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1 Overview

The goal of this document is to present the Integration Problems toolbox
for Scilab.

2 Introduction

The goal of this toolbox is to provide integration problems in order to test
integration algorithms. Each problem is provided as a function which takes
a real argument x ∈ [0, 1]s in the unit hypercube and returns a real output
y = f(x) ∈ R.

This toolbox can be used in the context of the numerical evaluation of any
numerical integration algorithms. However, it was designed to serve as a base
for testing Monte Carlo (MC) and Quasi Monte Carlo (QMC) algorithms.

2.1 Overview of functions

The test functions provided in the toolbox are presented in the table 1.
The functions #1 to #9 are taken from [12]. The functions #10 are taken

from [14].

2.2 Designing test functions

In this section, we describe how and why most functions provided in this
toolbox are with expectation zero and variance unity.
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No File s Name
# 1. SUM (10) Sum
# 2. SQSUM (10) Sum of Squares
# 3. SUMSQROOT (10) Sum of Square Roots
# 4. PRODONES (10) Product of Signed Ones
# 5. PRODEXP (10) Product of Exponentials
# 6. PRODCUB (10) Product of Cubes
# 7. PRODX (10) Product of X
# 8. SUMFIFJ (10) Sum of fi fj
# 9. SUMF1FJ (10) Sum of f1 fj
# 10. HELLEKALEK (10) Hellekalek
# 11. ROOSARNOLD1 (10) Roos and Arnold 1
# 12. ROOSARNOLD2 (10) Roos and Arnold 2
# 13. ROOSARNOLD3 (10) Roos and Arnold 3
# 14. RST1 (10) Radovic, Sobol, Tichy (aj = 1)
# 15. RST2 (10) Radovic, Sobol, Tichy (aj = j)
# 16. RST3 (10) Radovic, Sobol, Tichy (aj = j2)
# 17. SOBOLPROD (10) Sobol Product
# 18. OSCILL (6) Genz - Oscillatory
# 19. PRPEAK (6) Genz - Product Peak
# 20. CORPEAK (6) Genz - Corner Peak
# 21. GAUSSIAN (6) Genz - Gaussian
# 22. C0 (6) Genz - C0
# 23. DISCONT (6) Genz - Discontinuous

Figure 1 – Test functions provided in the toolbox.
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We assume that s is a positive integer and that the point x ∈ [0, 1]s. The
function f : [0, 1]s → R is assumed to have a finite expectation

E(f) =

∫
[0,1]s

f(x)dx, (1)

and finite variance

σ2(f) =

∫
[0,1]s

f(x)2dx− E(f)2. (2)

Assume that we approximate the expectation of the function by the
Monte-Carlo estimate [8]

I =
1

n

∑
k=1,...,n

f(xk), (3)

where the points xk are independent uniformly distributed points in the hy-
percube [0, 1]s. The estimate I is an unbiased estimator of E(f), and its
variance is ∫

[0,1]s
(f(x)− E(f))2dx =

σ2(f)

n
. (4)

In [26], Kocis and Whiten provide analysis of test functions by using the
functional ANOVA. The purpose of their work is to describe what particular
functions are difficult to integrate with Monte-Carlo and Quasi-Monte-Carlo
methods. They state that ”adding a large constant to the test function (as-
sumed small) improves the relative accuracy of the integration, but clearly
this is of no significance in testing an integration sequence.” Thus, ”the first
step should be to remove any constant component from the test function as
follows :”

f0 = E(f) =

∫
[0,1]s

f(x)dx, (5)

and the remaining part of f(x) is f(x)− f0.
Later in their text, they notice that, in the case of Monte-Carlo inte-

gration, the error depends on the variance of the function being integra-
ted. Hence, the suggest that to give comparable results, the variance of the
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function should be normalised to a constant value, chosen, without loss of
generality to be one. Let us consider the function f defined by

f(x) =
1√
σ2(f)

(f(x)− E(f)) . (6)

Then the expectation of the function f is

E(f(X)) =

∫
[0,1]s

f(x)dx (7)

=
1√
σ2(f)

∫
[0,1]s

(f(x)− E(f)) dx (8)

=
1√
σ2(f)

(∫
[0,1]s

f(x)dx− E(f)

)
(9)

= 0, (10)

and the variance of the function f is

σ2(f) =

∫
[0,1]s

f(x)2dx− E(f)2 (11)

=
1

σ2(f)

∫
[0,1]s

(f(x)− E(f))2 dx (12)

=
1

σ2(f)

(∫
[0,1]s

f(x)2dx− 2E(f)

∫
[0,1]s

f(x)dx + E(f)2

)
(13)

=
1

σ2(f)

(∫
[0,1]s

f(x)2dx− 2E(f)E(f) + E(f)2

)
(14)

=
1

σ2(f)

(∫
[0,1]s

f(x)2dx− E(f)2

)
(15)

=
1

σ2(f)
σ2(f) (16)

= 1. (17)

Hence the expectation of the function f is zero while its variance is one. In
the bibliography, we often find functions with non-zero expectation or non-
unity variance. In these cases, when both the expectation and the variance are
explicitely known, we use the formula 6 and provide the function f instead
of f . If the expectation only is known, we cannot normalize the variance and
we provide the function f(x) − E(f) instead of f . When the expectation is
not known analytically, we provide f directly.
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3 Functions

In this section, we describe the functions provided in the toolbox. We
provide the function definition and the references were the function appeared
first. We also list several papers using the function and which may provide
an analysis or numerical experiments using the function : this may be useful
in comparison studies.

3.1 SUM

This is the function F1 in Kocis and Whiten’s [12].
This function is defined by

f(x) =
1√
v

(g(x)− e), (18)

where x ∈ [0, 1]s and

e =
s

2
(19)

v =
s

12
(20)

g(x) =
∑

i=1,...,s

xi. (21)

The contours of this function in the case s = 2 are presented in the figure
2.

The function f is well behaved and thus satisfies conditions for proper
quasi-Monte-Carlo integration. But it is not truly multi-dimensional in that
it is a sum of lower-dimensional functions.

3.2 SQSUM

This is the function F2 in Kocis and Whiten’s [12].
This function is defined by

f(x) =
1√
v

(g(x)− e), (22)
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Figure 2 – The function SUM.

where x ∈ [0, 1]s and

e =
s

3
(23)

v =
4n

45
(24)

g(x) =
∑

i=1,...,s

x2
i . (25)

The function f is well behaved and thus satisfies conditions for proper
quasi-Monte-Carlo integration. But it is not truly multi-dimensional in that
it is a sum of lower-dimensional functions.

The contours of this function in the case s = 2 are presented in the figure
3.

3.3 SUMSQROOT

This is the function F3 in Kocis and Whiten’s [12].
This function is defined by

f(x) =
1√
v

(g(x)− e), (26)
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Figure 3 – The function SQSUM.

where x ∈ [0, 1]s and

e =
2n

3
(27)

v =
s

18
(28)

g(x) =
∑

i=1,...,s

√
xi. (29)

The function f is well behaved and thus satisfies conditions for proper
quasi-Monte-Carlo integration. But it is not truly multi-dimensional in that
it is a sum of lower-dimensional functions.

The contours of this function in the case s = 2 are presented in the figure
4.

3.4 PRODONES

This is the function F4 in Kocis and Whiten’s [12].
This function is defined by

f(x) =
∏

i=1,...,s

g(xi), (30)
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Figure 4 – The function SUMSQROOT.

where x ∈ [0, 1]s and

g(z) =

{
−1 if z < 1

2

1 otherwise.
(31)

The function f is discontinuous, but the function is either 1 or -1 (i.e.
the local extremes of the function do not increase with the dimension s).
The function is piecewise constant in 2s different regions. The conditions for
proper quasi-Monte Carlo are not satisfied and the rate of convergence for
this function is expected to be low.

The contours of this function in the case s = 2 are presented in the figure
5.

3.5 PRODEXP

This is the function F5 in Kocis and Whiten’s [12].
This function is defined by

f(x) = ws
∏

i=1,...,s

g(xi), (32)
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Figure 5 – The function PRODONES.

where x ∈ [0, 1]s and

w =

(
15 exp(15) + 15

13 exp(15) + 17

) 1
2

(33)

g(z) =
exp(30z − 15)− 1

exp(30z − 15) + 1
(34)

The function f is smooth but the number of extremes increases as 2s. For
example, the maximum of the function f in the hypercube [0, 1]s is 2.69 ·1012

for s = 400. The conditions for proper quasi-Monte Carlo are not satisfied
and the rate of convergence for this function is expected to be low.

The contours of this function in the case s = 2 are presented in the figure
6.

3.6 PRODCUB

This is the function F6 in Kocis and Whiten’s [12].
This function is defined by

f(x) =
∏

i=1,...,s

g(xi), (35)
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Figure 6 – The function PRODEXP.

where x ∈ [0, 1]s and

g(z) = −2.4
√

7

(
z − 1

2

)
+ 8
√

7

(
z − 1

2

)3

. (36)

The function f is smooth but the number of extremes increases as 2s. For
example, the maximum of the function f in the hypercube [0, 1]s is 4.65 ·1050

for s = 400. The conditions for proper quasi-Monte Carlo are not satisfied
and the rate of convergence for this function is expected to be low.

The contours of this function in the case s = 2 are presented in the figure
7.

3.7 PRODX

This is the function F7 in Kocis and Whiten’s [12].
This function is defined by

f(x) = ws
∏

i=1,...,s

g(xi), (37)

where x ∈ [0, 1]s and

w = 2
√

3 (38)

g(z) = z − 1

2
. (39)
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Figure 7 – The function PRODCUB.

The function f is smooth but the number of extremes increases as 2s. For
example, the maximum of the function f in the hypercube [0, 1]s is 2.66 ·1095

for s = 400. The conditions for proper quasi-Monte Carlo are not satisfied
and the rate of convergence for this function is expected to be low.

Owen analyses this function in [14] and reports previous results from [15]
and [16]. This test function is fully s dimensional and the improvement of
QMC over MC sets in at n ≥ bs, where b is the base of the (λ, 0,m, s) −
net. In [16], Owen indicates that the function f is multilinear, so that f
is not artificially easy for scrambled nets, at least in terms of the rates of
convergence to be expected. Owen writes ”there are harder s dimensional
integrands, such as oscillatory or localized ones”.

Owen also explains the behavior of MC and QMC algorithms when s
becomes large. ”In large dimensions, this integrand is difficult for MC. Indeed,
most of the variation is concentrated in 2s small corner regions. For large s
and small n, the MC estimate will be usually very close to the exact zero,
because non of the corner spikes will have been sampled. But, as the number
of simulations n increases, a small number of spike samples will be obtained
and the result will be erratic until n becomes so large that a large number of
spike samples has been seen.”

The contours of this function in the case s = 2 are presented in the figure
8.
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Figure 8 – The function PRODX.

3.8 SUMFIFJ

This is the function F8 in Kocis and Whiten’s [12].
This function is defined by

f(x) =
1√
v

∑
i=1,...,s

gi(x), (40)

where x ∈ [0, 1]s and

gi(x) = g(xi)
∑

j=1,2,...,i−1

g(xj). (41)

The function g is defined by

g(z) =


1 if z < 1

6
or z > 4

6

0 if z = 1
6

or z = 4
6

−1 if z > 1
6

and z > 4
6
.

(42)

The function f has only two-dimensional components being construc-
ted as sum of products of all combinations of two-one variate functions.
This allows the simultaneous testing and averaging of all the possible two-
dimensional functions available within the chosen dimension s. The function
F8 corresponds to the function F5, having flat regions and discontinuities.
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Figure 9 – The function SUMFIFJ.

The number of regions of F8 is 3s. The extremes of the function f do not
increase rapidly with the number of dimensions s.

The contours of this function in the case s = 2 are presented in the figure
9.

3.9 SUMF1FJ

This is a modification of the function F9 in Kocis and Whiten’s [12].
This function is defined by

f(x) =
1√
s− 1

g(x1)
∑

i=2,...,s

g(xi), (43)

where x ∈ [0, 1]s and

g(z) = 27.20917094z3 − 36.19250850z2 + 8.983337562z + 0.7702079855. (44)

The function f has only two-dimensional components being construc-
ted as sum of products of all combinations of two-one variate functions.
This allows the simultaneous testing and averaging of all the possible two-
dimensional functions available within the chosen dimension s. The func-
tion F8 corresponds to the function F6, being smooth and based on one-
dimensional cubic functions. The extremes of the function f do not increase
rapidly with the number of dimensions s.
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Figure 10 – The function SUMF1FJ.

The contours of this function in the case s = 2 are presented in the figure
10.

3.10 HELLEKALEK

This function is from [9] and is called ”Hellekalek’s example” in [14].
This function is defined by

f(x) =
∏

i=1,...,s

g(xi), (45)

where x ∈ [0, 1]s and

g(z) =
h(z)

γi
(46)

h(z) = zα − 1

α + 1
. (47)

The parameter α ranges from 1 to 3. In the toolbox, we have chosen

α = 1. (48)

The variable γ2
i represents the variance of the function h(xi) for i = 1, 2, . . . , s,

which satisfies

γ2
i =

α2

(2α + 1)(α + 1)2
. (49)
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Figure 11 – The function HELLEKALEK.

Owen [14] prooves that this function is fully s-dimensionnal. Hence QMC
does not improve on Monte-Carlo. A (t,m, s)-net does not balance any ele-
mentary intervals of dimension s, unless n ≥ bt+s.

The contours of this function in the case s = 2 are presented in the figure
11.

3.11 ROOSARNOLD1

This function is from Roos and Arnold [21] and is presented in Davis and
Rabinowitz [3]. It is analysed by Owen [14].

This function is defined by

f(x) =
1√
v

( ∑
i=1,...,s

g(xi)− e

)
, (50)

where x ∈ [0, 1]s and

g(z) =
|4z − 2|

s
, (51)

e = 1, (52)

v =
1

3s
. (53)
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Figure 12 – The function ROOSARNOLD1.

Owen writes in [14] that this function is additive and purely one dimen-
sional.

The contours of this function in the case s = 2 are presented in the figure
12.

3.12 ROOSARNOLD2

This function is from Roos and Arnold [21] and is presented in Davis and
Rabinowitz [3]. This integrand is considered in the context of QMC by Fox
in [4]. This integrand can be viewed as a particular case of Radovic, Sobol
and Tichy’s function [20], analysed by Owen [14].

This function is defined by

f(x) =
1√
v

( ∏
i=1,...,s

g(xi)− e

)
, (54)

where x ∈ [0, 1]s and

g(z) = |4z − 2|, (55)

e = 1, (56)

v =

(
4

3

)s
− 1. (57)
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Figure 13 – The function ROOSARNOLD2.

All variables are important in this function.
In [4], Fox analyses this function. Consider V (f), the variation of f in the

sense of Hardy and Krause. It is possible to show that

V (f) ≥ sup{f(x)|x ∈ [0, 1]s} − inf{f(x)|x ∈ [0, 1]s}. (58)

For the current function, we have

V (f) ≥ 2s. (59)

This shows that a huge error is possible in any approximation method when
s is large.

The contours of this function in the case s = 2 are presented in the figure
13.

3.13 ROOSARNOLD3

This function is from Roos and Arnold [21] and is presented in Davis and
Rabinowitz [3]. It is analysed by Owen [14].

This function is defined by

f(x) =
1√
v

( ∏
i=1,...,s

g(xi)− e

)
, (60)
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Figure 14 – The function ROOSARNOLD3.

where x ∈ [0, 1]s and

g(z) =
π

2
sin(πz), (61)

e = 1, (62)

v =

(
π2

8

)s
− 1. (63)

Owen writes in [14] that this function has mean dimensionnality which
grows nearly linearly with s.

The contours of this function in the case s = 2 are presented in the figure
14.

3.14 RST1, RST2, RST3

This function is from Radovic, Sobol and Tichy [20]. It is analysed by
Owen in [14], by Okten, Shah and Goncharov in [13].

This function is defined by

f(x) =
1√
v

( ∏
i=1,...,s

gi(xi)− e

)
, (64)
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where x ∈ [0, 1]s and

gi(z) =
|4z − 2|+ ai

1 + ai
. (65)

The parameters ai for i = 1, 2, . . . , s allows to tune the importance of
each variable xi. If ai = 0, then the parameter xi is important and when
ai ≥ 0 is larger, the variable xi is less important. We use the following set of
parameters :

– RST1 uses ai = 1 for i = 1, 2, . . . , s, where all variables have equal
importance,

– RST2 uses ai = i for i = 1, 2, . . . , s, where the importance of the
variable xi decreases as i increases,

– RST3 uses ai = i2 for i = 1, 2, . . . , s, where the importance of the
variable xi decreases as i increases.

The expectation and variance of the function f can be computed based on
the expectation and variance of the functions gi. Let us define

µi = 1, (66)

γ2
i =

1

3(1 + ai)2
, (67)

for i = 1, 2, . . . , s. Then, the expectation and variances of the function f are

e =
∏

i=1,...,s

µi (68)

v =
∏

i=1,...,s

(µ2
i + γ2

i )−
∏

i=1,...,s

µ2
i . (69)

For numerical integration, the function RST1 may be difficult, RST2 more
easy and RST3 easy.

The contours of this function in the case s = 2 are presented in the figures
15, 16 and 17.

3.15 SOBOLPROD

This function is designed by Sobol’ in [24]. It is analysed by Owen in [14].
This function is defined by

f(x) =
1√
v

( ∏
i=1,...,s

gi(xi)− e

)
, (70)
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Figure 15 – The function RST1.
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Figure 16 – The function RST2.

21



-1.45

-1.05-1.05 -0.65-0.65 -0.249-0.249 0.1520.1520.553

0.954

0.9540.954

0.954

1.36

1.361.36

1.36

1.76

1.76

2.16

2.16

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 17 – The function RST3.

where x ∈ [0, 1]s and

gi(z) =
i+ 2z

i+ 1
. (71)

The expectation and variance of the function f can be computed based on
the expectation and variance of the functions gi. Let us define

µi = 1, (72)

γ2
i =

1

3(i+ 1)2
, (73)

for i = 1, 2, . . . , s. Then, the expectation and variances of the function f are

e =
∏

i=1,...,s

µi (74)

v =
∏

i=1,...,s

(µ2
i + γ2

i )−
∏

i=1,...,s

µ2
i . (75)

This function is an integrand which is favorable for quasi Monte Carlo.
Sobol’s shows in [24] a convergence of the error which has the form 1/n
instead of the 1/

√
n of the Monte Carlo method.

Owen states in [14] that each variable xi+1 is less important than xi. This
integrand really depends on few variables. Owen writes that, for s = 100, the
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Figure 18 – The function SOBOLPROD.

mean dimension is 1.085. He writes that, for s = 100, at least 99.418% of the
variation in this function is from its ANOVA components of dimension 4 and
smaller.

The contours of this function in the case s = 2 are presented in the figure
18.

3.16 OSCILL

The next 6 functions are a part of the 6 functions designed by Genz and
available in the Testpack fortran 77 package [5]. These functions have been
ported to Matlab by John Burkardt in [2] and in [1].

The OSCILL function is designed by Genz in [6], [7], where it is named
”Oscillatory”. It is used by Joe and Sloan in [10, 11] (1993), by Shürer in [23]
(2001), by Taylor and Hover in [25] (2007), by Pirsic in [18, 19].

This function is defined by :

f(x) = cos

(
2πβ1 +

∑
i=1,2,...,s

αixi

)
− e, (76)
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where x ∈ [0, 1]s and e is defined by :

e = 2s cos

(
2πβ1 +

1

2
α̂

)
p (77)

α̂ =
s∑
i=1

αi (78)

p =
s∏
i=1

sin(αi/2)

αi
(79)

For this function, the expectation is known, but not the variance. This func-
tion is not completely normalized, in the sense that its integral is zero buts
its variance is not unity.

In this function, the parameters α = (α1, α2, . . . , αs) and β = (β1, β2, . . . , βs)
allow to define a family of functions.

In [6], Genz distinguish two types of parameters which appear in an in-
tegration function.

1. Affective parameters are the parameters which affect the difficulty of
the integration problem. This is the parameter α (denoted by a in [6]).

2. Unaffective parameters are the one which do not affect the difficulty of
the integration problem. This is the parameter β (denoted by u in [6]).

The components of α̂ and β are uniformly distributed in the interval [0, 1].
The vector β acts as a shift parameter. As detailed below, the vector α is
then computed by scaling α̂.

Genz uses the uniform random number generator designed by Shrage in
[22]. The generator is based on the multiplicative congruential generator

x = Ax( (mod M)) (80)

with A = 16807 and M = 231 − 1 = 2147483647. Schrage states that the
generator is full cycle, with period M . In our implementation, the seed is
constantly set to 123456.

The difficulty of the problem is controlled by the vector α, where increa-
sing values of α are generating increasingly difficult problems. The scaling of
α is done by the formula

α =
1

ω
α̂ (81)
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where ω > 0 is defined by :

ω =
se

h

s∑
i=1

αi. (82)

The parameters e and h are chosen depending on the problem in order to
control the difficulty of the integration. The previous equation leads to the
equality ‖α‖1 = h

se .
For this function, we have e = 1.5 and h = 110, which leads to

‖α‖1 =
110

s3/2
. (83)

A little modification was done to the function with respect to the Testpack
library [5]. In Genz’s testpack, the integration is done over an interval [a,b],
with a = (0, 0, . . . , 0)T and b = (α, α, . . . , α)T . Here, the integration is done
over the unit interval [0, 1]s, so that multiplying x by α is necessary to get
the same problem.

According to Schurer, this integrand is very smooth, such that adaptive
algorithms based on cubature performs better than Quasi-Monte-Carlo, even
for a dimension as high as s = 40. On [18], Pirsic used the Oscillatory function
in dimensions s = 4 to s = 16 with a number of experiments n = 221 ≈
106. The results show a good improvement of QMC over crude Monte-Carlo,
especially for low dimension, e.g. for s ≤ 10.

The contours of this function in the case s = 2 are presented in the figure
19.

3.17 PRPEAK

This function is part of the 6 functions designed by Genz and available in
the Testpack fortran 77 package [5]. This function has been ported to Matlab
by John Burkardt in [2] and in [1].

The PRPEAK function is designed by Genz in [6], [7], where it is named
”Product Peak”. It is used by Joe and Sloan in [10, 11] (1993), by Shürer in
[23] (2001), by Owen in [14] (2003).

This function is defined by

f(x) =
s∏
i=1

(
α−2
i + (xi − βi)2

)−1 − e, (84)
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Figure 19 – The function OSCILL.

where x ∈ [0, 1]s and e is defined by :

e =
s∏
i=1

((si − ti)αi) , (85)

si = arctan((1− βi)αi), (86)

ti = arctan(−βiαi). (87)

For this function, the expectation is known, but not the variance. This func-
tion is not completely normalized, in the sense that its integral is zero buts
its variance is not unity.

The vector α is scaled by the equations 81-82 with e = 2 and h = 600.
In [18], Pirsic used the Oscillatory function in dimensions s = 4 to s = 16

with a number of experiments n = 221 ≈ 106. The results show a good
improvement of QMC over crude Monte-Carlo, whatever the dimension.

In [14], Owen states that the hard cases for this function are only of
approximate dimension s/2.

The contours of this function in the case s = 2 are presented in the figure
20.
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Figure 20 – The function PRPEAK.

3.18 CORPEAK

The CORPEAK function is designed by Genz in [6], [7], where it is named
”Corner Peak”.

It is used by Shürer in [23] (2001), by Joe and Sloan in [10, 11] (1993).
This function is defined by

f(x) =

(
1 +

s∑
i=1

ti

)−n−1

− e, (88)

where x ∈ [0, 1]s and ti is defined by :

ti =

{
αixi, if βi < 0.5
αi − αixi, if not.

(89)

The computation of e is done based on an algorithm which is not straight-
forward (see the source code for details). For this function, the expectation
is known, but not the variance. This function is not completely normalized,
in the sense that its integral is zero buts its variance is not unity.

The vector α is scaled by the equations 81-82 with e = 2 and h = 600.
A little modification was done to the function with respect to the Testpack

library [5]. In Genz’s testpack, the integration is done over an interval [a,b],
with a = (0, 0, . . . , 0)T and b = (α, α, . . . , α)T . Here, the integration is done
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Figure 21 – The function CORPEAK.

over the unit interval [0, 1]s, so that multiplying x by α is necessary to get
the same problem.

The contours of this function in the case s = 2 are presented in the figure
21.

3.19 GAUSSIAN

The GAUSSIAN function is designed by Genz in [6], [7], where it is named
”Gaussian”. It is used by Owen in [14] (2003), by Shürer in [23] (2001), by
Joe and Sloan in [10, 11] (1993).

This function is defined by

f(x) = exp

(
−

s∑
i=1

α2
i (xi − βi)2

)
− e, (90)

where x ∈ [0, 1]s and e is defined by :

e =
s∏
i=1

√
π

αi
(ri − ti) , (91)

ri = φ
(

(1− βi)
√

2αi

)
, (92)

ti = φ
(
−βi
√

2αi

)
, (93)
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Figure 22 – The function GAUSSIAN.

where φ is the standard normal (Laplace-Gauss) cumulated distribution func-
tion, defined by

φ(x) =
1√
2π

∫ x

−∞
exp

(
−s

2

2

)
ds. (94)

For this function, the expectation is known, but not the variance. This func-
tion is not completely normalized, in the sense that its integral is zero buts
its variance is not unity.

Genz provides in Testpack [5] its own implementation of the function φ.
In Scilab, we use the cdfnor function.

In [14], Owen states that if the parameters αi are large enough, this
function is essentially full dimension s.

The contours of this function in the case s = 2 are presented in the figure
22.

3.20 C0

The C0 function is designed by Genz in [6], [7], where it is named ”C0
Function” (other authors uses the term ”Continuous”).

It is used by Petras in [17] (2003), by Owen in [14] (2003), by Shürer in
[23] (2001), by Joe and Sloan in [10, 11] (1993).
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Figure 23 – The function C0.

This function is defined by

f(x) = exp

(
−

s∑
i=1

αi|xi − αi|

)
− e, (95)

where x ∈ [0, 1]s and e is defined by :

e =
s∏
i=1

ti, (96)

ti = (2− exp(−αiβi)− exp(αiβi − αi)) /αi. (97)

For this function, the expectation is known, but not the variance. This func-
tion is not completely normalized, in the sense that its integral is zero buts
its variance is not unity.

In [14], Owen states that if the parameters αi are large enough, this
function is essentially full dimension s.

The contours of this function in the case s = 2 are presented in the figure
23.

3.21 DISCONT

The DISCONT function is designed by Genz in [6], [7], where it is named
”Discontinuous”. It is used by Petras in [17] (2003), by Owen in [14] (2003),
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Figure 24 – The function DISCONT.

by Shürer in [23] (2001), by Joe and Sloan in [10, 11] (1993).
This function is defined by

f(x) =

{
−e, if x1 > β1, and x2 > β2, . . . , and xs > βs,
exp (

∑s
i=1 αixi)− e, if not.

, (98)

where x ∈ [0, 1]s and e is defined by :

e =
s∏
i=1

exp(αiβi)− 1

αi
. (99)

For this function, the expectation is known, but not the variance. This func-
tion is not completely normalized, in the sense that its integral is zero buts
its variance is not unity.

Notice that the simpler condition ”x1 > β1 or x2 > β2” is used in [6].
In [14], considering the same function with the condition ”x1 > β1 or x2 >

β2”, Owen states that if the parameters αi are large enough, this function is
essentially full dimension s.

The contours of this function in the case s = 2 are presented in the figure
24.
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