |xs:nurmalized5‘tring

L | Scalariariable narne of output
1 derivative |
bype |xsint

IF prezent, this output iz the derivative of the
output watable with index "derivative",

ModelStructure consists of the following elements (see also figures above):

Element-Name

Description

Outputsfaputs

Defines-an-Ordered list of all inputsoutputs, in other words a list of
ScalarVariable namesindices where every corresponding
ScalarVariable must have causality = "4mputoutput" (and every
variable with causality="4input"="output” must be listed here). The
first definition-has-index=1.the second.-index=2,-etc[Note, all inputoutput
variables are listed here, especially discrete and continuous inputs}-ifthe
continuous-input-b-has-attribute “derivatrive=3+"thenuisoutputs].
Attribute dependencies defines the dependencies of the outputs from the

knowns at the current super dense time derivative-of the-continuous-input-u;:
du,

— i

dt instant in Event and in Continuous-Time Mode (ModelExchange)
and at the current Communication Point (CoSimulation).

k

Derivatives

Defines-an-Ordered list of theall state derivative-and-associated-state
vectorderivatives, in other words a list of elements;-where-everyelementhas
areferencetothe-Scalarvariable nameofthe state derivative-and
theindices where every corresponding ScalarVariable rame-ofits

. _The first definition-has index=1. | index=2.
etemust be a state derivative. [Note, only continuous Real variables are
listed here. If a state or a derivative of a state shall not be exposed from the
FMU, or if states are not statically associated with a variable (due to
dynamic state selection), then dummy ScalarVariables have to be
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introduced, for example x[4], or xDynamicStateSet2[5]]].]. The

corresponding continuous-time states are defined by attribute derivative
of the corresponding ScalarVariable state derivative element. [Note, higher
order derivatives must be mapped to first order derivatives but the mapping

definition can be preserved due to attribute derivative. Example: % =

v,% = f(..), then {v,%}is the vector of state derivatives and attribute

. d
derivative of v_references s, and attribute derivative of d—’: references

v.]

For Co-Simulation, element “Derivatives” is ignored if all-capability flags

i A Dot 1 Dexr k=l OfF Ders + ANIEESY + . ri Q4+ +

PE raesPartIatrberiIvatt SoE—be¥rivatt eRetE FEE—oEatEeSs

i Ea| Dot 1 Dexr + o OfF Ders + 1 + . ri T+

PE raesSPartIatrberIvatt SoE—berivatt TaRet: FEE—TRPYESS
B idesPartialDar + 4 SOf OptoutFunets A et Gt ot oac
P¥ raesPartirarberivats: SO+ bEptutEEt S=a FrE—oETESSs

providesDirectionalDerivatives has a value of false, in other words
cannot be computed [which is the default. If an FMU supports both
ModelExchange and CoSimulation, then the “Derivatives” element might be
present, since it is needed for ModelExchange. If the above flags—areflag is
set to false for the CoSimulation case, then the “Derivatives” element is
ignored for CoSimulation].

Attribute dependencies defines the dependencies of the state
derivatives from the knowns at the current super dense time instant in Event
and in_Continuous-Time Mode (ModelExchange) and at the current
Communication Point (CoSimulation).

DiscreteStates

Ordered list of all exposed discrete states, in other words a list of
ScalarVariable indices wWhere every corresponding ScalarvVariable
must have attribute previous defined. The corresponding previous values
of discrete-time states are defined by attribute previous of the
corresponding ScalarVariable.

Attribute dependencies defines the dependencies of the discrete states
from the knowns at the current super dense time instant in Event Mode
(ModelExchange) and at the current Communication Point (CoSimulation),
especially the dependency on the previous discrete-time states

InitialUnknowns&stpstss

I£ 4 . ’ . ; ) L . .
lorivati 4 . .
dy,

i

—
dt Ordered list of all exposed Unknowns in Initialization Mode, that is

all variables that are computed in Initialization Mode. This list must include at

least all outputs, all continuous-time and previous discrete-time states that
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do not have initial="exact” (and without duplicates). The previous
discrete-time states are all variables that are referenced with the previous-
index. This list may optionally include the union of calculatedParameters,
outputs, continuous-time states, previous discrete-time states, derivatives,
and discrete-time states after removing all variables with
"initial=exact", and after removing all duplicates (e.qg. if a state is also
an output, it is included only once in the list). The Unknowns in this list must
be ordered according to their ScalarVariable index (for example if for two
variables A and B the ScalarVariable index of A is less than the index of B,
then A must appear before B in InitialUnknowns).

Attribute dependencies defines the dependencies of the unknowns from
the knowns in /nitialization Mode at the initial time.

Unknown

An element of one of the lists above defining the unknown with a reference
to the corresponding Scalarvariable element. It is assumed that at a
super-dense time instant t = (tz, t;)_(ModelExchange) and at a
Communication Point (CoSimulation) the following relationship holds:

Vunknown = h(vknown' Vfreeze)

where

®  V.knowndS the unknown variable defined with this element [for example
an output or a state derivativel.

®  Viaown s the vector of input arguments of function h that changes its
value in the actual Mode [for example continuous-time inputs in
Continuous-Time Mode].

®  Vireese is the set of input arguments of function h that do not change
their values in this Mode, but change their values in other Modes [for
example fixed parameters in Continuous-Time Model.

Attribute dependencies of Unknown defines the dependency of v, ,known

with respect to vi,own-

[If for example a continuous-time output y, _is a function of the continuous-

time inputs u;_and us and these inputs have changed then fmiSetXXX 0N us;

and us_ must always be called before calling fmiGetxxx on y,.]

%(t) — £(x(t),u(r)..m(z,))
¥(1) = (x().u (o). L. m(1,)




Functional Mock-up Interface 2.0 RC1
October 18, 2013
Page 76 of 161

dx;
E(t) = f.(x(0),u(t),t,m(z,))

= fio (X, (0,0, (1), ,m(z,)) + Z fﬂ{jisc’x (u, (2,).2,,m(z,)) - x, + Z ﬁlfisc’u (g, (2,),1,,m(2,)) U,

(1)
7

y;(0)=g;(x(®),u@),t,m(z,))
= g50(%, (0.1, (O,1.m(2)) + D g5 (W (£), 1, m(E)) - + D €5 (U (0,2, (L) 1y

jzli’gﬂi are |l:|||StG|IS O t e

disc,x __pdisc,u disc,x disc,u . . . .
s f S gy gy, -arefunctions of eventtime 1., in-other words, their return-values change only at

#——Element Unknown in InitialUnknowns has the following attributes:

cont ,k

| | Attribute-Name Description
index The ScalarVariable index of the Unknown v, xnown- [FOr example, if there are 10

ScalarVariables and index = 3, then the third ScalarVariable is the unknown
defined with this element.]

dependencies Optional attribute defining the dependencies of the unknown v, nown_(directly or
indirectly via auxiliary variables) with respect to v;,,,u,. If not present, it must be

assumed that the Unknown depends on all Knowns. If present as empty list, the

Unknown depends on none of the Knowns. Otherwise the Unknown depends on
the Knowns defined by the given ScalarVariable indices. The indices are ordered
according to magnitude, starting with the smallest index.

Knowns v;,,wn_in Event and Continuous-Time Mode (ModelExchange) and at
Communication Points (CoSimulation) for elements outputs, Derivatives,

DiscreteStates:

e inputs (variables with causality = “input”)

e continuous-time states
e previous discrete-time states (variables referenced in previous)

e independent variable (usually time; causality = “independent”)

KNowns v, ,wn_in Initialization Mode (for elements ITnitialUnknowns):

e inputs (variables with causality = “input”)

e variables with initial = “exact”
[for example independent parameters or initial states.]
e independent variable (usually time; causality = “independent”)

For Co-Simulation, "dependencies” does not list the dependency on

continuous-time or discrete-time states, if the capability flag
providesDirectionalDerivative

has a value of false, in other words the respective partial derivatives cannot
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be computed.

dependenciesKind |[f not present, it must be assumed that the Unknown v,,;xnown_depends on the
Knowns v;,,,,w»_Without a particular structure. Otherwise, the corresponding
Known vy,,,wn i_€nters the equation as:

If "dependenciesKind" is present, "dependencies" must be present and must have
the same number of list elements.

= dependent: no particular structure, A(.., Vknown,iz--)

Only for Real unknowns v, knowns

= constant: constant factor, ¢ - vi,own i Where c_is an expression that is

evaluated before fmiEnterInitializationMode is called.

Only for Real unknowns v, ,xnown_in Event and Continuous-Time Mode
(ModelExchange) and at Communication Points (CoSimulation),
and not for InitialUnknows for Initialization Mode:

= fixed: fixed factor, p - vinown i Where p_is an expression that is evaluated

before fmiExitInitializationMode is called.

= tunable:  tunable factor, p - Vinown i Where p_is an expression that is

evaluated before fmiExitInitializationMode is called and in
Event Mode due to an external event (ModelExchange) or at a
Communication Point (CoSimulation)

= discrete: discrete factor, d - vi,own i Where d_is an expression that is
evaluated before fmiExitInitializationMode is called and in
Event Mode due to an external or internal event or at a
Communication Point (CoSimulation).

If "dependenciesKind" is present, "dependencies" must be present and must
have the same number of list elements.

[Example 1:
An FMU is defined by the following equations:

d[* f1(x2)
E[le =fo(x)+3-p*x,4+2 u; +3-u
X3 f3(xq, X3, Uy, Uz, U3)
y = g1(xz,%3)
s—where u, is a continuous-time input (variability—=
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| fmiVariableDependency (extension) _|

| El attriputes |

E stateDependencies
e waint

IF not present, it rust be assumed that the variable depends on all states, IF
prezent az empty list, the variable depends on no states, Otherwize the warable
depends on the states defined by the given indices,

' stateFactorKinds

ype fmibependencyFactorkind
sderivedBy | list

IF nat present, it rust be assured that the vakable depends non-lineady on the
states, Othenwize, the corresponding state x of the list enters the equation as:
"nonlineat": nonlinear Factor, Ax)

Tr L

— Fa = FH
= [red HILLIC=T0 ) p=Tul ) S S |

. inputDependencies
e waint

IF not present, it rust be assumed that the variable depends on all inputs, IF
prezent az empty list, the vatiable depends on no inputs, Othenwize the warable
depends on the inputs defined by the given indices,

ype fmibependencyFactorkind
sderivedBy | list

IF mat present, it rust be assured that the vakable depends non-lineady on the
inputs. Othenwize, the corresponding input u of the list enters the equation as:
= "nonlinear; nonlinear Factar, )
"fived" i fived Factar, p*u

"dizcrete” ¢ dizscrete Factor, d%u

I
T "dizcrete” t dizcrete Factor, %1

\ —_—-——-——" ——F" —«F(—F — — — — — —

. . . . . disc,x __pdisc,u disc,x disc,u : :
of-the-list-element(in-other words;-therelationships-with-the-terms Ji Tk 8k 8k equation{1H)
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X
X,

&~

|

where-u,-is-a-continuous-time-input-(variability="contintots’)—t,="continuous”), u, is any type of input,

L];(}ﬁaxb,”lauzaus) J
81(%y,%;)

X3

Si(xy)
= fz(xl)+3‘p2~x2+2-u1 +3-u,
]
y=

43us is a_Real discrete-time input (variability="discrete”), and pp is a fixed parameter
(variability="fixed);”). The initialization is defined by:
dx,

X1 = 1.1,?= O,y =3.3

and therefore the initialization equations are:

1
X2 =3_—p2'(f2(x1)+2'u1+3'u3)
x3 = g7 (%2, ¥)

This equation system can be defined as:

B
—<Inputs>
Input—mame="u1"
Input—rame="u2"
Input—rame="u3"
. .
— <Perivative<ModelVariables>
<ScalarVariable name="p" , .> .. </ScalarVariable> <!—index="1" -->
<ScalarVariable name="ul" , .> .. </ScalarVariable> <!—index="2" -->
<ScalarVariable name="u2" , .> .. </ScalarVariable> <!—index="3" -->
<ScalarVariable name="u3" , .> .. </ScalarVariable> <!—index="4" -->
<ScalarVariable name="x1" , .> .. </ScalarVariable> <!—index="5" -->
<ScalarVariable name="x2" , .> .. </ScalarVariable> <!—index="6" -->
<ScalarVariable name="x3" , .> .. </ScalarVariable> <!—index="7" -->
<ScalarVariable name="der (x1}"—state="s" statebependeneies="2")", ...> ..
</ScalarVariable> <!—index="8" -->
A rma N A A A A 3 =nmn
e
—Dgmdisnosziong <ScalarVariable name="der (x2}+'"—state="s2" statebependencies="12")",
.> .. </ScalarVariable> <!—index="9" -->
NP SN + Tz I | PPN BN ~ £ an
Fe e e
Tt A AN A A~ o —n1 "
S L
EIRSEE T +orMn I a £ an
e oo mosen e
—<Perivative <ScalarVariable name="der (x3}"—state="s3" statebependenecies="13"
/>)", ...> .. </ScalarVariable> <!—index="10" -->
et o
<ScalarVariable name="y" , ...> . </ScalarVariable> <!—index="11" -->

</ModelVariables>
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<ModelStructure>
<Outputs>
<OQutput—rame—"y' stetebependencies="2 3" Snaputbependencies=""Unknown index="11"

dependencies="6 7" />

</Outputs>

<Derivatives>
<Unknown index="8" dependencies="6" />
<Unknown index="9" dependencies="2 4 5 6"

dependenciesKind="constant constant dependent fixed"/>
<Unknown index="10" dependencies="2 3 4 5 6" />
</Derivatives>

<InitialUnknowns>

<Unknown index="6" dependencies="2 4 5" />

<Unknown index="7" dependencies="2 4 5 11" />

</InitialUnknowns>
</ModelStructure>

Example 2:

={2-uifu>0
3-u else

where u_is a continuous-time input with index="1" and y is a continuous-time output with index="2". The
definition of the model structure is then:

<ModelStructure>
<Outputs>

<Unknown index="2" dependencies="1" dependenciesKind="discrete"/>

</Outputs>

</ModelStructure>
Note, y = d - u_where d_changes only during Event Mode (d = 2 -u_or 3 - u depending on relation u > 0

that changes only at Event Mode). Therefore dependenciesKind="discrete".

Example 3:

={2 ifu>0
3 else

where u_is a continuous-time input with index="1"and y is a continuous-time output with index="2". The
definition of the model structure is then:

<ModelStructure>
<Outputs>

<Unknown index="2" dependencies="1" dependenciesKind="dependent"/>

</Outputs>
</ModelStructure>

Note, y = c_ where c_changes only during Event Mode (¢ = 2_or 3 depending on relation u > 0_that
changes only at Event Mode). Therefore dependenciesKind="dependent" because it is not a linear

relationship on u.

Defining FMU features with the dependencies list:

Note, via the dependencies list the supported features of the FMU can be defined. Examples:

e If a state derivative der x is a function of a parameter p (so of a start value of a variable with
causality = "parameter" and variability = "fixed"), and the FMU does not support an
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iteration over p during InitializationMode (e.q. to iterate over p such that the state derivative der x is
zero), then the dependencies list of der x should not include p. If an FMU is imported in an
environment and such an iteration is setup, then the tool can fiqure out that the resulting algebraic
system of equations is structurally sinqular and therefore can reject such a definition.

e For standard CoSimulation FMUs it is common that no algebraic loops over the input/output
variables nor over start-values is supported. In such a case, all dependencies lists for output
variables under the InitialUnknowns element should be defined as empty lists defining that the
setting of inputs and/or of start values does not influence the outputs. As a result, it is not possible to
formulate algebraic loops of connected FMUs during InitializationMode.

2.2.9 Variable Naming Conventions (fmiModelDescription.-variableNamingConvention)

With attribute “variableNamingConvention” of element “fmiModelDescription”, the convention is defined
how the ScalarVariable.names have been constructed. If this information is known, the environment may
be able to represent the names in a better way (for example as tree and not as a linear list).

In the following definitions, the EBNEEBNF is used:

= production rule

[]1 optional

{} repeat zero or more times
| or

The following conventions for scalar names are defined:

variableNamingConvention = "flat"
name = Unicode-char { Unicode-char } // identical to xs:normalizedString
Unicode-char = any member—ofth greelUnicode character = ro—hierarehywithout
carriage return (#xD), line feed (#xA)

nor tab (#x9)

The names must be unique, non-empty strings.

[/t is recommended that the names are visually clearly different from each other; but it is not required.]

variableNamingConvention = "structured"

Structured names are hierarchical using “.” as a separator between hierarchies. A name consists of “_”,
letters and digits or may consist of any characters enclosed in single apostrophes. A name may identify
an array element on every hierarchical level using “[...]" to identify the respective array index. A
derivative of a variable is defined with “der (name)” for the first time derivative and “der (name, N) ” for
the N-th derivative. Examples:

vehicle.engine.speed

resistorl2.u

v_min

robot.axis. 'motor #234'

der (pipe[3,4]1.T[14],2) // second time derivative of pipe[3,4]1.T[14]

The precise syntax is%::.

5 This definition is identical to the syntax of an identifier in Modelica version 3.2.


http://en.wikipedia.org/wiki/Extended_BNF
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name = identifier | "der (" identifier ["," unsignedInteger ] ")"
identifier = B-name [ arrayIndices ] {"." B-name [ arrayIndices ] }
B-name = nondigit { digit | nondigit } | Q-name
nondigit =" " | letters "a" to "z" | letters "A" to "Z"
digit = "O"™ |oM"LIM™ o|om2™ o "3 | o"4"opo"s"™ o o"e™ | o "7"™ | o"g"™ | "9ov
Q-name = "'" ( Q-char | escape ) { Q-char | escape } "’'"
Q-char = any—member—of—+th B character—set eeptnondigit | digit |
mn " "s AR I A A O o
ingle—gquote— " and backstash—\" R A
PR DR BT BN B S
AT I S T SR AR A NN CRAN BN B
S R I NS LA A A A A e R
escape = NSO TN N N\ | "Nat | "\b" |
"NET O "\n" | "\r" | "\t | "\v"
arrayIndices = "[" unsignedInteger {"," unsignedInteger} "]"

unsignedInteger = digit { digit }

The tree of names is mapped to an ordered list of ScalarVariable.name’s in depth-first-order.depth-first
order. Example:

vehicle
transmission
ratio
outputSpeed
engine
inputSpeed
temperature

is mapped to the following list of ScalarVariable.name’s:

vehicle.transmission.ratio
vehicle.transmission.outputSpeed
vehicle.engine.inputSpeed
vehicle.engine.temperature

All array elements are given in a consecutive sequence of scalarvariables. For example the vector
“centerOfMass” in body “arm1” is mapped to the following ScalarVariables:

robot.arml.centerOfMass[1]
robot.arml.centerOfMass[2]
robot.arm2.centerOfMass[3]

It might be that not all elements of an array are present. If they are present, they are given in
consecutive order in the XML file.

2.3 FMU Distribution

An FMU description consists of several files. An FMU implementation may be distributed in source code
and/or in binary format. All relevant files are stored in a zip file with a pre-defined structure. The
implementation must either implement all the functions of FMI for Model Exchange or all the functions of
FMI for Co-Simulation or both. The extension of the zip file must be “.fmu”, for example
“HybridVehicle.fmu”. The compression method used for the zip file must be “deflate” [(most free tools, for
example zlib, offer only the common compression method "deflate")].

Every FMU is distributed with its own zip file. This zip file has the following structure:

// Structure of zip file of an FMU
modelDescription.XML // Description of FMU (required file)
model .png // Optional image file of FMU icon


http://en.wikipedia.org/wiki/Depth-first_search
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documentation // Optional directory containing the FMU documentation
—mainindex.html // Entry point of the documentation
<other documentation files>

sources // Optional directory containing all C sources
// all needed C sources and C header files to compile and link the FMU
// with exception of: fmiTypesPlatform.h , fmiFunctionTypes.h and fmiFunctions.h
// The files to be compiled (but not the files included from these files)

// have to be reported in the xml-file under the structure

// <ModelExchange><SourceFiles> .. and <CoSimulation><SourceFiles>

binaries // Optional directory containing the binaries
win32 // Optional binaries for 32-bit Windows
<modelIdentifier>.d1ll // DLL of the FMI implementation
// (build with option "MT" to include run-time environment)

<other DLLs> // The DLL can include other DLLsS
// Optional object Libraries for a particular compiler
VisualStudio8 // Binaries for 32-bit Windows generated with

// Microsoft Visual Studio 8 (2005)

<modelIdentifier>.1lib // Binary libraries

gcc3.1 // Binaries for gcc 3.1.

win64 // Optional binaries for 64-bit Windows

linux32 // Optional binaries for 32-bit Linux
<modelIdentifier>.so // Shared library of the FMI implementation

linux64 // Optional binaries for 64-bit Linux

resources // Optional resources needed by the FMU
< data in FMU specific files which will be read during initialization;
also more folders can be added under resources (tool/model specific).
In order for the FMU to access these resource files, the resource directory
must be available in unzipped form and the absolute path to this directory
must be reported via argument "fmuResourcelLocation” via

e fmiInstantiate.

The FMU must be distributed with at least one implementation, in other words either sources or one of
the binaries for a particular machine. It is also possible to provide the sources and binaries for different
target machines together in one zip file. The following names are standardized: For Windows: “win32”,
“win64”- For Linux: “linux32”, “linux64”. For Mac: “darwin32“, “darwin64” Futhermore, also the names
“VisualStudioX” and “gccX” are standardizestandardized and define the compiler with which the binary
has been generated [, for example VisualStudio8]. Further names can be introduced by vendors.
Dynamic link libraries must include all referenced resources that are not available on a standard target
machine [for example DLLs on Windows machines must be built with option “MT” to include the run-time
environment of VisualStudio in the DLL, and not use the option “MD” where this is not the case]. When
compiling a shared object on Linux, RPATH="$ORIGIN“ has to be set when generating the shared object
in order that shared objects used from it, can be dynamically loaded.

Typical scenarios are to provide binaries only for one machine type (for example on the machine where
the target simulator is running and for which licenses of run-time libraries are available) or to provide only
sources (for example for translation and download for a particular micro-processor). If run-time libraries
cannot be shipped due to licensing, special handling is needed, for example by providing the run-time
libraries at appropriate places by the receiver.

FMI provides the means for two kinds of implementation: needsExecutionTool=true and
needsExecutionTool=false. In the first case a tool specific wrapper DLL/SharedObject has to be provided
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as the binary, in the second a compiled or source code version of the model with its solver is stored (see
section 4-3-14.3.1 for details).

In an FMU both a version for ModelExchange and for CoSimulation might be present. If in both cases the
executable part is provided as DLL/SharedObiject, then different library names must be present that are
defined in the modelIndentifier attribute of elements “fmiModelDescription.ModelExchange” and

“fmiModelDescription.CoSimulation”:

[Example:
binaries
win32
MyModel ModelExchange.dll // ModelExchange.modelIdentifier =
// "MyModel ModelExchange"
MyModel CoSimulation.dll // CoSimulation.modelIdentifier =
// "MyModel CoSimulation"

]

The usual distribution of an FMU will be with DLLs/SharedObjects because then further automatic
processing [(for example importing into another tool)] is possible.

If run-time libraries are needed by the FMU that have to be present on the target machine, then automatic
processing is likely impossible. The requirements and the expected processing should be documented in the
“documentation” directory in this case.

A source-based distribution willusuallymight require manual interaction in order that it can be utilized. The
intention is to support platforms that are not known in advanced (such as HIL-platforms or micro-controllers).
Typically, in such a case the complete source code in ANSI-C is provided (for example one C source file that
includes all other needed C files with the “#include” directive). All C source file names that need to be defined
in a compiler directive have to be defined in the xml-file under structure <ModelExchange><SourceFiles>
and <CoSimulation><SourceFiles>. These files may include other files. If default options of the compiler
are sufficient, it might be then possible to automatically process such source code FMUs. An exporting tool
should give documentation how to build an executable, either via a documentation file and/or a template
makefile for a particular platform, from which a user can construct the makefile for his/her target platform.
This documentation should be stored in the “documentation” directory, possibly with a link to the template
makefile (stored in the “sources” directory). [As template makefile, CMake
(www-emake-ergwww.cmake.orq), a cross-platform, open-source build system might be used.]

In directory “resources”, additional data can be provided in FMU specific formats, typically for tables and
maps used in the FMU. This data must be read into the model at latest during initialization
EemiTnitializeModel, £fmilnitializeStiave’)(that is before “fmiExitInitializationMode” is
called). The actual file names in the zip file to access the data files can either be hard-coded in the generated
FMU functions, or the file names can be provided as string parameters via the “fmiSetString” function.
[Note, the absolute file name of the resource directory is provided by the initialization functions]. In the case
of a co-simulation implementation of needsExecutionTool=true type, the “resources” directory can contain
the model file in the tool specific file format.

[Note, the header files fmiTypesPlatform.h and fmiFunctionTypes.h/fmiFunctions.h are not
included in the FMU due to the following reasons:

e fmiTypesPlatform.h makes no sense inthe “sources” directory, because if sources are provided,
then the target simulator defines this header file and not the FMU.
This header file is not included in the “binaries” directory, because it is implicitly defined by the platform
directory (for example win32 for 32-bit machine or linux64 for 64-bit machine). Furthermore, the version
that was used to construct the FMU can also be inquired via function fmiGetTypesPlatform().

e fmiFunctionTypes.h/fmiFunctions.h are not needed in the “sources” directory, because they are
implicitly defined by attribute fmiVversion in file modelDescription.XML. Furthermore, in order that the


http://www.cmake.org/
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C-compiler can check for consistent function arguments, the header file from the target simulator should be
used when compiling the C sources. It would therefore be counter productive (unsafe), if this header file
would be present.

These header files are not included in the “binaries” directory, since they are already utilized to build the
target simulator executable. Via attribute fmiVersion in file modelDescription.XML or via function call
fmiGetVersion () the version number of the header file used to construct the FMU can be deduced.

2.4 Hierarchical FMUs

An FMU may use other FMUs which may use other FMUs. So an FMU may consist of a hierarchy of
FMUs (also called external FMUs). All variables in an external FMU that shall be visible and/or
accessible from the environment need to be “exposed”, in other words in the root-level FMU a
corresponding variable needs to be defined and in the generated code this variable must be assigned to
the corresponding variable of the external FMU. As a result, only variables from the top most FMU are
visible/accessible from the environment where the FMU is called. Note, in case of FMI for model
exchange, continuous states of an external FMU must always be exposed. The hierarchical FMU
structure is not exposed in the FMU distribution, so in the model zip file only one FMU is contained.
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3. FMI for Model Exchange

This chapter contains the interface description to access the equations of a dynamic system from a C
program. A schematic view of a model in “FMI for Model Exchange” format is shown in the next figure:

a Vv

t,,P,inital values (a subset of v(z,)) |
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lo; Vstart

Enclosing Model *

time

variables with initial = “exact” (parameters, ...)

inputs (continuous-time and/or discrete-time)

outputs (continuous-time and/or discrete-time)

local variables (continuous-time and/or discrete-time)
event indicators (continuous-time)

|< I~
28
&
=

u
—

EEEE

Elements of local variables w and/or outputs y:
xc(t) continuous-time states (continuous between events)
Xq4(t) discrete-time states (constant between events)

External Model (FMU Instance)
A A

Xc

4

Xc, Z

Solver

Figure 2;: Data flow between the environment and an FMU for Model Exchange:
Blue arrows: Information provided by the FMU.
Red arrows : Information provided to the FMU.
Vstart,U,Y, W, X4 are of type Real, Integer, Boolean, String; f,x.,z are of type Real.

3.1 _Mathematical Description

The goal of the Model Exchange interface is to numerically solve a system of differential, algebraic and
| discrete-time equations. In this version of the interface, ordinary differential equations in state space
form with events are handled (abbreviated as “hybrid ODE”). Algebraic equation systems might be
contained inside the FMU._Also, the FMU might consist of discrete-time equations only, for example
describing a sampled-data controller.

hi a¥aWa am i da ihad niacawica ontinuo am D ontinuitie alla
instantstot;——tiwhere t—<+t.,-The independent variable time t € T _is a tuple t = (tg, t;) where
tg €ER, t; eN={0,1,2,...}. The real part t; of this tuple is the independent variable of the FMU for
describing the continuous-time behavior of the model between events. In this phase t; = 0. The integer
part t; of this tuple is a counter to enumerate (and therefore distinguish) the events at the same
continuous-time instant t;. This time definition is also called “super dense time” in literature, see e.qg.

(Lee and Zheng 2007). An ordering is defined on T leading to the following notation®:

Operation | Mathematical meaning Description
t1 =t (tr1 ti) < (trz trz) © tri<tpy OT tg1=tgy and t;< t;, t, is before t,
t,=t, (tri, ti) = (tra t1n) © tgpi=_tg, and t;{= t;, t,is identical to t,
right limit at t. t,,,,,is the
¢t (tr )" & (lim(tg + &), timax) largest occurring Integer
index of super dense time

6 The notation °t is from (Benveniste et.al. 2010) adapted from non-standard analysis to super-dense time, in order to precisely
define the value from the previous event iteration.
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~t “(tp ) © (lgi_r)ré(tR —¢),0) left limit at ¢
_ . previous time instant
ot (tn ) @{ ‘ ift, =0 (= either left limit or
’ (tp, t; — 1D ift; >0 : -
previous event instant).

vt v(th) value at the right limit of ¢

v v(Tt) value at the left limit of t
previous value (= either left

‘v v(°t) limit or value from the previous
event

[Assume that an FMU has an event at tg=2.1 s and here a signal changes discontinuously. If no event
iteration occurs, the time instant when the event occurs is defined as (2.1, 0), and the time instant when
the integration is restarted is defined as (2.1, 1).]

The hybrid ODEs supported by FMI are described as piecewise continuous-time systems. Discontinuities
can occur at time instants ¢, t;,---, t, where t; < t;;,. These time instants are called “events”. Events can
be known before hand (= time event), or are defined implicitly (= state and step events)-), see below.
Between events, variables are either continuous or do not change their value. A variable is called
discrete-time, if it changes its value only at an event instant. Otherwise the variable is called continuous-
time. Only real variables can be continuous-time.

The following variable indices are used to describe the timing behavior of the corresponding variable

(e.qg. v, is a discrete-time variable).
Index | Description
c A continuous-time variable, that is a variable that is a continuous function of time inside
each interval ¢ <t < 7t
d A discrete-time variable, that is a variable that changes its value only at an event instant ¢;.
c+td | A setof continuous-time and discrete-time variables

At every event instant #;¢;, varlables might be dlscontlnuous-and—thereiem—ha%—twe—\faiues—ai—th%—nme

¢ the "left’ and gttt ) ) | o to be-the right li .f
X—(t)—m—(t)-are-defined-to-be-the-“left limit att—[Example—m—{)=m{t . )- . see next
figure—the—twe—variable brocs arevisualizod:




Functional Mock-up Interface 2.0 RC1
October 18, 2013
Page 89 of 161

\
Vd.(_1). !g_(ll )

x{t)
S~
| miy
E > |.
ta
A : :
i i : > time t
t

tn 2

Figure 3: Piecewise-continuous statesvariables of an FMU: time-continuous-{x-time (v;) and time-discrete
fm-time (vg).

An event instant ¢, is defined by one of the following conditions that give the smallest time instant:

1. The environment of the FMU triggers an event at the current time instant because at least one
discrete-time input changes its value, a continuous-time input has a discontinuous change, or a
tunable parameter changes its value. Such an event is called external event. [Note, if an FMU A is
connected to an FMU B, and an event is triggered for A, then potentially all outputs of A will be
discontinuous at this time instant. It is therefore adviceable to trigger an external event for B at this
time instant too, if an output of A is connected to B. This means to call fmiEnterEventMode on B.]
All the following events are internal events.

4-2.At a predefined time mstant t= (Thexel(ts 11,_) that was deflned at the previous event mstant t,1 either
by the FMU

at-#-. Such an event is called time event.

2-3.At a time instant, where an event indicator zj(f) changes its domain from z; > 0 to z; < 0 or viee
versafrom z; < 0 to z; > 0 (see Figure 4 below). More precisely: An event t = t; occurs at the smallest
time instant “min t” with t > t.; where “(z;(t) > 0) # (z(t.1) > 0)”. Such an event is called state event®.
All event indicators are piecewise continuous and are collected together in one vector of real
numbers z(t).

7 Input signals are defined below.

8 This definition is slightly different from the standard definition of state events: “zj(t)-z(t-.1) = 0”. This often used definition has the
severe drawback that z(t.1) # O is required in order to be well-defined and this condition cannot be guaranteed.
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A
! | | z>0
E \/ > tme
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Figure 4: An event occurs when the event indicator changes its domain from z > 0 to z < 0 or vice versa.

3-4.At every completed step of an integrator, fmiCompletedIntegratorStep must be called (provided
the capability flag Mode1Description.completedIntegratorStepNotNeeded = false). An
event occurs at this time instant, if indicated by the return argument eallEventUpdate-nextMode =

EventMode. Such an event is called step event. [Step events are, for example, used to dynamically
change the (continuous) states of a model_internally in the FMU, because the previous states are no
longer suited numerically.]
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descript
ionVaria
ble

range-oftDescription

initiglizat t=t

x,m,p,7,,,) =
f,(u,z,,subsetof v)

t,‘S—t—<—t— =1 :. that) o

H
[0}

outputs-y(t)

{<t<1t.,Independent variable time € T. (Variable defined with causality = "indeg

I<

exposed-variables-vw(HA vector of all exposed variables (all variables defined in elemer
<ModelVariables>, see section 2.2.7). Via a subscript, a subset of the variables is
selected. Example:

Vinitial=exact are variables defined with attribute initial = "exact", see section 2.2.7.
These are independent parameters and start values of other variables, such as initial
values for states, state derivatives or outputs.

Parameters that are constant during simulation. The symbol without a sub-script refere
Dependent parameters (variables with causalit

= "calculatedParameter") are

eventindicators-zu(t)

Input variables. The values of these variables are defined outside of the model. Variab
are defined with attribute causality = "inputf<t<4.,". Via attribute causalit

or "continuous" itis defined whether the input is a discrete-time or continuous-time
section 2.2.7.

y(t-=-ts)

(X7m7T;'text):
QOutput variables. The values of these variables are computed

f,(x ,m ,u,p,z,)
used in a model connection. So output variables might be used in the environment as
submodels. Variables of this type are defined with attribute causality = "output".
or "continuous" itis defined whether the output is a discrete-time or continuous-timi

w(b)

Local variables of the FMU that cannot be used for FMU connections. Variables of this

z(f)

A vector of real continuous-time variables utilized to define state events, see below.

#x ()

(=T (t) or min ¢
next \"17 \
>t

J(t) ﬂ) + ( J(fl) > 0) or_step event A vector of real

For notational convenience, a continuous-time state is conceptually treated as a diffe
below. In reality, a continuous-time state is however part of the outputs y or the local v

X4(t)
*x4(t)

te R, pe PP ultyc P™ mit) = P x{t)y = R™ y(t) = PY vty = P 2(t) = R™

ffoyy_fvaz‘ = QQ—FGOHHH&GHS#HHG%HS—W%—F&SP@GHG—M}P&FQH{H&H{W i i i j insi <t
where-1=lim (s -+ &)-and-for-all-variables-v-w(t)s-therightimit of v-at :x . () is a ve
&£—0

*x4(t) s the value of x,(t)_at the previous super dense time instant, so *x,(t) = x,(°t
Given the previous values of the discrete-time states, °x,(t), at the actual time instant
computed.
Vector x, is defined by all variables of element <scalarvVariable> that have attribute
are referenced by the previous index, see section 2.2.7.

For notational convenience, a discrete state is conceptually treated as a different typ
reality, a discrete state is however part of the outputs y or the local variables w of an F

Tnext (ti)

At initialization or at an event instant, an FMU can define the next time instant T,,.,, at
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event removes automatically a previous definition of T,,,,;, and it must be explicitely de

r(t;) A vector of Boolean variables with r; := z; > 0. When entering Continuous-Time Mode
relations are replaced by r. Only during Initialization or Event Mode the domains z; > (
r:={z; > 0,2, >0,..}. [For more details, see “Remark 3” below.]

Computing the solution of an FMI model means to split the solution process in different phases and in

every phase different equations and solution methods are utilized. The phases can be categorized

according to the following modes:

1.

Initialization Mode:

This mode is used to compute at the start time ¢,_initial values for continuous-time states, x.(t,).
and for the previous discrete-time states, *x,(t,)_ by utilizing extra equations not present in the
other modes (for example equations to define the start value for a state or for the derivative of a

state).

Continuous-Time Mode:

This mode is used to compute the values of all (real) continuous-time variables between events
by numerically solving ordinary differential and algebraic equations. All discrete-time variables
are fixed during this phase and the corresponding discrete-time equations are not evaluated.

Event Mode:

This mode is used to compute new values for all continuous-time variables, as well as for all
discrete-time variables that are activated at the current event instant t, given the values of the
variables from the previous instant*t. This is performed by solving algebraic equations consisting
of all continuous-time and all active discrete-time equations. In FMI 2.0 there is no mechanism
that the FMU can provide the information whether a discrete-time variable is active or is not
active (is not computed) at an event instant. Therefore, the environment has to assume that at an
event instant always all discrete-time variables are computed, although internally in the FMU only
a subset might be newly computed.

When connecting FMUs together, loop structures can occur that lead to particular difficulties because

linear or non-linear algebraic systems of equations in Real variables but also in Boolean or Integer

variables might be present. In order to solve such systems of equations over FMUs efficiently the

dependency information is needed stating, for example, which outputs depend directly on inputs. This

data is optionally provided in the xml file under element <ModelStructure>. If this data is not provided,

the worst case must be assumed (for example, all output variables depend algebraically on all input

variables).

[Example: In the next Fiqure two different types of connected FMUs are shown (the “dotted lines”

characterize the dependency information):
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artifical algebraic loop

— sequential calling sequence:

.................................. -— fmiSetXXX(m2,< u,,>, ...)

V2a = fmiGetXXX(m2, ...)

fmiSetXXX(m1, < u; =y, >, ...)
= fmiGetXXX(m1,..)

FMU2
A o
fmiSetXXX(m2, < u,y, = y1 >, ...)

Vap =_fmiGetXXX(m2, ...)

FMU3
— iterative calling sequence:
Y3 u . . )
................................. — In every Newton iteration evaluate:
input: u, /[ provided by solver
output: residue_// provided to solver
fmiSetXXX(m4,<u,>, ...
FMU4 (md.Su,>....)

__ vy, =TmiGetXXX(m4, ...)

. fmiSetXXX(m3, < u; =y, >, ...)
4 YVa __y5 =_fmiGetXXX(m3,..)

‘ __residue ==u, —y3

Fiqure 5: Calling sequences for FMUs that are connected in a loop.

In the upper diagram FMU1 and FMU?2 are connected in such a way that by an appropriate sequence of
fmiSetXXX and fmiGetXXX calls the FMU variables can be computed.

In the lower diagram FMU3 and FMU4 are connected in such a way that a “real” algebraic loop is present.
This loop might be solved iteratively with a Newton method. In every iteration the iteration variable u, is
provided by the solver and via the shown sequence of fmiSetXXX and fmiGetXXX calls the residue is
computed and is provided back to the solver. Based on the residue a new value of u,_is provided. The
iteration is terminated when the residue is close to zero.

These types of artifical or real algebraic loops can occur in all the different modes, Initialization Mode,
Event Mode, and Continuous-Time Mode. Since different variables are computed in every Mode and the
causality of variable computation can be different in Initialization Mode as with respect to the other two
Modes, it might be necessary to solve different kinds of loops in the different Modes.

1

In Table 1_the equations are defined that can be evaluated in the respective Mode. The following color
coding is used in the table:

grey If a variable in an argument list is marked in grey, then this variable is not
changing in this mode and just the last calculated value from the previous mode is
internally used. For an input argument it is not allowed to call fmisetxxx. For an
output argument, calling fmiGetXxx on such a variable returns always the same
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value in this mode.
green Functions marked in green are special functions to enter or leave a mode.
blue Equations and functions marked in blue define the actual computations to be
performed in the respective mode.

Function fmiSetXxxX is an abbreviation for functions fmiSetReal, fmiSetBoolean, fmiSetInteger
and fmisetString respectively. Function fmiGetXXX is an abbreviation for functions fmiGetReal,
fmiGetBoolean, fmiGetInteger and fmiGetString respectively.

[In the following table the setting of the super dense time, (tg, t;), is precisely described. Tools will usually
not have such a representation of time. However, super-dense time defines precisely when a new
"model evaluation" starts and therefore which variable values belong to the same "model evaluation" at
the same (super dense) time instant and should be stored together.

1

Equations | FMI functions

Equations before Initialization Mode

Set independent variable time tz,_and define ty: = (tzo, 0) fmiSetupExperiment

Set variables Viy;tiqi=exact 8N Vinitiai=approx_that have a start fmiSetXXX

value (initial = "exact" or "approx")

Equations during Initialization Mode

Enter Initialization Mode at t = t,_(activate initialization, fmiEnterInitializationMode
discrete-time and continuous-time equations)

Set variables v;,;tia1—exace_that have a start value with fmiSetXXX
initial="exact" (independent parameters p,
continuous-time states with start values X ;,itiq1=exace.@nd
discrete-time states with start values *X, initiqi=exact

are included here)

Set continuous-time and discrete-time inputs u(t,) fmiSetXXX

fmiGetXXX,
fmiGetContinuousStates

[ ]
( Xc,initial:not exact, Xd,initial:not exact pcalculated)

= finie (U, Wy, Co, Vinitiar=exact)
Yetra = Fsim (Xe, Ucra, Lo) Prune Pother)

f,im_is also a function of the internal variables °x, .

Exit Initialization Mode (de-activate initialization equations) fmiExitInitializationMode

Equations during Event Mode

Enter Event Mode at t = t; with t; := (tg, t; + 1)_if fmiEnterEventMode
externalEvent or nextMode = EventMode or (only from Continuous-Time Mode)
t; = (Tnext(ti_1) ,0) or min t: [z;() >0 # z(t;-y) > 0]
-1

(activate discrete-time equations)

Set independent tunable parameters p;,,. fmiSetXXX
(and do not set other parameters p,xer)

Set continuous-time and discrete-time inputs u(t;) fmiSetXXX

Set continuous-time states x.(t;) fmiSetXXX, fmiSetContinuousStates
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fmiGetXXX,
(YC+d' X XayWeyrdr Z, xc,reinit) = fsim(xm Ucrd, tiﬂ Ptune, pother) fmiGetContinuousStates,

fmiGetDerivatives

f.m_is also a function of the internal variables °x,

fmiGetEventIndicators

Increment super dense time and define with fmiNewDiscreteStates
newDiscreteStatesNeeded whether a new event iteration is
required.
if not newDiscreteStatesNeeded then
Tnext = Tnext (xm .xd, uc+d' tiﬂ ptune’ pother)
end if
t:=(tg, t; +1)

Set independent variable time t; := (Tyext, 0) fmiSetTime
(if no continuous-time equations)

Equations during Continuous-Time Mode

Enter Continuous-Time Mode: fmiEnterContinuousTimeMode

_// de-activate discrete-time equations
// "freeze" variables:
r=z>0 // all relations

*X4,Xq, Y4, Wq // all discrete - time variables

Set independent variable time t (> tenter mode)it = (tg, 0) fmiSetTime
Set continuous-time inputs u.(t) fmiSetXXX
Set continuous-time states x.(t) fmiSetXXX, fmiSetContinuousStates

fmiGetXXX,

fmiGetDerivatives,
f ;m_is also a function of the internal variables °x,;,r.| fmiGetEventIndicators

(YC' Ya,Xe, Xg, We, Wy, Z, Xc,reinit) = fsim (XC' Uc, Uy, t, Ptune, pother)

Complete integrator step and return enterEventMode fmiCompletedIntegratorStep

Data types

t €ER,p € P, u(t) € P, y(t) € PV, x.(t) € R™, x4(t) € P, w(t) € P™,z(t) € R
R: real variable, P: real or Boolean or integer or enumeration or string variable

finie, fsim € C° (= continuous functions with respect to all inputs arguments) inside the respective mode.

Table 2: Mathematical description of an FMU for Model Exchange.

[Remark 1 — Calling Sequences:

In the table above, for notational convenience in every Mode one function call is defined to compute all
output arguments from all inputs arguments. In reality, every scalar output argument is computed by one
fmiGetxXX function call. Additionally, the output argument need not be a function of all input arquments,
but of only a subset from it, as defined in the xml file under <ModelStructure>. This is essential when

EMUs are connected in a loop, as shown in Figure 6. For example, since y,, depends only on uq,, but

not on uqy, it is possible to call fmisetXxX to set u;,, and then inquire y,, with fmiGetXXx without

setting u,,_beforehand.

It is non-trivial to provide code for fmiSetXXX, fmiGetXXX, if the environment can call fmiSetxxx on the
inputs in_quite different orders. A simple remedy is to provide the dependency information not according to
the “real” functional dependency, but according to the sorted equations in the generated code. Example

Assume an FMU is described by the following equations (ul,u2 are inputs, v1, yv2 are outputs, wl, w2
are internal variables):

wl = w2 + ul
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w2 = u2
yl = wl
y2 = W2

Sorting of the equations might result in (this ordering is not unique):

w2 = u2
y2 1= w2
wl = w2 + ul
yl := wl

With this ordering, the dependency should be defined as yv2 = f(u2), yl = f(ul,u2). When y2 is
called first with fmiGetxxX, then only u2 must be set first (since y2 = £ (u2)), and the first two
equations are evaluated. If later v1 is inquired as well, then the first two equations are not evaluated
again and only the last two equations are evaluated. On the other hand, if v1 is inquired first, then ul
and u2 must be set first (since v1 = f (ul,u?2)) and then all equations are computed. When v2 is
inquired afterwards, the cached value is returned.

If sorting of the equations in this example would instead result in the following code:

w2 = u2
wl := w2 + ul
yl = wl
y2 1= w2

then the dependency should be defined as y2 = f(ul,u2), vyl = f(ul,u2), because ul and u?2
must be first set, before y2 can be inquired with fmiGetxXXX when executing this code.

Remark 2 — Mathematical Model of Discrete-Time FMUs:
There are many different ways discrete-time systems are described. For FMI the following basic
mathematical model for discrete-time systems is used (other description forms must be mapped, as
sketched below):

while Toxt < teng loop

tg = Thext
tl = 0
t = (tgp tp)

loop // super dense time iteration (e.g. since state machine in FMU)
repeat // algebraic loop iteration (due to connected FMUs)
// either sequence or solve algebraic loops over FMUs iteratively
xq = f("Xg,ug)
Ya = 8("Xq, uq)
until <algebraic loops solved>
// function fmiNewDiscreteStates:
Thext = T("Xgq,uq)
if x; = °x,then exit
Xgq =Xy
t = (tpt; + 1)
end loop
end while

At an event instant, the discrete system is described by algebraic equations as function of the previous
discrete-time states "x,; and the discrete-time inputs u,. If FMUs are connected in a loop, these algebraic
equations are called iteratively, until the solution is found. If the actual discrete-time states x, and the
previous discrete-time states*x,; are not identical, the discrete-time states are updated, the Integer part
of the time is incremented and a new event iteration is performed. Other discrete-time models must be
mapped to this description form. Examples:
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e Synchronous systems:
A synchronous system, such as Lucid Synchrone (Pouzet 2006) or Modelica 3.3 (Modelica 2012), is
called periodically and at every sample instant the discrete-time equations are evaluated exactly
once. An FMU of this type can be implemented by activating the model equations only at the first
event iteration and returning always newNewDiscreteStatesNeeded = false_from
fmiNewDiscreteStates. Furthermore, the discrete-time states are not updated by
fmiNewDiscreteStates, but as first action before the discrete-time equations are evaluated, in
order that "x, (= value at the previous clock tick) and x, (value at the latest clock tick) have
reasonable values between clock ticks.

e State machines with one memory location for a state:
In such a system there is only one memory location for a discrete-time state and not two, and
therefore a discrete-time state is updated in the statement where it is assigned (and not in
fmiNewDiscreteStates). As a result, fmiNewDiscreteStates is basically just used to start a new
(super dense) time instant. This is unproblematic, as long as no algebraic loops occur. FMUs of this
type can therefore not be used in “real” algebraic loops if the involved variables depend on a
discrete-time state. This restriction is communicated to the environment of the FMU by the
ScalarVariable definition of the corresponding input with flag
canHandleMultipleSetPerTimeInstant=false (SO an input with this flag is not allowed to be
called in an algebraic loop).

Remark 3 — Event Indicators / Freezing Relations:

In the above table vector r is used to collect all relations together that are utilized in the event indicators
z. In Continuous-Time Mode all these relations are “frozen” and do not change during the evaluations in
the respective Mode. This is indicated in the table above by computing r when entering the Continuous-
Time Mode and providing r as (internal) input argument to the evaluation functions. Example:

An equation of the form

y = if x1 > x2 or x1 < x3 then +1 else -1;

can be implemented in the FMU as:

z1:=x1 —x2;

z2 = x3 — x1;

if InitializationMode or EventMode then
r1:=z1>0;
r2 :=z2 > 0;

end if;

y = if r1 or r2 then +1 else -1

Therefore, the original if-clause is evaluated in this form only during Initialization and Event Mode. In
Continuous-Time Mode this equation is evaluated as:

z1 =x1-x2;
z2 = x3—x1
y = if r1 or r2 then +1 else -1;

and when entering Continuous-Time Mode r1 and r2 are computed as

ri=z1>0
r2=z2>0

When z1 changes from z1 > 0 to z1 <= 0 or vice versa, or z2 correspondingly. the integration is halted
and the environment must call fmiEnterEventMode.
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An actual implementation will pack the code in an impure function, say Greater(...), resulting in:

= if Greater(x1-x2,...) or Greater(x3-x1,...) then +1 else -1;

Furthermore, a hysteresis should be added for the event indicators. For more details see the companion
document FunctionalMockuplnterface-ImplementationHints.docx.

Remark 4 — Pure Discrete-Time FMUSs:

If an FMU has only discrete-time equations (and no variables with variability = “continuous”), then the
environment need not to call fmiEnterContinuousTimeMode but can directly call fmiSetTime fo set
the value of the next event instant, before fmiEnterEventMode is called.

1

An FMU is initialized with-fo()-

algerithms-inside-the-modelkin Initialization Mode with f;,;.(...). The input arguments to this function are
defined in the description schema with element <ModelStructure><InitialUnknowns> (see section
2-2-F—This-includes2.2.8) consisting of the input variables and of all variables that have a start value
with (explicitely or implicitely) initial variable-values—as-wellas-guess-valuesforiteration-variablesof
algebraic-equation-systems;= exact in order to compute the continuous-time and discrete-time states
at the initial time ;. In the above table, this-situationis-desecribed-by-stating-that partof-the-input

arguments-to-fo(-)-are-a-subset-of the-initial values-of-all- time-varyingthese variables appearingare
collected together in the-model-equations-variable v, iiqi—exact- FOr €xample initialization might be

defined by theproviding initial start values for the states, xq;x.,, Or by stating that the state derivatives
are zero {= )—(xc =0). In|t|aI|zat|on is a difficult toplc by itself and it is assumedrequired that the
i hean FMU solves a well-defined initialization

problem inside the FMU in Initialization Mode.

After-initialization;After calling fmiExitInitializationMode the FMU is implicitely in Event Mode and
all discrete-time and continuous-time variables at the initial time instant (¢, 0)_can be calculated, if needed
also iteratively due to an algebraic loop. Once finalized, fmiNewDiscreteStates must be called, and
depending on the value of the return argument, the FMU either continues the event iteration at the initial time
instant or switches to Continuous-Time Mode.

After switching to Continuous-Time Mode, the integration is started. Basically, in this phase the derivatives
of the continuous states are computed-with-f. (). If FMUs and/or submodels are connected together, then
the inputs of these models are the outputs of other models and therefore f,{—)the corresponding FMU outputs
must be called-to-compute-outputscomputed. Whenever result values shall be stored, usually at output points
defined before the start of the simulation, the fmiGetxxx function f{—)with respect to the desired variables
must be called.

Continuous integration is stopped at an event instant. An event instant is determined by a time, state, or
step event:;, or by an external event triggered by the environment. In order to determine a state event,
funetionf.{—)-hasthe event indicators z have to be ealledinquired at every completed integrator step. Once
the event indicators signal a change of their domain, an iteration over time is performed between the previous
and the actual completed integrator step, in order to determine the time instant of the domain change up to a
certain precision.

After an event is triggered, funetion-f.{—)the FMU needs to be switched to Event Mode. In this mode
systems of equations over connected FMUs might be solved (similarily as in Continuous-Time Mode). Once
convergence is reached, fmiNewDiscreteStates (..) must be called—Thisfunction-returns—with-the-new
valdes-ofthe{ to increment super dense time-}-centinuous-_(and ¢time-}-conceptually update the discrete-time
states—As-input-arguments by "x; = x,). Depending on the values—of-the-states—areused,just-before-the
event-was-triggered—Insidefunctionf..(——an-discrete-time model, a new event iteration may-take-place-until

themight be needed (e.qg. because the FMU describes internally a state machine, and transitions are still able
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The function calls in the table above describe precisely, which input arguments are needed to compute the
desired output argument(s). There is no 1:1 mapping of these mathematical functions to C functions. Instead,
all input arguments are set with fmisetxxx (..) C-function calls and then the result argument(s) can be
determined with the C functions defined in the rlght column of the above table. This technique is discussed in
detail in section 1.1.1. [In short: For efficiency reasons, all equations from the table above will usually be
available in one (internal) C-function. With the C functions described in the next sections, input arguments are
copied into the internal model data structure only when their value has changed in the environment. With the
C functions in the right column of the table above, the internal function is called in such a way, that only the
minimum needed equations are evaluated. Hereby, variable values calculated from previous calls can be
reused. This technique is called “caching” and can significantly enhance the simulation efficiency of real-
world models.]

3.2 FMI Application Programming Interface

This section contains the interface description to evaluate different model parts from a C program.

3.2.23.2.1 Providing Independent Variables and Re-initialization of Caching

Depending on the situation, different variables need to be computed. In order to be efficient, it is
important that the interface requires only the computation of variables that are needed in the present
context. For example during the iteration of an integrator step, only the state derivatives need to be
computed, provided the output of a model is not connected. It might be that at the same time instant
other variables are needed. For example if an integrator step is completed, the event indicator functions
need to be computed as well. For efficiency it is then important that in the call to compute the event
indicator functions, the state derivatives are not newly computed, if they have been computed already at
the present time instant. This means, the state derivatives shall be reused from the previous call. This
feature is called “caching of variables” in the sequel.

Caching requires that the model evaluation can detect when the input arguments, like time or states, have
changed. This is achieved by setting them explicitly with a function call, since every such function call signals
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precisely a change of the corresponding variables. For this reason, this section contains functions to set the
input arguments of the equation evaluation functions. This is unproblematic for time and states, but is more
involved for parameters and inputs, since the latter may have different data types.

fmiStatus fmiSetTime (fmiComponent c, fmiReal time);
Set a new time instant and re-initialize caching of variables that depend on time, provided the
newly provided time value is different to the previously set time value (variables that depend
solely on constants or parameters need not to be newly computed in the sequel, but the
previously computed values can be reused).

fmiStatus fmiSetContinuousStates (fmiComponent ¢, const fmiReal x[], size_t nx);
Set a new (continuous) state vector and re-initialize caching of variables that depend on the
states. Argument nx is the length of vector x and is provided for checking purposes (variables
that depend solely on constants, parameters, time, and inputs do not need to be newly computed
in the sequel, but the previously computed values can be reused). Note, £miEventUpdate-might
change-the continuous states as-wellmight also be changed in Event Mode.
Note: fmiStatus = fmiDiscard is possible.

fmiStatus fmiSetXXX(..);

Set new values for (independent) parameters, start values and inputs and re-initialize caching of
variables that depend on these variables. The details of these functions are defined in section
2.1.6.

[The functions above have the slight drawback that values must always be copied, for example a call to
“fmiSetContinuousStates” will provide the actual states in a vector and this function has to copy the
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values in to the internal model data structure “c” so that subsequent evaluation calls can utilize these
values. If this turns out to be an efficiency issue, a future release of FMI might provide additional
functions to provide the address of a memory area where the variable values are present-.]

3.2.33.2.2 Evaluation of Model Equations

This section contains the core functions to evaluate the model equations. Before one of these functions
can be called, the appropriate functions from the previous section have to be used, to set the input
arguments to the current model evaluation.

fmiStatus fmiEnterEventMode (fmiComponent c);
The model enters Event Mode from the Continuous-Time Mode and discrete-time equations may
become active (and relations are not “frozen”).

fmiStatus fmifnitiatizeModetfmiNewDiscreteStates (fmiComponent ¢,
fra D ] N+ 1 o Contr~11 =
feiBootesn teolerap e
fFfrmaDAST ral EIE TN LN | Yo~
e
fmiEventInfo* ewvenrtInfoefmiEventInfo);
typedef struct{
] m NnairnerfFaal for fFo- T NI Ao+
i o
e e L e e e e fmiBoolean
newDiscreteStatesNeeded;
fma D ul n 1+ rat o NCoanszarerand .«
B R e L e
D 1 n_ot o+ 211 ADAf ne Chanend aliiaDRAafararn Ao £ + o+ oahaneen A
e L o —————— e
fra D 1 n + o+ 1 Chanecande. T £ + o+ harncoaad
Rt Fargeds ———— harged
m T rneefFaa] v fd T a4 o 1= Modal nd Foar Fond Tz Tl o4
e ard—Feor—fritventbpdat
fmiBoolean terminateSimulations
fmiBoolean upeeomingFimekvents =

£miFTruernominal sOfContinuousStatesChanged;
fmiBoolean valuesOfContinuousStatesChanged;

fmiBoolean nextEventTimeDefined;

fmiReal nextEventTime—4s; // next time event if

nextEventTimeDefined=fmiTrue
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The FMU is in Event Mode and the super dense time is incremented by this call.

If the super dense time before a call to fmiNewDiscreteStates was (tg, t;)_then the time instant
after the call is (t, t; + 1). Consequently, the meaning of the discrete-time states changed:

A discrete-time state x4_at (tg, t;)_is the previous value °x4 at (tg, t; + 1).

[For example, if xd = 5 and previous(xd) = 4 at (tg, t;),then previous(xd) = 5 at (tg, t; + 1).1.

If return argument fmiEventInfo -> newDiscreteStatesNeeded = fmiTrue, the FMU
should stay in Event Mode and the FMU requires to set new inputs to the FMU (fmiSetXXxX on
inputs), to compute and get the outputs (fmiGetXXX on outputs) and to call
fmiNewDiscreteStates again. Depending on the connection with other FMUs, the environment
shall

e call fmiTerminate, if terminateSimulation = fmiTrue;is returned by at least one FMU,

e call fmiEnterContinuousTimeMode if all FMUs return newDiscreteStatesNeeded
fmiFalse.

e stayin Event Mode otherwise.
When the simulation-shall-beFMU is terminated-(successfully)., it is assumed that an appropriate
message is printed by the logger function (see section 2.1.5) to explain the reason for the

termination.
If

H—upeemt

TimeEventlf nominalsOfContinuousStatesChanged = fmiTrue then the
nominal values of the states have changed and can be inquired  with

fmiGetNominalsOfContinuousStates.

If valuesOfContinuousStatesChanged = fmiTrue then atleast one element of the
continuous state vector has changed its value. The new values of the states can be inquired with

fmiGetContinuousStates.

If nextEventTimeDefined = fmiTrue, then the simulation shall integrate at most until time
= nextEventTime, and shall call £miEventUpdatefmiEnterEventMode at this time instant. If
integration is stopped before nextEventTime, for example due to a state event, the definition of
nextEventTime becomes obsolete.

fmiStatus fmiEnterContinuousTimeMode (fmiComponent c);
The model enters Continuous-Time Mode and all discrete-time equations become inactive and all
relations are “frozen”.
This function has to be called when changing from Event Mode (after the global event iteration
in Event Mode over all involved FMUs and other models has converged) into Continuous-Time
Mode.

[This function might be used for the following purposes:
e [fthe FMU stores results internally on file, then the results after the initialization and/or the
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event has been processed can be stored.
e [fthe FMU contains dynamically changing states, then a new state selection might be
performed with this function.

fmiStatus fmiCompletedIntegratorStep (fmiComponent c,

fmiBoolean noSetFMUStatePriorToCurrentPoint,

fmiBoolean* enterEventMode,

fmiBoolean* terminateSimulation);

This function must be called by the environment after every completed step of the integrator
provided the capability flag completedIntegratorStepNotNeeded = false
Argument noSetFMUStatePriorToCurrentPoint is fmiTrue if fmiSetFMUState will no longer be
called for time instants prior to current time in this simulation run [the FMU can use this flag to
flush a result buffer].

The function returns enterEventMode to signal to the environment if the FMU shall call
fmiEnterEventMode, and it returns terminateSimulation to signal if the simulation shall be
terminated. If enterEventMode = fmiFalse and terminateSimulation = fmiFalse the

FMU stays in Continuous-Time Mode without calling fmiEnterContinuousTimeMode again.

When the integrator step is completed and the states are modified by the integrator afterwards
(for_example correction by a BDF _method), then fmiSetContinuousStates(..) has to be
called with the updated states before fmiCompletedIntegratorStep (..) is called.

When the integrator step is completed and one or more event indicators change sign (with
respect to the previously completed integrator step), then the integrator or the environment has to
determine the time instant of the sign change that is closest to the previous completed step up to
a certain precision (usually a small multiple of the machine epsilon). This is usually performed by
an iteration where time is varied and state variables needed during the iteration are determined
by interpolation. Function fmiCompletedIntegratorStep must be called after this state event
location procedure and not after the successful computation of the time step by the integration
algorithm. The intended purpose of the function call is to indicate to the FMU that at this stage all
inputs and state variables have valid (accepted) values.

After fmiCompletedIntegratorStep is called, it is still allowed to go back in time (calling
fmiSetTime) and inquire values of variables at previous time instants with fmiGetxxX [for
example to determine values of non-state variables at output points]: However, it is not allowed to
go back in time over the previous completedIintegratorStep or the previous

fmiEnterEventMode call.

[This function might be used, for example for the following purposes:

1. Delays:
All variables that are used in a “delay(..)” operator are stored in an appropriate buffer and the

function returns with nextMode = fmiContinuousTimeMode.

2. _Dynamic state selection:

It is checked whether the dynamically selected states are still numerically appropriate. If yes,
the function returns with enterEventMode = fmiFalse otherwise with enterEventMode =

fmiTrue. In the latter case, fmiEnterEventMode (..) has to be called and the states are
dynamically changed by a subsequent fmiNewDiscreteStates (..).

fmiStatus fmiGetDerivatives (fmiComponent c, fmiReal derivatives|[],size_t nx);
fmiStatus fmiGetEventIndicators (fmiComponent ¢, fmiReal eventIndicators|[],

size t ni);
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Compute state derivatives and event indicators at the current time instant and for the current
states. The derivatives are returned as a vector with “nx” elements. A state event is triggered
when the domain of an event indicator changes from z; > 0 to z; < 0 or vice versa (see section
3.1). The FMU must guarantee that at an event restart z; # 0, for example by shifting z; with a
small value. Furthermore, z; should be scaled in the FMU with its nominal value (so all elements
of the returned vector “eventindicators” should be in the order of “one”). The event indicators are
returned as a vector with “ni” elements.

The ordering of the elements of the derivatives vector is identical to the ordering of the state
vector (for example derivatives[2] is the derivative of x[2]). Event indicators are not
necessarily related to variables on the Model Description File.

Note: fmiStatus = fmiDiscard is possible for both functions.

fmiStatus fmiGetContinuousStates (fmiComponent c, fmiReal x[], size t nx);
Return the new (continuous) state vector x-after-an-eventiteration-has-finished-({including
initialization)-. This function has to be called afterinitialization-anddirectly after calling function
fmiEnterContinuousTimeMode if it returns with eventInfo-
>valuesOfContinuousStatesChanged = fmiTrue (indicating that the (continuous-time) state

vector has changed-at-an-eventinstantafter calling-£mikventUpdatel-with

4 road —frad Moo
TonConverged—tmiTrue:

rerttnaf iterationConv
fmiStatus
fricetNominalContinvousStatesfmiGetNominalsOfContinuousStates (fmiComponent c,

3
fmiReal x nominal][
size t nx);
Return the nominal values of the continuous states. This function should always be called after
£milnitializerandcalling function fmiNewDiscreteStates if it returns with eventInfo-

>stateValueReferencestChanged nominalsOfContinuousStatesChanged = fmiTrue A
£mikEventUpdatersince then the nominal values of the continuous states have changed [e.qg.
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because the association of the continuous states to variables has changed and-therefore-alse
their-nominal-values-due fo internal dynamic state selection]. If the FMU does not have
information about the nominal value of a continuous state i, a nominal value x_nominal[i] =
1.0 should be returned. Note, it is required that x nominal[i] > 0.0 [Typically, the nominal
values of the continuous states are used to compute the absolute tolerance required by the

integrator. Example:
absoluteTolerance[i] = 0.0l*redativeFelerancetolerance*x nominal[i];]

3.2.43.2.3 State Machine of Calling Sequence

Every implementation of the FMI must support calling sequences of the functions according to the
following state chart:
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Figure 6: Calling sequence of Model Exchange C functions in form of an UML 2.0 state machine.

The objective of the start chart is to define the allowed calling sequences for functions of the FMI: Calling
sequences not accepted by the state chart are not supported by the FMI. The behaviour of an FMU is
undefined for such a calling sequence. For example, the state chart indicates that when an FMU for
Model Exchange is in state “modeHnitializedContinuous-Time Mode”, a call to fmiSetReal for a discrete

input directly-followed-by-a-call-tofmiGetRealis not supported. The state chart is given here as UML 2.0

state machine. If a transition is labelled with one or more function names (for example fmiGetReal,
fmiGetinteger) this means that the transition is taken if any of these functions is successfully called. Nete

the FMU can always determine in which state it is since every state is entered by a particular function

call (such as fmiEnterEventMode), or a particular return value (such as fmiFatal).

The transition conditions "stepexternal event", "time event", and "state event" are defined in section 3.1.

Each state of the state machine corresponds

to a certain phase of a simulation as follows:
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¢ instantiated:
In this state, inputs;-start and guess values (= variables that have initial = “exact” or “approx.”)
can be set.

o continuousEvaluationlnitialization Mode:
In this state-the-solution-at-initial- equations are active to determine all continuous-time-aftera-completed
integrator-steporaftereventiteration and discrete-time states, as well as all outputs (and optionally other
variables exposed by the exporting tool). The variables that can be retrieved—-Also-an-integratorstep-is by
fmiGetXXX calls are defined in the xml file under <ModelStructure><InitialUnknowns>. Variables
with initial = “exact”, as well as inputs can be set.

e Continuous-Time Mode:
In this state the continuous-time model equations are active and integrator steps are performed-and. The
event time of a state event may be determined here-afterif a domain change of at least one event indicator
wasis detected at the end of a completed integrator step.

e Event Mode:
If £miTnitializeorfmikventUpdate-an eventis triggered in Continuous-Time Mode, then Event Mode
is entered by calling fmiEnterEventMode. In this mode all continuous-time and discrete-time equations
are active and the unknowns at an event can be computed and retrieved. After an event is completely
processed, fmiNewDiscreteStates must be called and depending on the return with
eventInfo-argument, newDiscreteStatesNeeded, the state chart stays in Event Mode or switches to
Continuous-Time Mode. When the Initialization Mode is terminated =—£riTruea-transition-to-state
“terminated”oceurswith fmiExitInitializationMode, then Event Mode is directly entered, and the continuous-
time and discrete-time variables at the initial time are computed based on the initial continuous-time and
discrete-time states determined in the Initialization Mode.

e terminated:
In this state, the solution at the final time of a simulation can be retrieved.

Note, that simulation backward in time is only allowed over continuous time intervals. As soon as an
event occured (£miEventUpdatefmiEnterEventMode was called) going back in time is forbidden,
because fmiEventUpdatefmiEnterEventMode/fmiNewDiscreteStates can only compute the next
discrete state, not the previous one.

Note, during Initialization, Event, and Continuous-Time Mode input variables can be set with fmiSetXXX
and output variables can be get with fmiGetxXX interchangeably according to the model structure
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defined under element <Modelstructure> in the xml-file. [For example if one output v1 depends on two
inputs ul, u2, then these two inputs must be set, before y1 can be get. If additionally an output v2
depends on an input u3, then u3 can be set and v2 can be get afterwards. As a result, artificial or “real”
algebraic loops over connected FMUs in any of these three modes can be handled by using appropriate
numerical algorithms.]

The allowed function calls in the respective states are summarized in the following table (functions
marked in “yellow” are only available for “Model Exchange”, the other functions are available both for
“Model Exchange” and “Co-Simulation”):
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FMI 2.0 for Model
Exchange

fatal

Function

fmiGetTypesPlatform

fmiGetVersion

fmiSetDebuglogging
fmiGetRealfmilnstantiate
fmiGetlntegerfmiFreelnstance
fmiGetBooleanfmiEnterlnitializationMode
fmiGetStringfmiExitInitializationMode
fmiSetRealfmiTerminate

fmiSetintegerfmiReset
fmiGetRealfmiSetBoolean

fmiGetintegerfmiSetString
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fmiSerializeFMUstatefmiSetTime
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fmiCompletedEventierationfmiGetDirectionalDerivative
fmiCompletedintegratorStepfmiEnterEventMode
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s < [ < [ x| < S RS IS IS IS IS I I = fao [ > [x [x [x |x < |x fialization Mode

fmilnitializeModelfmiNewDiscreteStates % X
fmiEventdpdatefmiEnterContinuousTimeMode X | %
fmiTerminatefmiCompletedintegratorStep x| x| X
fmiGetDerivativesfmiSetTime X | X[ x| x| x| #
ﬁw@etEvenﬂnd«teatepsfmSetContmuousStates % X | x| %
fmiGetEventindicatorstmiGeiContinuoysStat | x| x| x|7
fmlGetContlnuousStatesﬁmGetNemnalGentHweusState

S | x| x| x| x|7
fmiGetStateValueReferencesfmiGetNominalsOfContinuo

usStates X | x| x| x| x|7

x means: call is allowed in the corresponding state

number means: call is allowed if the indicated condition holds:

1 for a variable that has initial = "exact" or "approx"

2 for a variable defined in the xml-file under <InitialUnknowns>

3 for a variable with initial = "exact", or causality = "input*~and", or variability =
"continuous“tunable”

4 for a variable with variability="diserete"and-causality = "input", or variability =
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| "tunable"

| 5 for a variable with causality = "parameterinput” and variability = "continuous"
7 always, but retrieved values are usable for debugging only

3.2.53.2.4 Pseudo Code Example

In the following example, the usage of the fmiXXX functions is sketched in order to clarify the typical
calling sequence of the functions in a simulation environment. The example is given in a mix of pseudo-
code and “C”, in order to keep it small and understandable. Furthermore, it is assumed that one FMU is

directly integrated in a simulation environment. If the FMU would be used inside another model,
additional code is needed, especially initialization and event iteration has to be adapted.

m = M fmifnstentisteMedetfmilnstantiate("m", ...) // "m" 1s the instance

// "M " is the MODEL IDENTIFIER

nx = ... // number of states, from XML file

nz = ... // number of event indicators, from XML file
Tstart = 0 // could also be retrieved from XML file
Tend =10 // could also be retrieved from XML file

dt = 0.01 // fixed step size of 10 milli-seconds

// set the start time
Tnext = Tend

time = Tstart

M fmiSetTime (m, time)

// set all variable start values (of "ScalarVariable / <type> / start")
// set the input values at time = Tstart
M fmiSetReal/Integer/Boolean/String(m, ...)

// initialize

// determine continuous and discrete states

M fmifInitializeModelfmiSetupExperiment (m, fmiFalse, 0.0, &Tstart,

fmiTrue, Tend)

M fmiEnterInitializationMode (m)

M fmiExitInitializationMode (m)

// event iteration

eventInfo.newDiscreteStatesNeeded = true;

while eventInfo.newDiscreteStatesNeeded loop

// update discrete states

M fmiNewDiscreteStates (m, &eventInfo)
if eventInfo.terminateSimulation then goto TERMINATE MODEL
end while

// enter Continuous-Time Mode

M fmiEnterContinuousTimeMode (m)

// retrieve initial state x and
// nominal values of x (1f absolute tolerance is needed)
M fmiGetContinuousStates (m, x, nx)

and
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atesM fmiGetNominalsOfContinuousStates (m,

X nominal, nx

// retrieve solution at t=Tstart, for example for outputs
M fmiGetReal/Integer/Boolean/String(m, ...)

while time < Tend and-not—eventinfo-terminateSimutation—Zlooploop
// compute derivatives
M fmiGetDerivatives(m, der X, nx)

// advance time

h = min(dt, Tnext-time)
time = time + h

M fmiSetTime (m, time)

// set inputs at t = time
M fmiSetReal/Integer/Boolean/String(m, ...)

// set states at t = time +and perform one stepi
x = x + h*der x // forward Euler method
M fmiSetContinuousStates(m, x, nx)

// get event indicators at t = time
M fmiGetEventIndicators(m, z, nz)

3 £ + 1 Al ] 1= 4 4 Al 4
// detect aformthe—modelabout—an—a sted——step
M Frmd O] A A AT A b N O Ay (o < 11w AT Ao )
M mporecearhcegratorfocepP ity < Car= Heopaatey

—F/—handte events, if any

time event = abs(time - Tnext) <= eps

state event // compare sign of z with previous z

// inform the model about an accepted step

M fmiCompletedIntegratorStep(m, fmiTrue, &enterEventMode,

&terminateSimulation)
if ealiEventUpdateterminateSimulation then goto TERMINATE MODEL

// handle events

if entertEventMode or time event or state event then
M fmiEnterEventMode (m)

// event iteration

eventInfo.iterationConverged—fmiFatsenewDiscreteStatesNeeded = true;
while eventInfo.iterationtonverged—=fmiFalsenewDiscreteStatesNeeded
loop rept—tteration

// update discrete states
M fmikventUpdatefmiNewDiscreteStates (m, fmiTruwery—&eventInfo)

Yot o o PR I RPN = 1 n
o S S e o T =

oo

He

-
if eventlInfo.iterationConverged—=~fmitalse—thenterminateSimulation
then goto TERMINATE MODEL
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end while

// enter Continuous-Time Mode
teratieonfmiEnterContinuousTimeMode (m)

M Frna O] +aodn nt+ T
Ees3im=m Mo CTCt T

// retrieve solution at simulation restart

M fmiGetReal/Integer/Boolean/String(m, ...)

if eventInfo.stateValuwesChangedvaluesOfContinuousStatesChanged ==

fmiTrue then
//the model signals a value change of states, retrieve them
M fmiGetContinuousStates (m, x, nx)
end if

if

eventInfo.stateVatueReferencesChangednomninalsOfContinuousStatesChanged =

fmiTrue then

//the meaning of states has changed; retrieve new nominal values
M fmiGCetNominalContinuousStatesfmiGetNominalsOfContinuousStates (m,

X _nominal, nx)
end if

if eventInfo.upeemingfimeEventnextEventTimeDefined then

Tnext = min(eventInfo.nextEventTime, Tend)

else
Tnext = Tend
end if
end if
Rot+ »- Taab 3 om 4 2o ESIENE ] ESIENE EEE PP
e ol E e aT e e Foy arpte—for—outeuts
M ma A+ D ~ 7 Tt o r /D 2 Q4 g~ (o \
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end while

// terminate simulation and retrieve final values
TERMINATE MODEL:

M fmiTerminate (m)

M fmiGetReal/Integer/Boolean/String(m, ...)

// cl
M £m

K
T

eanup
= sbmes taneefmiFreelnstance (m)

LS
=

Above, errors are not handled. Typically, fmixxXx function calls are performed in the following way:

status = M fmiGetDerivatives (m, der x, nx);

switch ( status ) { case fmiDiscard: ....; break; // reduce step size and try again
case fmiError : ....; break; // cleanup and stop simulation
case fmiFatal : ....; } // stop using the model

The switch statement could also be stored in a macro to simplify the code.
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3.3 FMI Description Schema

This is defined in section 0. Additionally, the “Model Exchange” specific element “ModelExchange” is
defined in the next section.

3.3.1 Model Exchange FMU (fmiModelDescription-ModelExchange)

If the XML file defines an FMU for Model Exchange, element “ModelExchange” must be present. It is
defined as:
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functions are provided in < source code or in static
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i needsExecutionTool
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FML just contains the cormrmunication to this toal,
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i type  |=sboolean
voefaul | false

* canGetAndSetFMUstate °

The FMU includes a rodel or the cormunication to a
tool that provides a madel, The environment provides
the sirmulation engineg For the model,
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s cetfault

falze
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Ldefault

falze

ype

xZ hoolean

Ldefault
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E providesDirectionalDerivatives
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'default

i
1
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B attributes

modelldentifier
type | »e:normalizedString

needsExecutionTool

= boolean

' com pletedintegratorStepNotNeeded

= boolean

canBelnstantiatedOnlyOncePerProcess
type

= boolean

' canotlseMemoryManagementFunctions
xz boolean

, canGetAndSetFMUstate
yvpe

1
VOETE

= boolean

, canSerializeFMUstate |
= boolean !

B sttributes

name
type | *&:normalizedString




The following attributes are defined (all of them are optional, with exception of “modelIdentifier”):
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Attribute Name

Description

modelIdentifier

Short class name according to C syntax, for example
"A_B_C". Used as prefix for FMI functions if the functions
are provided in C source code or in static libraries, but not
if the functions are provided by a DLL/SharedObject.
modelIdentifier is also used as name of the static
library or DLL/SharedObject . See also section 2.1.1.

needsExecutionTool

If true, a tool is needed to execute the model and the FMU
just contains the communication to this tool. [ Typically, this
information is only utilized for information purposes. For
example when loading an FMU with

true, the environment can
inform the user that a tool has to be available on the
computer where the model is instantiated. The name of
the tool can be taken from attribute generationTool of

needsExecutionTool =

fmiModelDescription.]

completedIntegratorStepNotNe
eded

If true, function fmiCompletedIntegratorStep need
not to be called (which gives a slightly more efficient
integration). If it is called, it has no effect.

If false (the default), the function must be called after
every completed integrator step, see section 3.2.2.

canBeInstantiatedOnlyOncePer
Process

This flag indicates cases (especially for embedded code),
where only one instance per FMU is possible

(multiple instantiation is default = false; if multiple
instances are needed and this flag = true, the FMUs
must be instantiated in different processes).

canNotUseMemoryManagementFun
ctions

If true, the FMU uses its own functions for memory
allocation and freeing only. The callback functions
allocateMemory and freeMemory given in

£t Tonod o+ 2 o4
I hRStantIat

Medelfmilnstantiate are ignored.

canGetAndSetFMUstate

If true, the environment can inquire the internal FMU
state and can restore it. That is, functions
fmiGetFMUstate, fmiSetFMUstate, and
fmiFreeFMUstate are supported by the FMU.

canSerializeFMUstate

If true, the environment can serialize the internal FMU state,
in other words functions fmiSerializedFMUstateSize,
fmiSerializeFMUstate, fmiDeSerializeFMUstate are
supported by the FMU. If this is the case, then flag
canGetAndSetFMUstate must be true as well.
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The flags have the following default values.

e boolean: false
e unsignedint: 0

3.3.2 Example XML Description File

When generating an FMU from the hypothetical model “MyLibrary.SpringMassDamper”, the XML file may
have the following content:

<?XML version="1.0" encoding="UTF8"?>

<fmiModelDescription
fmiVersion="2.0"
modelName="MyLibrary.SpringMassDamper"
guid="{8c4e810f-3df3-4a00-8276-176fa3c9f9%0}"
description="Rotational Spring Mass Damper System"
version="1.0"
generationDateAndTime="2011-09-23T16:57:332"
variableNamingConvention="structured"
numberOfEventIndicators="2">



<ModelExchange
modelIdentifier="MyLibrary SpringMa

<UnitDefinitions>
<Unit name="rad">
<BaseUnit rad="1"/>
<DisplayUnit name="deg" factor="5
</Unit>
<Unit name="rad/s">
<BaseUnit s="-1"
</Unit>
<Unit name="kg.m2">
<BaseUnit kg="1" m="2"/>
</Unit>
</UnitDefinitions>

rad="1"/>

<TypeDefinitions> <SimpleType name
<Real quantity="MomentOfInertia"

</SimpleType>

<SimpleType name="Modelica.SIunits.
<Real quantity="Torque" unit="N.m

</SimpleType>

<SimpleType name="Modelica.SIunits.
<Real quantity="AngularVelocity"
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ssDamper"/>

7.2957795130823"/>

="Modelica.SIunits.Inertia">
unit="kg.m2" min="0.0"/>

Torque">
n/>

AngularVelocity">
unit="rad/s"/>

</SimpleType>

<SimpleType name="Modelica.SIunits.Angle">
<Real quantity="Angle" unit="rad"/>

</SimpleType>

</TypeDefinitions>
<DefaultExperiment startTime="0.0" stopTime="3.0" tolerance="0.0001"/>

<ModelVariables>
<ScalarVariable
name="inertial.J"
valueReference="1073741824"
description="Moment of load inertia"
causality="parameter"
variability="fixed">
<Real declaredType="Modelica.SIunits.Inertia" start="1"/>
</ScalarVariable> <!—index="1" -->

<ScalarVariable
name="torque.tau"
valueReference="536870912"
description="Accelerating torque acting at flange

(= -flange.tau)"
causality="input">

<Real declaredType="Modelica.SIunits.Torque" />—</SealaxrVariable>

</ScalarVariable> <!—index="2" -->

<ScalarVariable
name="inertial.phi"
valueReference="805306368"
description="Absolute rotation angle of component"
causality="output">
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<Real declaredType="Modelica.SIunits.Angle" />
</ScalarVariable> <!—index="3" -->

<ScalarVariable
name="inertial.w"
valueReference="805306369"
description="Absolute angular velocity of component (= der (phi))"
causality="output">

<Real declaredType="Modelica.SIunits.AngularVelocity" />

</ScalarVariable> <!—index="4" -->
<ScalarVariable name="x[&4" ]" valueReference="0"> <Real/>
</ScalarVariable> <!—index="5" -->
<ScalarVariable name="x[+}" ]" valueReference="1"> <Real/>
</ScalarVariable> <!—index="6" -->
<ScalarVariable name="der (x[81])" valueReference="2">
<Real/> derivative="5"/> </ScalarVariable> <!—index="7" -->
<ScalarVariable name="der (x[1])" valueReference="3">
<Real/> derivative="6"/> </ScalarVariable> <!—index="8" -->
</ModelVariables>
<ModelStructure>
—<Inputs>
Input i 1
— < /Inputs>
<Outputs> <Unknown index="3" /> <Unknown index="4" /> </Outputs>
<Derivatives>

—_— <Unknown index="7" /> <Unknown index="8" /> </Derivatives>

<InitialUnknowns> <Unknown index="6" dependencies="5 2" /> </InitialUnknowns>
</ModelStructure>
</fmiModelDescription>
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4. FMI for Co-Simulation

This chapter defines the Functional Mock-up Interface (FMI) for the coupling of two or more simulation
models in a co-simulation environment (FMI for Co-Simulation). Co-simulation is a rather general
approach to the simulation of coupled technical systems and coupled physical phenomena in
engineering with focus on instationary (time-dependent) problems.

FMI for Co-Simulation is designed both for coupling with subsystem models, which have been exported
by their simulators together with its solvers as runnable code (Figure 7), and for coupling of simulation
tools (simulator coupling, tool coupling (Figure 8 and Figure 7)).

Executable FMU
Slave
Master —CO-
e | Model | Solver
FMI
Process
Executable FMU
Slave
Master —(( —
| Model | Solver |
FMI
Process

Figure 7: Co-simulation with generated code on a single computer
(for simplicity shown for one slave only).

Executable FMU Simulation tool
- | Slave
Master FMI O)
e Wrapper | Model Solver
FMI
Process 1 Process 2
Executable FMU Simulation tool
FMI _.O)._ Slave
Master —(O Wrapper | Model Solver
FMI
Process 1 Process 2

Figure 8: Co-simulation with tool coupling on a single computer
(for simplicity shown for one slave only).

In the tool coupling case the FMU implementation wraps the FMI function calls to API calls which are
provided by the simulation tool (for example a COM or CORBA API). Additionally to the FMU the simulation
tool is needed to run a co-simulation.

In its most general form, a tool coupling based co-simulation is implemented on distributed hardware
with subsystems being handled by different computers with maybe different OS (cluster computer,
computer farm, computers at different locations). The data exchange and communication between the
subsystems is typically done using one of the network communication technologies (for example MPI,
TCP/IP). The definition of this communication layer is not part of the FMI standard. However distributed
co-simulation scenarios can be implemented using FMI as shown in Figure 9.
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Executable Executable/Service FMU Simulation tool
n L At Slave
Master -O} Application FMI —o:)—
(O  Server S Wrapper | Model | Solver |
FMI
Computerl Computer2
Executable Executable/Service FMU Simulation tool
Master O Application e FMI —OD— Slave
HCO-H  server O Wrapper | Model | Solver |
FMI
Computerl Computer2

Figure 9: Distributed co-simulation infrastructure (for simplicity shown for one slave only).

The master has to implement the communication layer. Additional parameters for establishing the
network communication (for example identification of the remote computer, port numbers, user account)
are to be set via the GUI of the master. These data are not transferred via the FMI API.

4.1 Mathematical Description

4.1.1 Basics

Co-simulation exploits the modular structure of coupled problems in all stages of the simulation process
beginning with the separate model setup and preprocessing for the individual subsystems in different
simulation tools (which can be powerful simulators as well as simple C programs). During time
integration, the simulation is again performed independently for all subsystems restricting the data
exchange between subsystems to discrete communication points tc;. For simulator coupling, also the
visualization and post-processing of simulation data is done individually for each subsystem in its own
native simulation tool. In different contexts, the communication points ¢c;, the communication steps tc; —
tc;+; and the communication step sizes hc; := tc;.; - tc; are also known as sampling points
(synchronization points), macro steps and sampling rates, respectively. The term “communication point”
in FMI for Co-Simulation refers to the communication between subsystems in a co-simulation
environment and should not be mixed with the output points for saving simulation results to file.

FMI for Co-Simulation provides an interface standard for the solution of time dependent coupled systems
consisting of subsystems that are continuous in time (model components that are described by
instationary differential equations) or time-discrete (model components that are described by difference
equations like, for example discrete controllers). In a block representation of the coupled system, the
subsystems are represented by blocks with (internal) state variables x(t) that are connected to other
subsystems (blocks) of the coupled problem by subsystem inputs u(t) and subsystem outputs y(t). In this
framework, the physical connections between subsystems are represented by mathematical coupling
conditions between the inputs u(t) and the outputs y(?) of all subsystems, Kiibler and Schiehlen (2000).
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Figure 10: Data flow at communication points.
For co-simulation two basic groups of functions have to be realized:
1. functions for the data exchange between subsystems and

2. functions for algorithmic issues to synchronize the simulation of all subsystems and to proceed in

communication steps fc; — fc;+; from initial time fcy .= fy, to end time fcy . = fyp.

In FMI for Co-Simulation both functions are implemented in one software component, the co-simulation
master. The data exchange between the subsystems (slaves) is handled via the master only. There is no
direct communication between the slaves. The master functionality can be implemented by a special
software tool (a separate simulation backplane) or by one of the involved simulation tools. In its most
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general form, the coupled system may be simulated in nested co-simulation environments and FMI for
Co-Simulation applies to each level of the hierarchy.

FMI for Co-Simulation defines interface routines for the communication between the master and all
slaves (subsystems) in a co-simulation environment. The most common master algorithm stops at each
communication point zc; the simulation (time integration) of all slaves, collects the outputs y(zc;) from all
subsystems, evaluates the subsystem inputs u(zc;), distributes these subsystem inputs to the slaves and
continues the (co-)simulation with the next communication step tc; — tc,.; = tc;+ hc with fixed
communication step size /c. In each slave, an appropriate solver is used to integrate one of the
subsystems for a given communication step tc; — fc;+;. The most simple co-simulation algorithms
approximate the (unknown) subsystem inputs u(?), (t > tc;) by frozen data u(tc;) for tc; < t < tc;+;. FMI for
Co-Simulation supports this classical brute force approach as well as more sophisticated master
algorithms. FMI for Co-Simulation is designed to support a very general class of master algorithms but it
does not define the master algorithm itself.

The ability of slaves to support more sophisticated master algorithms is characterized by a set of
capability flags inside the XML description of the slave (see section 4.3.1). Typical examples are:

e the ability to handle variable communication step sizes Ac¢;,

o the ability to repeat a rejected communication step tc; — tc;; with reduced communication step size,
e the ability to provide derivatives w.r.t. time of outputs to allow interpolation (section 1.1.1),

e or the ability to provide Jacobians.

FMI for Co-Simulation is restricted to slaves with the following properties:

e All calculated values ¥#)-v(t) are time dependent functions within an a priori defined time interval

L =ttt St=t,, (provided stopTimeDefined = fmiTrue when calling

start — © — "stop "star

fmitnstantiateStavefmiSetupExperiment).
e All calculations (simulations) are carried out with increasing time in general. The current time +¢ is

running step by step from +——¢ to+t—t¢ The algorithm of the slave may have the property to

start ~ start stop “stop "

be able to repeat the simulation of parts of {£ 5t £ Loy
{tmtm}[tslart’ tstop] .

e The slave can be given a time value f¢;Ic; , ¢ Lo StC, S

te =+
start — i "stop"”s stop*

] or the whole time interval

e The slave is able to interrupt the simulation when ¢ fc, is reached.
e During the interrupted simulation the slave (and its individual solver) can receive values for inputs

wte)u(fc;) and send values of outputs {te-)- y(tc,) .

e Whenever the simulation in a slave is interrupted, a new time value fe;;1C,,, , t6-—<+te

< ¢
— Ystop

tc, <tc, <t, can be given to simulate the time subinterval fe;<t<tfe; 1 1c, <t <fc,,

i+1 stop

e The subinterval length #&ihci is the communication step size of the ;™ communication step,

he—=te.—te-hc, =tc,,, —tc, . In general, the communication step size can be positive, zero, but

<

not negative.

FMI for Co-Simulation allows a co-simulation flow which starts with instantiation and initialization (all
slaves are prepared for computation, the communication links are established), followed by simulation
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(the slaves are forced to simulate a communication step), and finishes with shutdown. In detail the flow
is defined in the state machine of the calling sequences from master to slave (section 0).

4.1.2 Mathematical Model

This section contains a formal mathematical model of a Co-Simulation FMU. The following fundamental
assumptions are made:

The slave simulators are seen by the master simulator as purely sampled-data systems. Such a
sampled-data system can be

e either a “real” sampled-data system (so a sampled discrete controller; the inputs and outputs
can be of type Real, Integer, Boolean, String, or enumeration. Variables of this type are
defined with variability = "discrete"; the smallest sample period as accessible by the
outside of the FMU is defined by attribute stepSize in element Defaul tExperiment).

e or ahybrid ODE that is integrated between communication points (known as “sampled
access to time continuous systems”) where internal events may occur and be handled, but
events are not visible from the outside of the FMU. It is assumed here that all inputs and all
outputs of this hybrid ODE are Real signals (defined with variability = "continuous"),

e or a combination of the systems above.

The communication between the master and a slave takes only place at a discrete set of time
instants, called communication points.

When the transient simulation of the coupled system through co-simulation is completed, the sequence
of evaluations is the following:

®
X1 = P (xk'{ukl }i—O---m-d 'pk'Hk>
=0,Mjdo

({ylg?l}i:o,..._modo' vk+1) =Tk <xk' {u’(‘i)}i=0,--

where @, _and T, define the system behavior for the time t, <t < t; ., With t, = t, + ¥ H;, t, being an
initial time, and H, the length of the i co-simulation step (), and x, is the state vector of the system.

fork=0,-,n— (4.1)

'pk'Hk)

“Mido

[For the part of the co-simulation slave that is based on an ODE, a differential equation is solved between
communication points:

X = (P(x(t): u(t)! p)

In this case, the following relationship should hold (note the use of x,,,_here):

09, Mido (i)H,i(
9H, =0 Xkﬂ’zi:o Uy F'pk

This relation is in practice inexact due to using finite precision on machines and stopping iterations early. The
slave simulators are responsible for implementing &, _and I.; e.q. to handle stiff differential equations as:

CRTN

dp -t
»PR»HR) =X + (1 — H, a) Hy (g, wy, o) + O(HP).

“Mido

Definition (4.1) is consistent with the definition of co-simulation by (Kibler, Schiehlen 2000):
e At the communication points, the master provides generalized inputs to the slave, which can
be:
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o__the actual input variables u,(co) of the subsystem (i.e. the input variables of the model
contained in the slave simulator, in the sense of system-level simulation), along with

some of their successive derivatives {u,(f)} (in case of Real variables),

i=1,Migo
o__varying parameters p,, also known as tunable parameters.

e The slave provides generalized outputs to the master, which are:

o__the actual output variables V,E‘l)lof the subsystem (same remark as above), along with

some of their successive derivatives {y,gfl} (in case of Real variables),

i=1,Mogo

o observation variables and “calculated” varying parameters v,.;, along with directional
derivatives estimated at {=f,.,(in case of Real variables).

e Initialization: The slave being a sampled-data system, its internal states (being either

continuous-time or discrete-time, it does not matter) need to be initialized at t=f,. This is

performed through an auxiliary function [this relationship is defined in the xml-file _under

<ModelStructure><InitialUnknowns>]:

xo = f(u$”,po) (4.2)

4.2 FMI Application Programming Interface

This section contains the interface description to access the in/output data and status information of a
co-simulation slave from a C program.
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4.234.21 Transfer of Input / Output Values and Parameters

Input and output variables and variables are transferred via the fmiGetxxx and fmisetxxx functions,
defined in section 2.1.6.

In order to enable the slave to interpolate the continuous real inputs between communication steps the
derivatives of the inputs with respect to time can be provided. To allow higher order interpolation also
higher derivatives can be set. Whether a slave is able to interpolate and therefore needs this information
is provided by the capability attribute canInterpolateInputs.

fmiStatus fmiSetReallInputDerivatives (fmiComponent c,
const fmiValueReference vr|[],
size_t nvr, const fmilnteger order[],
const fmiReal valuel]);
Sets the n-th time derivative of real input variables. Argument “vr” is a vector of value
references that define the variables whose derivatives shall be set. The array “order”
contains the orders of the respective derivative (1 means the first derivative, 0 is not
allowed). Argument “value” is a vector with the values of the derivatives. “nvr” is the
dimension of the vectors.
Restrictions on using the function are the same as for the fmiSetReal function.

Inputs and their derivatives are set with respect to the beginning of a communication time step.

To allow interpolation/approximation of the real output variables between communication steps (if they
are used as inputs for other slaves) the derivatives of the outputs with respect to time can be read.
Whether the slave is able to provide the derivatives of outputs is given by the unsigned integer capability
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flag MaxOutputDerivativeOrder. It delivers the maximum order of the output derivative. If the actual
order is lower (because the order of integration algorithm is low), the retrieved value is 0.

Example: If the internal polynomial is of order 1 and the master inquires the second derivative of an
output, the slave will return zero.

The derivatives can be retrieved by:

fmiStatus fmiGetRealOutputDerivatives (fmiComponent c,
const fmiValueReference vr[],

size t nvr, const fmilnteger order[],
fmiReal wvaluel[]);
Retrieves the n-th derivative of output values. Argument “vr” is a vector of “nvr” value
references that define the variables whose derivatives shall be retrieved. The array “order”
contains the order of the respective derivative (1 means the first derivative, 0 is not allowed).
Argument “value” is a vector with the actual values of the derivatives.
Restrictions on using the function are the same as for the fmiGetReal function.

The returned outputs correspond to the current slave time. E. g. after a successful fmiDoStep(...) the
returned values are related to the end of the communication time step.

This standard supports polynomial interpolation and extrapolation as well as more sophisticated signal
extrapolation schemes like rational extrapolation, see the companion document
“FunctionalMockuplinterface-ImplementationHints.pdf”.

4.2.44.2.2 Computation

The computation of time steps is controlled by the following function.

fmiStatus fmiDoStep (fmiComponent ¢, fmiReal currentCommunicationPoint,
fmiReal communicationStepSize,
fmiBoolean noSetFMUStatePriorToCurrentPoint);

The computation of a time step is started.

The argument currentCommunicationPoint is the current communication point of the master
(tci). [Formally this argument is not needed. It is present in order to detect a mismatch
between the master and the FMU state of the slave: The currentCommunicationPoint
and the FMU state of the slaves defined by former fmiDoStep or fmiSetFMUState calls,
have to be consistent with respect to each other. For first call to fmiDoStep after
fmilnitializeSlaverfmiExitInitializationMode, it needs to be consistent with
tStartstartTime given to the lafter.] Argument communicationStepSize is the
communication step size. {-the-mastercarries-outan-eventiteration-the-parameter

communicationStepSize-iszerolt must be > 0.0. Argument
noSetFMUStatePriorToCurrentPoint is fmiTrue if fmiSetFMUState will no longer be

called for time instants prior to currentCommunicationPoint in this simulation run [the slave
can use this flag to flush a result buffer].
The function returns:

fmiOK - if the communication step was computed successfully until its end.

fmiDiscard — if the slave computed successfully only a subinterval of the communication
step. The master can call the appropriate fmiGetxxxStatus functions to get further
information. If possible, the master should retry the simulation with a shorter communication
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step size. [Redoing a step is only possible if the FMU state has been recorded at the
beginning of the current (failed) step with fmiGet FMUState. Redoing a step is performed by

calling fmisetFMUState and afterwards calling fmiDoStep with the new
communicationStepSize. Note, it is not possible to change
currentCommunicationPoint in such a call.]

fmiError — the communication step could not be carried out at all. The master can try to
repeat the step with other input values and/or a different communication step size.

fmiPending — is returned if the slave executes the function asynchronously. That means the

slave starts the computation but returns immediately. The master has to call
fmiGetStatus (..., fmiDoStep, ...) tofind out, if the slave is done. An alternative is to
wait until the callback function fmiStepFinished is called by the slave. fmiCancelStep
can be called to cancel the current computation. It is not allowed to call any other function
during a pending fmiDoStep.

fmiStatus fmiCancelStep (fmiComponent c);
Can be called if fmiDoStep returned fmiPending in order to stop the current asynchronous
execution. The master calls this function if for example the co-simulation run is stopped by
the user or one of the slaves. Afterwards it is only allowed to call

inateStavefmiTerminate, fmiResetSlave, Or
T

areefmiFreelnstance.

It depends on the capabilities of the slave which parameter constellations and calling sequences are allowed

(see 4.3.1)

4.2.54.2.3 Retrieving Status Information from the Slave

Status information is retrieved from the slave by the following functions:

fmiStatus fmiGetStatus (fmiComponent c, const fmiStatusKind s,
fmiStatus* value);

fmiStatus fmiGetRealStatus (fmiComponent ¢, const fmiStatusKind s,
fmiReal* value);

fmiStatus fmiGetIntegerStatus (fmiComponent c, const fmiStatusKind s,
fmiInteger* wvalue);

fmiStatus fmiGetBooleanStatus (fmiComponent c, const fmiStatusKind s,
fmiBoolean* value);

fmiStatus fmiGetStringStatus (fmiComponent c, const fmiStatusKind s,
fmiString* value);

Informs the master about the actual status of the simulation run. Which status information is
to be returned is specified by the argument fmisStatusKind. It depends on the capabilities

of the slave which status information can be given by the slave (see 4.3.1). If a status is
required which cannot be retrieved by the slave it returns fmiDiscard.
typedef enum {fmiDoStepStatus,

fmiPendingStatus,

fmilLastSuccessfulTime,

fmiTerminated

} fmiStatusKind;

Defines which status is inquired.

The following status information can be retrieved from a slave:
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Status Type of Description
retrieved value

fmiDoStepStatus fmiStatus Can be called when the fmiDoStep function returned
fmiPending. The function delivers fmiPending if the
computation is not finished. Otherwise the function
returns the result of the asynchronously executed
fmiDoStep call.

fmiPendingStatus fmiString Can be called when the fmiDoStep function returned
fmiPending. The function delivers a string which
informs about the status of the currently running
asynchronous fmiDoStep computation.

fmiLastSuccessfulTime |fmiReal Returns the end time of the last successfully completed
communication step. Can be called after
fmiDoStep (...) returned fmiDiscard.
fmiTerminated fmiBoolean Returns true, if the slave wants to terminate the

simulation. Can be called after fmiDoStep(...)
returned fmiDiscard. Use fmilLastSuccessfulTime
to determine the time instant at which the slave
terminated. See sample code in section 4.2.5.

4.2.64.2.4 State Machine of Calling Sequence from Master to Slave

The following state machine defines the supported calling sequences-See-3-2.4-foran-explanation-of the
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fmiResetSlave . Abbreviations used
~ in transition labels
(" slaveSetableFMUstate | fmilnstantiateSlave # NULL Fisone of
* fmiGetTyvpesPiatform
(" slaveUnderEvaluation ‘ N . fmJ’GeW}l;?Sion

* friSetDebuglogging

instantiated fmiSetFWUState . friseiFn istafe

F Eraphsitions « friFreeFMUstate
i frmilnitializeSlave otne gven . fmiSeralizedFMUstateSize
f:nrinégﬁ F\JF; — state » fmiSerialize FMLUIstate
» ImiDeSenializeFList ate
fmiDoStep )
F = fmiPending S is one of

» Siafus, RealSiatus, InfegerStatus,

step
i _ BooleanSiatus, SlingSiatus
Complete computation

fmiGetx
fmiseti M

frniDoStep = fmiOK completed X is one of
’ » Real Infeger, Boolean, String,
f_rr}l D_CE)S_tep " » RealCQuiout Derivatives
= fmibascar *» ParfiaiDerivatives

» DirechionalDerivative
E —

riGetX step _ step ‘ Pis one of
FriGetS Failed computation InProgress Real Infeger, Boolean, String

completed for & variable with causality = ‘parameter”

NI is one of
» Real, Infeger, Boolean, Sinng

F = for & variable that has
frmiGetx step — initial = "exact” or "approx”
Canceled fmiCancelStep » ReallnputDerivatives

s

) ) i iz one of
fraiTerminateSlave « Real, infeger, Boolean, String
. / fora uan'abfe_' that has elther
a function call for ‘ a function call for this Ca“.szf;yigpwfﬂd o .
this ar any cher In- V instance returns fmiError V gfr:gn;gh;f}’ ;i?;i:bfgi COMINUIOLIS
stance of t_hIS FMU = . F ) » ReallnouwtDernivatives
returns fmiFatal _ ,.,;._-::| frniGetx
\_ fmiGets . fmiGets Wis one of
| ) » fmiGet TypesPlatform
V V fmiFreeSlavelnstance « fmiGetVersion

» friSetDebuglogging
) e
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fmiReset . Abbreviations used in transition labels

F is one of
(" slaveSetableFMUstate | T ETE T L N - fmiGetTypesPlatform, fmiGetVersion

« fmiSetDebuglogging
instantiated

=, « fmiGetF\MUstate, fmiFreeFMUstate
transitions
) I to the qgiven Sis one of
fmiEnter nitializationM ode - state g Status, RealStatus, IntegerStatus,

/" slaveUnderEvaluation ‘

F
fmiSetiMI

- fmiSerializedF Usiate Size
i « frmiSenalize A Ustate
miSetPMUState o e SenalizeFMUstate

F BooleanStatus, StringStatus
fmisetiN Initialization X is one of
« Real, Integer, Boolean, String,

fmiSetiNIE Mode RealOutputDerivat
! = Reglluiputllenvalive s
mIGEetNIT fmiExitinitializationMode DfrecifonngerfUaﬁve

e i ™ P is one of
= EE IR Real, Integer, Boolean, String

F : ; e .
MiGet fmiDoStep = fmiPending fora vanable with causality = "parameter
fmiSetiN NI is one of _
fmiDoStep = fMIOK computation . F?sfg Lrgﬁg;ré ?}oac;!ia;r; String
fmiDoStep completed initial = "exact” or "approx”
E = fmiDiscard v - ReallnputDerivatves
miGetx r’ step . fmSe&:p Experiment .
fmiGets computation InProgress INIE is Real, Integer, Boolean, Siring
completed for a vanable that has inifial = "exact”
i A

F IN is one of
miGetx step - - « Real, integer, Boolean, Siring
9 mi Canceled fmiCancelStep P w for @ variable that has either

causality = "input” and

fmiTemminate vanablity = "discrefe " or "confinuous”
\_ p, or vanability = "funable”
Tunct A - - ReallnputDenvatves
e ‘ S AT INIT is one of Real, Integer, Boolean, String

this or any other in- instance returns fmiError : i i i
e hE v fora variable that is defined in the xml-fie

F Y-
» . under <ModelStructure=<initialUn known 5=
VRIS LI ] F miGetX or is DirectionalDerivative
fmiGetX miGets _
A vy W is one of

‘|, fmiFreelnstance . ;ﬂgg; Eegr%fr?aﬁorm

- fmiSetDebuglogging
m =) « FmiGetS

Figure 11: Calling sequence of Co-Simulation C functions in form of an UML 2.0 state machine.

Each state of the state machine corresponds to a certain phase of a simulation as follows:

e instantiated:
In this state, start and guess values (= variables that have initial = “exact” or “approx.”) can be
set.

o Initialization Mode:
In this state equations are active to determine all continuous-time and discrete-time states, as well as all
outputs (and optionally other variables exposed by the exporting tool).
The variables that can be retrieved by fmiGetXXX calls are defined in the xml file under
<ModelStructure><InitialUnknowns>.

Variables with initial = “exact”, as well as inputs can be set.

o slavelnitialized:
In this state the slave is initialized and the co-simulation computation is performed. The calculation until the
next communication point is performed with function “fmiDoStep”. Depending on the return value, the slave
is in a different state (step complete, step failed, step canceled).

e terminated:
In this state, the solution at the final time of the simulation can be retrieved.

Note, in Initialization Mode input variables can be set with fmiSetXXX and output variables can be get
with fmiGetxXX interchangeably according to the model structure defined under element
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<ModelStructure><InitialUnknowns> in the xml-file. [For example if one output v1 depends on two
inputs ul, u2, then these two inputs must be set, before y1 can be get. If additionally an output v2
depends on an input u3, then u3 can be set and v2 can be get afterwards. As a result, artificial or “real”
algebraic loops over connected FMUs in Initialization Mode can be handled by using appropriate
numerical algorithms.]

There is the additional restriction in “slavelnitialized” state that it is not allowed to call fmiGetXXX
functions after fmiSetXXX functions without an fmiDoStep call in between. [The reason is to avoid
different interpretations of the caching, since contrary to FMI for ModelExchange fmiDoStep will perform
the actual calculation and not fmiGetXXX and therefore dummy algebraic loops at communication points
cannot be handeled by an appropriate sequence of fmiGetXXX, fmiSetXXX calls as for ModelExchange.

Examples:
Correct calling sequence Wrong calling sequence
fmiSetXXX on inputs fmiSetXXX on inputs
fmiDoStep fmiDoStep
fmiGetXXX on outputs fmiGetXXX on outputs
fmiSetXXX on inputs fmiSetXXX on inputs
fmiDoStep fmiGetXXX on outputs _// not allowed
fmiGetXXX on outputs fmiDoStep
fmiGetXXX on outputs
|

The allowed function calls in the respective states are summarized in the following table (functions
marked in “light blue” are only available for “Co-Simulation”, the other functions are available both for
“Model Exchange” and “Co-Simulation”):
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FMI 2.0 forCo-Simulation
-
=2 § °
ol gl s —
IR IR
512|852 |5 |5|E
5|98 |5|R|E|5|w
Function HEEIRIEIEIEIEEE:
fmiGetTypesPlatform X[ X[ X | X | x| x| x|x]|Xx
fmiGetVersion X | X | X | X | x| x| x| x]|x
fmiSetDebuglLogging X | X | X | X|X]|Xx]|x]|x
fmiGetRealfmilnstantiate X| 85| % 8| | x| ¥
fmiFreelnstancefmiGetlnteger x| x | x| 8|#| x || x
fmiEnterinitializationModefmiGetBesolean 8X | % 8| #| x| #
fmiExitInitializationModefmiGetString 5| X 8| #| x| #
fmiSetRealfmiTerminate 1| 6| x
fmiResetfmiSeinteger Ix|8x| x X | x| x|x
1|6
fmiGetRealfmiSetBeslean 512 ]| x 8|7 |x |7
1|6
fmiGetintegerfmiSetString 512 ]| x 8|7 |x |7
fmiGetBooleanfmiGetEMUstate x5 x2| x| |8 |7 | x|7
fmiGetStringfmiSetEMUstate XS5 |x2| x| x[x8|x7| x |7
Mﬂ%&%&%&&@e X1 [x3| 6 | x| x| x| %
fmiSetintegerfmiSes X1 [x3| 6 | x| x| x| %
meetBooIeanﬁ%%eﬁeh%%EMH%ta%e X1 [x3| 6 | x| x| x| %
fmiSetStringfea X1 [x3[ 6 | x| x| x| %
fmlGetFMUstateﬂwGetPamalDenvanves x| x| x| _|8|7|x]|7
fmiSetFMUstatefmiGetDirectionalDerivative X | x| x| 8|#| x |#]| x
fmiFreeFMUstatefmilnstantiateSlave | X | x| X X | x| x| x
fmiSerializedFMUstateSizefmiFreeSlavelns
tance X | X[ X | %] X | X|X|X
fmiSerializeFMUstatefmitnitializeSlave X | x| X X | x| x| X
fmiDeSerializeF MUstatefmiTerminateSlave X | x| x X | x| x|x
fmiResetSlavefmiGetDirectionalDerivative X | X | X | % |[x8|x7| x |7
fmiSetReallnputDerivatives X | X | Xx
fmiGetRealOutputDerivatives | x| _ |8 | x| x|7
fmiDoStep % | X
fmiCancelStep x| X
fmiGetStatus X | % | X | x| x| x| x
fmiGetRealStatus X | % | X | x| x| x| x
fmiGetlntegerStatus X | % | X | X | X | %x| X
fmiGetBooleanStatus X | X | X | X | x| x| x
fmiGetStringStatus X | % | X | x| x| x|x

x means: call is allowed in the corresponding state

number means: call is allowed if the indicated condition holds:

1 for a variable that has initial = "exact" or "approx"

2 for a variable defined in the xml-file under <InitialUnknowns>

3 for a variable with initial = "exact", or causality = "input", or variability = "tunable"
5 for a variable with causality = "parameter”

6 for a variable with causality = "input" and variability = "discrete" or "continuous",
or variability = "tunable"
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7 always, but retrieved values are usable for debugging only
8 always, but if status is other than fmiTerminated, retrieved values are useable for debugging only

4.2.74.2.5 Pseudo Code Example

In the following example, the usage of the FMI functions is sketched in order to clarify the typical calling
sequence of the functions in a simulation environment. The example is given in a mix of pseudo-code

and “C”, in order to keep it small and understandable. We consider two slaves. Both have one
continuous real input and one continuous real output which are connected in the following way:

1 1
ELN 51 Y
2 2
! 52 -
1 1
ELI 57 Y
2 2
i 52 -

Figure 12: Connection graph of the slaves

We assume no algebraic dependency between input and output of each slave. The code demonstrates
the simplest master algorithm as shown in section 4.1.

e Constant communication step size.
e No repeating of communication steps.

e The slaves do not support asynchronous execution of fmiDoStep.

The error handling is implemented in a very rudimentary way.
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//Initialization sub-phase

//Set callback functions,

fmiCallbackFunctions cbf;

cbf.logger = loggerFunction; //logger function
cbf.allocateMemory = calloc;

cbf.freeMemory = free;

cbf.stepFinished = NULL; //synchronous execution
cbf.componentEnvironment = NULL;

//Instantiate both slaves

fmiComponent sl = sl fmiInstantiate ("Tooll" , fmiCoSimulation, GUID1, "",
fmiFalse, fmiFalse, &cbf, fmiTrue);

fmiComponent s2 = s2 fmiInstantiate ("Tool2" , fmiCoSimulation, GUID2, "",
fmiFalse, fmiFalse, &cbf, fmiTrue);

if ((sl == NULL) || (s2 == NULL))
return FAILURE;

// Start and stop time
startTime = 0;
stopTime = 10;

//communication step size
h = 0.01;

// set all variable start values (of "ScalarVariable / <type> / start")
sl fmiSetReal/Integer/Boolean/String(sl, ...);
s2 fmiSetReal/Integer/Boolean/String(s2, ...);

//Initialize slaves

sl fmiSetupExperiment (sl, fmiFalse, 0.0, startTime, fmiTrue, stopTime);
s2 fmiSetupExperiment (sl, fmiFalse, 0.0, startTime, fmiTrue, stopTime);
sl fmiEnterInitializationMode (sl);

s2 fmiEnterInitializationMode (s2);

// set the input values at time = startTime
sl fmiSetReal/Integer/Boolean/String(sl, ...);
s2 fmiSetReal/Integer/Boolean/String(s2, ...);

sl fmiExitInitializationMode (sl) ;
s?2 fmiExitInitializationMode (s2);

[0 rr 777777/

//Simulation sub-phase

tc = startTime; //Current master time
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while ((tc < stopTime) && (status == fmiOK))
{

//retrieve outputs

sl fmiGetReal (sl, ..., 1, &yl);
s2 fmiGetReal (s2, ..., 1, &y2);
//set inputs

sl fmiSetReal (sl, ..., 1, &y2);
s2 fmiSetReal (s2, ..., 1, &yl);

//call slave sl and check status
status = sl fmiDoStep(sl, tc, h, fmiTrue);
switch (status) {
case fmiDiscard:
fmiGetBooleanStatus (sl, fmiTerminated, &boolVal):;
if (boolVal == fmiTrue)
printf ("Slave sl wants to terminate simulation.");

case fmiError:

case fmiFatal:
terminateSimulation = true;
break;

}
if (terminateSimulation)
break;

//call slave s2 and check status as above
status = s2 fmiDoStep(s2, tc, h, fmiTrue);

//increment master time
tc += h;

}

/1170700

//Shutdown sub-phase

if ((status !'= fmiError) && (status != fmiFatal))

{

sl fmiTerminate (sl);
s2 fmiTerminate (s2);

if (status != fmiFatal)
{

sl fmiFreelInstance (sl);
s2 fmiFreelInstance (s2);

!
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This is defined in section 0. Additionally, the co-simulation specific element “Implementation” is defined

4.3 FMI Description Schema

on.

the next secti

n

Co-Simulation FMU (CoSimulation)
If the XML file defines an FMU for Co-Simulation, element “CoSimulation” must be present. It is defined

4.3.1

as
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B attriputes

modelldentifier
Iype |xs:nurmalized5‘tring

Short class narme according to C-synkax, ..
"&_B_C", Used as prefix For FMI Functions if
the Functions are provided in C source code or
in static libraries, but not iF the functions are
provided by a DLLSharedObject,
modelldentifier is also used as name of the
static library or DLLShared Object,

i needsExecutionTool

Vvpe | xstboolean
rdefault | false

IF true, a tool is needed to execute the rmodel
and the FRMU just contains the cornrmunication
ta this toal,

' canHandleVariableCommunicationStepSize

thype | xschoolean
ydefault | falze

 canHandleEvents
wahoolean

© caninterpolatelnputs |
itype | x=thoolean !

i false

¢ maxOutputDerivativeOrder
Iype ¥Eunsigneding

E canRunAsynchronuously

iy |xsihoolean
i default | falze

' CoSimulation [-]
The FMU includes a model and the simulation
engine, of the camrmunication to a tool that
prowides this, The enwvironrment provides the
master algarithr For the Co-Sirmulation
coupling,

! canBelnstantiate dOnlyOncePerProcess

bvpe | xsthoolean
Lefault | falze

thype | xsboolean
ydefault | falze

 canSerializeFMUstate

vpe wahoolean
vdefault | false
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i providesPartialDerivativesOFf_DerivativeFunction_wrt_States

vbype | xsboolean
vilefault | falze

Partial detiwative of the deriwatives with respect to the states at cornmunication
points

E providesPartialDerivativesOf_DerivativeFunction_wrt_Inputs
ibype  |xsthoolean

Partial detivative of the detivatives with respect to the inputs at cornrunication
points

E providesPartialDerivativesOf_OwtputFunction_wrt_States |
ibvpe  [xsthoolean .
vdefault | false :

Partial detivative of the outputs with respect ta the states at comrunication
points

E providesPartialDerivativesOf_OutputFunction_wrt_Inputs |
itype | xasthoolean !
default | falze :

Partial detiwative of the autputs with respect to the inputs at cornmunication
points
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E atributes

miodelldentifier

type | x=z:normalizedString

needsExecutionTool

»&:boolean

utputDerivativeOrder

*s:unsignedint

_______________________

fype |[x=s:boolean
ydefault|false -
Directionz] derivatives at communication poin
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B stributes
______________ name

- SourceFiles EI—(—--—:E—{ File EI— tvpe | xs:normalizedString
= i —

These attributes have the following meaning (all attributes are optional with exception of

‘modelIdentifier”):

Attribute Name Description

modelIdentifier Short class name according to C syntax, for
example “A_B_C”. Used as prefix for FMI
functions if the functions are provided in C
source code or in static libraries, but not if
the functions are provided by a
DLL/SharedObject. modelIdentifier is
also used as name of the static library or
DLL/SharedObject . See also section 2.1.1.

needsExecutionTool If true, a tool is needed to execute the
model. The FMU just contains the
communication to this tool (see Figure 8).
[Typically, this information is only utilized for
information purposes. For example a
co-simulation master can inform the user
that a tool has to be available on the
computer where the slave is instantiated.
The name of the tool can be taken from
attribute generationTool of

fmiModelDescription. ]

canHandleVariableCommunicationStepSize | The slave can handle variable
communication step size. The
communication step size (parameter

communicationStepSize of

fmiDoStep(...) ) has notto be constant
for each call.
- | | " uri

rmulation. T o .
( | . . . ¢

canInterpolatelnputs The slave is able to interpolate continuous
inputs. Calling of
fmiSetRealInputDerivatives(...) has
an effect for the slave.

maxOutputDerivativeOrder The slave is able to provide derivatives of
outputs with maximum order. Calling of

fmiGetRealOutputDerivatives(...) is
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allowed up to the order defined by

maxOutputDerivativeOrder.

canRunAsynchronuously

This flag describes the ability to carry out the
fmiDoStep (...) call asynchronously.

I 2 gl . ide inf . |
uri o _thi
Heghestebesatie 1 on

canBeInstantiatedOnlyOncePerProcess

This flag indicates cases (especially for
embedded code), where only one instance
per FMU is possible

(multiple instantiation is default = false; if
multiple instances are needed, the FMUs
must be instantiated in different processes).

canNotUseMemoryManagementFunctions

If true, the slave uses its own functions for
memory allocation and freeing only. The
callback functions allocateMemory and
freeMemory given in
fmitastantiateStavefmiInstantiate

are ignored.

canGetAndSetFMUstate

If true, the environment can inquire the
internal FMU state and can restore it. That
is, fmiGetFMUstate, fmiSetFMUstate, and
fmiFreeFMUstate are supported by the
FMU.

canSerializeFMUstate

If t rue, the environment can serialize the
internal FMU state, in other words
fmiSerializedFMUstateSize
fmiSerializeFMUstate
fmiDeSerializeFMUstate are supported by
the FMU. If this is the case, then flag
canGetAndSetFMUstate must be true as

providesDirectionalDerivative

i 24 D i o 1 Der1szat+ 2 OfF Ders +
PE raesPartiarberivat: +—Pberivat
B Thaam vt 3~ 1t Q4 o4

3 Fonetreon—wrt—Stat

Broid Port+ialPars + 4 Of Deriszat
PE raesPartiratberivats: +—Dberivat
B o vt o st T oo d

3 Fonetron—wrt—Input

i 24 D i 2 1 Deriszat 2 OFfF Ot + T
PE raesPartiarberivat: tEputEd
Hmrat 1 an it O

et troR—wrt——States

i 24 D i o 1 Deriszat 2 OFfF Ot + T
PE raesPartiarberivat: £ tEputEd
PETNE 1ot Tonaat o

et ron—wrt—Inputs

e Ot Dot 3 2] e s + 2 ” and
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33-4If true, the directional derivative of the
equations at communication points can be

computed with

fmiGetDirectionalDerivative (..)

The flags have the following default values.
e boolean: false
e unsignedint: 0

Note, if needsExecutionTool = true, then itis required that the original tool is available to be
executed in co-simulation mode. If needsExecutionTool = false, the slave is completely contained
inside the FMU in source code or binary format (DLL/SharedObject).

4.3.2 Example XML Description File

The example below is the same one as shown in section 3.3.2 for a ModelExchange FMU. The only
difference is the replacement of element ModelExchange by element CoSimulation (with additional
attributes) and the removed local variables which are associated with continuous states and their
derivatives. The XML file may have the following content:

<?XML version="1.0" encoding="UTF8"?>

<fmiModelDescription
fmiVersion="2.0"
modelName="MyLibrary.SpringMassDamper"
guid="{8c4e810£f-3df3-4a00-8276-176fa3c9f9%e0}"
description="Rotational Spring Mass Damper System"
version="1.0"
generationDateAndTime="2011-09-23T16:57:332"
variableNamingConvention="structured">

<CoSimulation
modelIdentifier="MyLibrary SpringMassDamper"
canHandleVariableCommunicationStepSize="true"

Aldandlalxzant ot N
IS33zzicTsac=acr RES SEac

canInterpolateInputs="true"/>

<UnitDefinitions>
<Unit name="rad">
<BaseUnit rad="1"/>
<DisplayUnit name="deg" factor="57.2957795130823"/>
</Unit>
<Unit name="rad/s">
<BaseUnit s="-1" rad="1"/>
</Unit>
<Unit name="kg.m2">
<BaseUnit kg="1" m="2"/>
</Unit>
</UnitDefinitions>

<TypeDefinitions>
<SimpleType name="Modelica.SIunits.Inertia">
<Real quantity="MomentOfInertia" unit="kg.m2" min="0.0"/> </SimpleType>
<SimpleType name="Modelica.SIunits.Torque">
<Real quantity="Torque" unit="N.m"/> </SimpleType>
<SimpleType name="Modelica.SIunits.AngularVelocity">
<Real quantity="AngularVelocity" unit="rad/s"/> </SimpleType>
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<SimpleType name="Modelica.SIunits.Angle">
<Real quantity="Angle" unit="rad"/> </SimpleType>
</TypeDefinitions>

<DefaultExperiment startTime="0.0" stopTime="3.0" tolerance="0.0001"/>

<ModelVariables>
<ScalarVariable
name="inertial.J"
valueReference="1073741824"
description="Moment of load inertia"
causality="parameter"
variability="fixed">
<Real declaredType="Modelica.SIunits.Inertia" start="1"/>
</ScalarVariable>

<ScalarVariable
name="torque.tau"
valueReference="536870912"
description="Accelerating torque acting at flange (= -flange.tau)"
causality="input">
<Real declaredType="Modelica.SIunits.Torque" />
</ScalarVariable>

<ScalarVariable
name="inertial.phi"
valueReference="805306368"
description="Absolute rotation angle of component"
causality="output">
<Real declaredType="Modelica.SIunits.Angle" />
</ScalarVariable>

<ScalarVariable
name="inertial.w"
valueReference="805306369"
description="Absolute angular velocity of component (= der(phi))"
causality="output">
<Real declaredType="Modelica.SIunits.AngularVelocity" />
</ScalarVariable>
</ModelVariables>

<ModelStructure>

<Outpu
</Outputs>
</ModelStructure>
</fmiModelDescription>




Functional Mock-up Interface 2.0 RC1
October 18, 2013
Page 146 of 161

5. Literature

Andersson-C.-AkessonAkesson J., Fithrer C-Gafvert M—(201H)tmportBraun W., Lindholm P., and
ExportBachmann B. (2012): Generation of Sparse Jacobians for the Functional Meck-up

Interface 2.0. 9" International Modelica Conference, Dresden2044-
http/Annwv-ep-liv-selecp/063/014/ecp110630144-pdfMunich, 2012.
http://www.ep.liu.se/ecp/076/018/ecp12076018.pdf

Benveniste A., Caillaud B., Pouzet M. (2010): The Fundamentals of Hybrid Systems Modelers. In 49th

IEEE International Conference on Decision and Control (CDC), Atlanta, Georgia, USA, December
15-17. http://www.di.ens.fr/~pouzet/bib/cdc10.pdf

Blochwitz T., Otter M., Arnold M., Bausch C., Clau C., EImqvist H., Junghanns A., Mauss J., Monteiro M.,
Neidhold T., Neumerkel D., Olsson H., Peetz J.-V., Wolf S. (2011): The Functional Mockup
Interface for Tool independent Exchange of Simulation Models. 8" International Modelica
Conference, Dresden 2011.
hitp:www-ep-liv-selecpl063/013/ecp11063043.pdfhttp://www.ep.liu.se/ecp/063/013/ecp11063013
.pdf

Blochwitz T., Otter M., Akesson J., Arnold M., Clau® C., EImqvist H., Friedrich M., Junghanns A., Mauss J,,
Neumerkel D., Olsson H., Viel A. (2012): Functional Mockup Interface 2.0: The Standard for
Tool independent Exchange of Simulation Models. 9" International Modelica Conference,
Munich, 2012. http://www.ep.liu.se/ecp/076/017/ecp12076017.pdf

Kibler R., Schiehlen, W. (2000): Two methods of simulator coupling. Mathematical and Computer
Modeling of Dynamical Systems 6 pp. 93-113.93-113.Lee E.A., Zheng H. (2007): Leveraqging

Synchronous Language Principles for Heterogeneous Modeling and Design of Embedded
Systems. EMSOFT’07, Sept. 30 - Oct. 3, 2007, Salzburg, Austria.
http://ptolemy.eecs.berkeley.edu/publications/papers/07/unifying/LeeZheng SRUnifying.pdf

Lee E.A., Zheng H. (2007): Leveraging Synchronous Lanquage Principles for Heterogeneous Modeling
and Design of Embedded Systems. EMSOFT’07, September 30—October 3, Salzburg, Austria.
http://doi.acm.org/10.1145/1289927.1289949

Modelica (20402012): Modelica, A Unified Object-Oriented Language for Physical- Systems Modeling.
Language Specification, Version 3.2-March-24,-2010.


http://www.ep.liu.se/ecp/076/018/ecp12076018.pdf
http://www.di.ens.fr/~pouzet/bib/cdc10.pdf
http://www.ep.liu.se/ecp/063/013/ecp11063013.pdf
http://www.ep.liu.se/ecp/063/013/ecp11063013.pdf
http://www.ep.liu.se/ecp/076/017/ecp12076017.pdf
http://ptolemy.eecs.berkeley.edu/publications/papers/07/unifying/LeeZheng_SRUnifying.pdf
http://doi.acm.org/10.1145/1289927.1289949

Functional Mock-up Interface 2.0 RC1
October 18, 2013
Page 147 of 161

Pouzet M. (2006): Lucid Synchrone, Version 3.0, Tutorial and Reference Manual.
http://www.di.ens.fr/~pouzet/lucid-synchrone/

XML: www.w3.org/XML, en.wikipedia.org/wiki/ XML



https://www.modelica.org/documents/ModelicaSpec33.pdf
http://www.di.ens.fr/~pouzet/lucid-synchrone/
http://www.w3.org/XML/
http://en.wikipedia.org/wiki/Xml

Functional Mock-up Interface 2.0 RC1
October 18, 2013
Page 148 of 161

Appendix A FMI Revision History

This appendix describes the history of the FMI design and its contributors. The current version of this
document is available from hitp:/fwww-functional-mockup-interface-org/fmi-htmlhttps://www.fmi-
standard.org.

The Functional Mock-up Interface development was initiated and organized by Daimler AG (from Bernd
Relovsky and others) as subproject inside the H-EA2ITEA2 MODELISAR project.

The development of versions 1.0 and 2.0 was performed within WP200 of MODELISAR, organized by
the WP200 work package leader Dietmar Neumerkel from Daimler.

A1 Version 1.0 — FMI for Model Exchange

Version 1.0 of FMI for Model Exchange was released on Jan. 26, 2010.

The subgroup “FMI for Model Exchange” was headed by Martin Otter (DLR-RM). The essential part of
the design of this version was performed by (alphabetical list):

Torsten Blochwitz, ITI, Germany

Hilding EImqvist, Dassault Systémes (Dynasim), Sweden
Andreas Junghanns, QTronic, Germany

Jakob Mauss, QTronic, Germany

Hans Olsson, Dassault Systémes (Dynasim), Sweden
Martin Otter, DLR-RM, Germany.

This version was evaluated with prototypes implemented for (alphabetical list):

Dymola by Peter Nilsson, Dan Henriksson, Carl Fredrik Abelson, and Sven Erik Mattson,
Dassault Systémes (Dynasim),

JModelica.org by Tove Bergdahl, Modelon AB,

Silver by Andreas Junghanns, and Jakob Mauss, QTronic.

These prototypes have been used to refine the design of “FMI for Model Exchange”.

The following MODELISAR partners participated at FMI design meetings and contributed to the
discussion (alphabetical list):

Ingrid Bausch-Gall, Bausch-Gall GmbH, Munich, Germany
Torsten Blochwitz, ITI GmbH, Dresden, Germany

Alex Eichberger, SIMPACK AG, Gilching, Germany

Hilding EImqvist, Dassault Systémes (Dynasim), Lund, Sweden
Andreas Junghanns, QTronic GmbH, Berlin, Germany

Rainer Keppler, SIMPACK AG, Gilching, Germany

Gerd Kurzbach, ITI GmbH, Dresden, Germany

Carsten Kibler, TWT, Germany

Jakob Mauss, QTronic GmbH, Berlin, Germany

Johannes Mezger, TWT, Germany

Thomas Neidhold, ITI GmbH, Dresden, Germany

Dietmar Neumerkel, Daimler AG, Stuttgart, Germany

Peter Nilsson, Dassault Systéemes (Dynasim), Lund, Sweden
Hans Olsson, Dassault Systémes (Dynasim), Lund, Sweden
Martin Otter, German Aerospace Center (DLR), Oberpfaffenhofen, Germany


https://www.fmi-standard.org/
https://www.fmi-standard.org/
http://www.itea2.org/
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Antoine Viel, LMS International (Imagine), Roanne, France
Daniel Weil, Dassault Systemes, Grenoble, France

The following people outside of the MODELISAR consortium contributed with comments:

Johan Akesson, Lund University, Lund, Sweden
Joel Andersson, KU Leuven, The Netherlands
Roberto Parrotto, Politecnico di Milano, Italy

A.2 Version 1.0 — FMI for Co-Simulation

Version 1.0 of FMI for Co-Simulation was released on Oct. 10, 2010.

FMI for Co-Simulation was developed in three subgroups: “Solver Coupling” headed by Martin Arnold
(University Halle) and Torsten Blochwitz (ITl), “Tool Coupling” headed by Jérg-Volker Peetz (Fraunhofer
SCAI), and “Control Logic” headed by Manuel Monteiro (Atego). The essential part of the design of this
version was performed by (alphabetical list):

Martin Arnold, University Halle, Germany

Constanze Bausch, Atego Systems GmbH, Wolfsburg, Germany
Torsten Blochwitz, ITI GmbH, Dresden, Germany

Christoph ClauR, Fraunhofer [IS EAS, Dresden, Germany
Manuel Monteiro, Atego Systems GmbH, Wolfsburg, Germany
Thomas Neidhold, ITI GmbH, Dresden, Germany

Jorg-Volker Peetz, Fraunhofer SCAI, St. Augustin, Germany
Susann Wolf, Fraunhofer IIS EAS, Dresden, Germany

This version was evaluated with prototypes implemented for (alphabetical list):

SimulationX by Torsten Blochwitz and Thomas Neidhold (ITI GmbH),
Master algorithms by Christoph Claul (Fraunhofer IIS EAS)

The following MODELISAR partners participated at FMI design meetings and contributed to the
discussion (alphabetical list):

Martin Arnold, University Halle, Germany

Jens Bastian, Fraunhofer IIS EAS, Dresden, Germany
Constanze Bausch, Atego Systems GmbH, Wolfsburg, Germany
Torsten Blochwitz, ITI GmbH, Dresden, Germany

Christoph Clauf, Fraunhofer IIS EAS, Dresden, Germany
Manuel Monteiro, Atego Systems GmbH, Wolfsburg, Germany
Thomas Neidhold, ITI GmbH, Dresden, Germany

Dietmar Neumerkel, Daimler AG, Bdblingen, Germany

Martin Otter, DLR, Oberpfaffenhofen, Germany

Jorg-Volker Peetz, Fraunhofer SCAI, St. Augustin, Germany
Tom Schierz, University Halle, Germany

Klaus Wolf, Fraunhofer SCAI, St. Augustin, Germany
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A.3 Version 2.0 — FMI for Model Exchange and Co-Simulation

| FMI 2.0 for Model Exchange and Co-Simulation was released on »x206420ct. 18, 2013.

A.3.1 Overview

This section gives an overview about the changes with respect to versions 1.0 for Model Exchange and
1.0 for Co-Simulation:

FMI 2.0 is not backwards compatible to FMI 1.0.

The documents, schema and header files for Model Exchange and for Co-Simulation have been
merged. Due to the merging, some conflicts had to be resolved leading to some non-backwards
compatible changes with respect to FMI 1.0.

Parameters can be declared to be “tunable” in the FMU, in other words during simulation these
parameters can be changed (if supported by the simulation environment).

When enabling logging, log categories to be logged can be defined, so that the FMU needs to only
generate logs of the defined categories (in FMI 1.0, logs had to be generated for all log categories
and they had to be filtered afterwards). Log categories that are supported by an FMU can be
optionally defined in the XML file so that a simulation environment can provide them to the user for
selection.

FMI function names are no longer prefixed with the “modelldentifier” if used in a DLL/sharedObject.
As a result, FMUs that need a tool, can use a generic communication DLL, and the loading of DLLs
is no longer FMU dependent.

The different modes of an FMU are now clearly signaled with respective function calls

(fmiEnterInitializationMode, fmiEnterEventMode, fmiEnterContinuousTimeMode).

The interfaces have been redesigned, in order that algebraic loops over connected FMUs with Real,

Integer, or Boolean unknowns can now be handled reasonably not only in Continuous Time Mode,
but also in Initialization and Event Mode. In FMI 1.0, algebraic loops in Initialization and Even Mode
could not be handled.

The termination of every global event iteration over connected FMUs must be reported by a new
function call- (fmiEnterContinuousTimeMode).

The unit definitions have been improved: The tool-specific unit-name can optionally be expressed as
function of the 7 Sl base units and the Sl derived unit “rad”. It is then possible to check units when
FMUs are connected together (without standardizing unit names), or to convert variable values that
are provided in different units (for the same physical quantity).

Enumerations have an arbitrary (but unique) mapping to integers (in FMI 1.0, the mapping was
automatically to 1,2,3,...).

Explicit alias/antiAlias variable definitions have been removed, to simplify the interface: If variables
of the same base type (like fmiReal) have the same valueReference, they have identical values.
A simulation environment may ignore this completely (this was not possible in FMI 1.0), or can utilize
this information to more efficiently store results on file.

When instantiating an FMU, the absolute path to the FMU resource directory is now reported also in
Model Exchange, in order that the FMU can read all of its resources (for example maps, tables, ...)
independently of the “current directory” of the simulation environment where the FMU is used.
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¢ An ordering is defined for input, output, and state variables in the XML file of an FMU, in order for
this order to be defined in the FMU, and not (arbitrarily) selected by the simulation environment. This
is essential, for example when linearizing an FMU, or when providing “sparsity” information (see
below).

e Several optional features have been added:

— The complete FMU state can be saved, restored, and serialized to a byte vector (that can be
stored on file). As a result, a simulation (both for Model Exchange and for Co-Simulation) can be
restarted from a saved FMU state. Rejecting steps for variable step-size Co-Simulation master
algorithms is now performed with this feature (instead of the less powerful method of FMI 1.0).

— Discrete-time states in the FMU can be optionally defined. This allows for example to linearize
discrete-time systems and use the linearized model in linear analysis and synthesis methods.,
Furthermore, such an FMU may be linearized in every event instant and then the linear model
can be used in a model-based controller, or an extended Kalman filter for nonlinear state
estimation.

— The dependency of state derivatives and of output variables from inputs and states can be
defined in the XML file, in other words the sparsity pattern for Jacobians can be defined. This
allows simulating stiff FMUs with many states (> 1000 states) since sparse matrix methods can
be utilized in the numerical integration method. Furthermore, it can be stated whether this
dependency is linear (this allows to transform nonlinear algebraic equation systems into linear
equation systems when connecting FMUs).

ien-Directional derivatives can be computed for
derivatives of continuous-time states, for discrete-time states, and for outputs. This is useful
when connecting FMUs and the partial derivatives of the connected FMU shall be computed. If
the exported FMU performs this computation analytically, then all numerical algorithms based on
this-Jacobianthese partial derivatives (for example the numerical integration method or nonlinear
algebraic solvers) are more efficient and more reliable.

— Every scalar variable definition can have an additional “annotation” data structure that is
arbitrary (“any” element in XML). A tool vendor can store tool-dependent information here (that
other tools can ignore), for example to store the graphical layout of parameter menus. The
VendorAnnotations element was also generalized from (name, value) pairs to any XML data
structure.

e Many smaller improvements have been included, due to the experience in using FMI 1.0 (for
example the causality/variability attributes have been changed and more clearly defined, the
fmiModelFunctions.h header has been split into two header files (one for the function signature,
and one for the function names), in order that the header files can be directly used both for DLLs and
for source code distribution).

A.3.2 Main changes

This section gives the details about the changes with respect to versions 1.0 for Model Exchange and
1.0 for Co-Simulation:
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In this version, the documents of version 1.0 for Model Exchange and for Co-Simulation have been
merged and several new features have been added.

The following changes in FMI 2.0 are not backwards compatible due to the merging:

File fmiModelTypes.h (in FMI for Model Exchange) has been renamed to fmiTypesPlatform.h (the file
name used in FMI for Co-Simulation).

File fmiModelFunctions.h (in FMI for Model Exchange) has been renamed to fmiFunctions.h (the file name
used in FMI for Co-Simulation), and the function prototypes in this header files have been merged from
“Model Exchange” and from “Co-Simulation”). Additionally, a new header files has been added,
fmiFunctionTypes.h that contains a definition of the function signatures. This header file is also used in
fmiFunctions.h (so the signature is not duplicated). The benefit is that fmiFunctionTypes.h can be
directly used when loading a DLL/sharedObiject (in FMI 1.0, the tool providers had to provide this header
file by themselves).

Fixing ticket #47:
In FMI 1.0 for Model Exchange the fmiModelDescription.version was defined as string, whereas in Co-
Simulation it was defined as integer. This has been changed, so that version is a string.

The following backwards compatible improvements have been made in FMI 2.0:

The FMI 1.0 documents have been merged (for example all common definitions have been placed in the
new chapter 2).

The following not backwards compatible improvements have been made in FMI 2.0:

Element “fmiModelDescription.Implementation” in the model description schema file as been replaced by a
different structure where one hierarchical level is removed. There are now 2 elements directly under
fmiModelDescription: “ModelExchange” and “CoSimulation”.

File “fmilmplementation.xsd” has been removed.

New capability flags have been introduced both for ModelExchange and for CoSimulation, such as
canGetAndSetFMUstate, canSerializeFMUstate etc.

Attribute modelIdentifier has been moved from an fmiModelDescription attribute to an
attribute in Mode1Exchange and CoSimulation. This allows providing different identifiers, and then an
FMU may contain both distribution types with different DLL names (which correspond to the
modelIdentifier names).

A new attribute needsExecutionTool has been introduced both in ModelExchange and in
CoSimulation in order to define whether a tool is needed to execute the FMU. The previous elements in
CoSimulation Tool have been removed.

The state machines of ModelExchange and CoSimulation have been improved. Especially, the entering of

the states in this state machine are now clearly marked by corresponding function calls

(fmiEnterInitializationMode, fmiEnterEventMode, fmiEnterContinuousTimeMode).

Fixing ticket #9:
A new element LogCategory was introduced in fmiModelDescription. This is an unordered set of
strings representing the possible values of the log categories of the FMU (for example 1ogEvent).
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Function fmiSetDebugLogging has two new arguments to define the categories (from LogCategory)
to be used in log messages.

Fixing ticket #33:

The causality and variability attributes of a Scalarvariable have not been fully clear. This has
been fixed by changing the enumeration values of variability from “constant, parameter,
discrete, continuous"to"constant, fixed, tunable, discrete, continuous"and
causality from “input output internal none”to “parameter, input, output, local’.
This change includes now also the support of parameters that can be tuned (changed) during simulation.

Fixing ticket #35:

In order to simplify implementation (for example no longer an “element event handler” needed in SAX XML
parser), the only location where data is not defined by attributes, is changed to an attribute definition:
Element DirectDependency in ScalarVariable is removed. The same information can now be
obtained from the InputDependency attribute inside
fmiModelDescription.ModelStructure.Outputs.

Fixing ticket #37:
The new status flag fmiTerminate is added to the Co-Simulation definition. This allows a slave to
terminate the simulation run before the stop time is reached without triggering an error.

Fixing ticket #39:
Wong example in the previous section 2.10 of Co-Simulation has been fixed.

Fixing ticket #41:
New types introduced in fmiTypesPlatform.h :

fmiComponentEnvironment, fmiFMUstate, fmiByte.
Struct fmiCcallbackFunctions gets a new last argument:

fmiComponentEnvironment componentEnvironment
The first argument of function 1ogger is changed from type fmiComponent to
fmiComponentEnvironment.
By these changes, a pointer to a data structure from the simulation environment is passed to the 1ogger
and allows the 1ogger, for example to transform a valueReference in the log message to a variable
name.

Fixing ticket #42:

Enumerations defined in fmiType.xsd are now defined with (hame, value) pairs. An enumeration value
must be unique within the same enumeration (to have a bijective mapping between enumeration names
and values, in order that results can optionally be presented with names and not with values).
Furthermore, the min/max values of element Enumeration in TypeDefinition have been removed,
because they are meaningless.

Fixing ticket #43:

The previous header file fmiFunctions.h is split into 2 header files, fmiFunctionTypes.h and fmiFunctions.h,
in order to simplify the dynamic loading of an FMU (the typedefs of the function prototypes defined in
fmiFunctionTypes.h can be used to type case the function pointers of the dynamic loading).

Fixing ticket #45:

Contrary to the ticket proposal, no new function fmiResetModel is added. Instead 6 new functions are
added to get and set the internal FMU state via a pointer and to serialize and deserialize an FMU state via
a byte vector provided by the environment. For details, see section 2.1.8. This feature allows, for example
to support more sophisticated co-simulation master algorithms which require the repetition of
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communication steps. Additionally, two capability flags have been added (canGetAndSetFMUstate,
canSerializeFMUstate) in order to define whether these features are supported by the FMU.

Fixing ticket #46:

The unit definitions have been enhanced by providing an optional mapping to the 7 Sl base units and the
Sl derived unit “rad”, in order for a tool to be able to check whether a signal provided to the FMU or
inquired by the FMU has the expected unit.

Fixing ticket #48:

The definition of fmiBoolean in fmiTypesPlatform.h for “standard32” was changed from char to
int. The main reason is to avoid unnecessary casting of Boolean types when exporting an FMU from a
Modelica environment or when importing it into a Modelica environment.

The current definition of char for a Boolean was not meaningful, since, for example for embedded code
generation usually Booleans are packed on integers and char for one Boolean would also not be used. It
is planned to add more supported data types to an FMU in the future, which should then also include
support for packed Booleans.

Fixing ticket #49:

Argument fmiComponent in function pointer stepFinished was changed to
fmiComponentEnvironment (when stepFinished is called from a co-simulation slave and provides
fmiComponentEnvironment, then this data structure provided by the environment can provide
environment specific data to efficiently identify the slave that called the function).

Fixing ticket #54:

In section 2.3 it is now stated, that the FMU must include all referenced resources. This means especially
that for Microsoft VisualStudio the option “MT” has to be used when constructing a DLL in order to include
the run-time environment of VisualStudio in the DLL.

Fixing ticket #75:

Since states are now explicitly defined in the xml-file, function fmiGetStatevValueReferences iS N0
longer needed, as well as the special type fmiUndefinedvalueReference that might be used as return
value of this function. Therefore, both elements have been removed in FMI 2.0.

Fixing ticket #85:

New argument noSetFMUStatePriorToCurrentPoint to function fmiCompletedIntegratorStep,
similarly to fmiDoStep, in order that the FMU can flush a result buffer if necessary.

Fixing ticket #86:

The fmiTypesPlatform.h header file has been slightly changed: The default value of fmiTypesPlatform is
changed from “standard32” to “default’, since this definition holds for most platforms and compilers.
Furthermore, the default type of fmiValueReference has been changed from “unsigned int” to “size t".

Fixing ticket #88:

The definition of fmiFunctions.h slightly changed to improve portability (the header file can now be utilized
both for Microsoft and gnu compilers, and the danger of name conflicts has been reduced).

Fixing ticket #95:

FMI xml-files need to be UTF-8 encoded (as are xml schema files and strings in the C-API), in order to
simplify reading of xml-files.

Fixing ticket #113:

Changed function name “fmiTerminate” to “fmiTerminate” in order to be consistent with the other function
definitions (fmiEnterSlav elnitializationMode, fmiTerminate).
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e Fixing ticket #115:
Clarification added, that the special values NAN, +INF, -INF, are not allowed in the FMI xml-files.

e Fixing ticket #127:
Added clarifications in section 2.1, that all C-API functions are not thread safe and that FMUs must not
influence each other.

e Function fmiInitialize was splitinto two functions: fmiEnterInitializationMode and

fmiExitInitializationMode in order that artificial or “real” algebraic loops over connected FMUs can
be handled in an efficient way.

e Function stepEvent in struct fmiCallbackFunctions had different locations in the FMI
documentation and in the header file. This inconsistency has been corrected by using the location in the
header file (at the end of the struct).

e The struct fmiCallbackFunctions is provided as a pointer to the struct when instantiating an FMU,
and not as the struct itself. This simplifies the importing of an FMU into a Modelica environment.

¢ Defined how to utilize the min/max attributes for fmiSetReal, fmiSetinteger, fmiGetReal, fmiGetinteger
calls.

o Attributes “numberOfScalarVariables”, “numberOfContinuousStates”, “numberOfinputs”,
“numberOfOutputs” available in FMI 1.0 have been removed, because they can be deduced from the
remaining xml file (so in FMI 2.0 this would have been redundant information).
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Appendix B Glossary

This glossary is a subset of (MODELISAR Glossary, 2009) with some extensions specific to this

document.
Term Description
algorithm A formal recipe for solving a specific type of problem.

application programming
interface (API)

A set of functions, procedures, methods or classes together with type
conventions/declarations (for example C header files) that an operating system,
library or service provides to support requests made by computer programs.

AUTOSAR

AUTomotive Open System Architecture (www-autesar-orgwww.autosar.orq).
Evolving standard of the automotive industry to define the implementation of
embedded systems in vehicles including communication mechanisms. An
important part is the standardization of C functions and macros to communicate
between software components. AUTOSAR is targeted to built on top of the real-
time operating system OSEK (www-osek-vdx-orgwww.osek-vdx.org,
de-wikipedia-org/wiki/fOSEK).de.wikipedia.org/wiki/OSEK). The use of the
AUTOSAR standard requires AUTOSAR membership.

communication points

Time grid for data exchange between master and slaves in a co-simulation
environment (also known as “sampling points” or “synchronization points”).

communication step size

Distance between two subsequent communication points (also known as
“sampling rate” or “macro step size”).

co-simulation

Coupling (in other words dynamic mutualexchange and utilization of
intermediate results) of several simulation programs including their numerical
solvers in order to simulate a system consisting of several subsystems.

co-simulation platform

Software used for coupling several simulation programs for co-simulation.

ECU

Electronic Control Unit (Microprocessor that is used to control a sub-system in a
vehicle).

event

TheSomething that occurs instantaneously at a specific time instant-at-which
theor when a specific condition occurs. At an event, numerical integration is

haltedsuspended and variables may change their values discontinuously.
B . ’ bl . _

FMI

Functional Mock-up Interface:
Interface of a functional mock-up in form of a model. In analogy to the term
digital mock-up (see mock-up), functional mock-up describes a computer-based

representation of the functional behaviour of a system for all kinds of analyses.

FMI for Co-Simulation

Functional Mock-up Interface for Co-Simulation:
One of the MODELISAR functional mock-up interfaces.
It connects the master solver component with one or more slave solvers.

FMI for Model Exchange

Functional Mock-up Interface for Model Exchange:

One of the MODELISAR functional mock-up interfaces. It consists of the model/
description interface and the model execution interface.

It connects the external model component with the solver component.
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Term Description

EMTC i

FMU Functional Mock-up Unit:
A “model class” from which one or more “model instances” can be instantiated
for simulation. An FMU is stored in one zip file as defined in section 2.3
consisting basically of one XML file (see section 0) that defines the model
variables and a set of C functions (see section 2.1), in source or binary form, to
execute the model equations or the simulator slave. In case of tool execution,
additionally, the original simulator is required to perform the co-simulation
(compare section 4.3.1)

ga#eway A-link-between-two-com

integration algorithm

The numerical algorithm to solve differential equations.

integrator

A software component, which implements an integration algorithm.

interface

An abstraction of a software component that describes its behavior without
dealing with the internal implementation. Soffware components communicate
with each other via interfaces.

master/slave

A method of communication, where one device or process has unidirectional
control over one or more other devices. Once a master/slave relationship
between devices or processes is established, the direction of control is always
from the master to the slaves. In some systems a master is elected from a group
of eligible devices, with the other devices acting in the role of slaves.

mock-up

A full-sized structural, but not necessarily functional model built accurately to
scale, used chiefly for study, testing, or display. In the context of computer aided
design (CAD), a digital mock-up (DMU) means a computer-based
representation of the product geometry with its parts, usually in 3-D, for all kinds
of geometrical and mechanical analyses.

model

A model is a mathematical or logical representation of a system of entities,
phenomena, or processes. Basically a model is a simplified abstract view of the
complex reality.

It can be used to compute its expected behavior under specified conditions.

model description file

The model description file is an XML file, which supplies a description of all
properties of a model/ (for example input/output variables).

model description
interface

An interface description to write or retrieve information from the mode/
description file.

Model Description
Schema

An XML schema that defines how all relevant, non-executable, information
about a “model class” (FMU) is stored in a text file in XML format. Most
important, data for every variable is defined (variable name, handle, data type,
variability, unit, etc.), see section 0.

numerical solver

see solver

output points

Tool internal time grid for saving output data to file (in some tools also known as
“communication points” — but this term is used in a different way in FMI for Co-
Simulation, see above).

output step size

Distance between two subsequent output points.
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Term Description

parameter A quantity within a model, which remains constant during simulation (fixed
parameter) or may change at event instances (tunable parameter).Examples are
a mass, stiffness, etc.

slave see master/slave

simulation Compute the behavior of one or several models under specified conditions.

(see also co-simulation)

simulation model

see model/

simulation program

Software to develop and/or solve simulation models. The software includes a
solver, may include a user interface and methods for post processing (see also:
simulation tool, simulation environment).

Examples of simulation programs are: AMESim, Dymola, SIMPACK,
SimulationX, SIMULINK.

simulation tool

see simulation program

simulator A simulator can include one or more simulation programs, which solve a
common simulation task.

solver Software component, which includes algorithms to solve models, for example
integration algorithms and event handling methods.

state The “continuous states” of a model are all variables that appear differentiated in

the model and are independent from each other.

The “discrete states” of a model are time-discrete variables that have two values
in a model: The value of the variable from the previous event instant, and the
value of the variable at the actual event instant.

state event

Event that is defined by the time instant where the domain z > 0 of an event
indicator variable z is changed to z < 0, or vice versa.

This definition is slightly different from the usual standard definition of state
events: “z(f)*z(t.4) < 0” which has the severe drawback that the value of the
event indicator at the previous event instant, z(t.4) # 0, must be non-zero and
this condition cannot be guaranteed. The often used term “zero crossing
function” for z is misleading (and is therefore not used in this document), since a
state event is defined by a change of a domain and not by a zero crossing of a
variable.

step event

Event that might occur at a completed integrator step. Since this event type is
not defined by a precise time or condition, it is usually not defined by a user. A
program may use it, for example to dynamically switch between different states.
A step event is handled much more efficiently than a state event, because the
event is just triggered after performing a check at a completed integrator step,
whereas a search procedure is needed for a state event.

super dense time

A precise definition of time taking into account iterations at an event. For an
FMU, the independent variable time t € T _is a tuple t = (tg, t;) wWhere t; € R,
t; €N ={0,1,2,...}. The real part t; of this tuple is the independent variable of
the FMU for describing the continuous-time behavior of the model between
events. In this phase t; = 0. The integer part t; of this tuple is a counter to
enumerate (and therefore distinguish) the events at the same continuous-time
instant t5.

time event

Event that is defined by a predefined time instant. Since the time instant is
known in advance, the integrator can select its step size so that the event point
is directly reached. Therefore, this event can be handled efficiently.
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Term

Description

user interface

The part of the simulation program that gives the user control over the
simulation and allows watching results.

value reference

The value of a scalar variable of an FMU is identified with an Integer handle

called value reference. This handle is defined in the modelDescription. XML
file (as attribute valueReference in element Scalarvariable). Element
valueReference might not be unique for all variables. If two or more
variables of the same base data type (such as fmiReal) have the same
valueReference, then they have identical values but other parts of the
variable definition might be different (for example min/max attributes).

XML

eXtensible Markup Language (www-w3-orghXMLwww.w3.org/XML,
en-wikipedia-orgiwikitxXMLen.wikipedia.org/wiki/’XML) — An open standard to
store information in text files in a structured form.
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