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A wavelet transform on the negative half real axis is developed using an average-
interpolation scheme. This transform can be used to perform causal wavelet processing,
such as signal denoising, with a small delay. The delay required to obtain acceptable de-
noising levels is decreased by using a redundant transform instead of a non-redundant one.
Results from the experimental implementation of the proposed algorithm for the denoising
of a feedback signal for controlling a three-phase permanent-magnet synchronous brushless
DC motor that drives a reaction wheel system are presented.

I. Introduction

Wavelets have recently become very popular in signal processing. They allow compact representation
of a signal with a small number of wavelet coefficients. Given a sequence of data a0 = {a0[k]}k∈Z, the
wavelet transform generates for each scale j ≥ 1 a sequence of wavelet coefficients aj = {aj [k]}k∈Z and
dj = {dj [k]}k∈Z. The data aj contain the “salient” (low-resolution) features of the signal and dj are the
residual features of the signal at this scale. The coefficients aj and dj , dj+1, . . . are thus often referred to as
the coarse and fine decomposition of the signal at scale j.

The simplest and probably most common method for signal compression via wavelet decomposition is
thresholding. In thresholding one keeps only the coefficients dj which are larger than a prespecified tolerance.1

Thresholding applied on the coefficients of a wavelet transform is also known to be an efficient method for
denoising signals with sharp transients.2,3 Standard thresholding is typically performed using wavelets on
the whole real line. This often causes significant delays in the processing, because some of the filters involved
in the composition/decomposition phases of are not causal. When operating on on-line data (such as for
denoising signals within a feedback control loop) it is imperative to use wavelets on the negative half real
axis (the half axis representing past, known values of the signal). In this context, any delays arising from
the process of denoising will be detrimental to the performance or stability of the feedback loop. In order to
minimize any delays arising from standard wavelet processing herein we propose a wavelet transform method
that operates only on past data.

It should be mentioned at this point that although the word “wavelet” will be used throughout, the
basic point of view taken in this paper is that of FIR filter banks.4,5 More to the point, the various
signal decomposition and reconstruction schemes described herein were inspired by the average-interpolation
schemes of Donoho6 and Sweldens;7 see also Ref. 8. As noted in Ref. 7, this scheme can be modified to
process signals on the half-axis. We explicitly (albeit briefly) show how this can be done. More details on
the proposed algorithms can be found elsewhere.9
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II. The Average-Interpolation Scheme

A very simple–yet classic–scheme for building a discrete wavelet transform with discrete vanishing mo-
ments is to use average-interpolation. The starting point of average-interpolation is the interpretation of
the data samples as averages. Specifically, given a sequence aj , average-interpolation assigns to each data
sample aj [k] the dyadic interval [2j(k − 1), 2jk] of length 2j . The discrete wavelet transform using average-
interpolation then proceeds as usual and involves two steps: the decomposition phase, which yields the
transformed signal in wavelet space, and the reconstruction phase, which retrieves a signal from its trans-
form (that is, its wavelet coefficients). The decomposition and reconstruction of the signal can both be
obtained using a pair of FIR filters. If there is no data processing after the decomposition phase, then this
process results in perfect reconstruction: the original data sequence is recovered without error.

The whole process for a one-step decomposition/reconstruction is shown in Fig. 1. The filters h̄ and ḡ
are the low- and high-pass (decomposition) filters and h̃ and g̃ are the low- and high-pass (reconstruction)
filters. The details of the classical construction of these filters can be found in Refs. 6 and 7. Nonetheless,
here we will use an alternative derivation of the transform starting from the average-interpolation framework,
together with the usual FIR filter presentation, as illustrated in Fig. 1. We follow this approach because the
average-interpolation presentation can be easily used to derive a similar scheme for processing signals over
the half-axis which is the main objective of this paper. In addition, we later use this approach to obtain a
redundant transform on the half-axis.
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Figure 1. Perfect reconstruction filter banks, used for the implementation of the wavelet transform
on the real axis.

A. Decomposition

Similarly to standard wavelet processing, the data is first filtered by a low-pass filter h̄ and a high-pass filter
ḡ. This separates the signal to low-frequency and high-frequency components. The construction of these
filters is given next.

1. Low-Pass Filter

Up to the normalizing scalar
√

2, the proposed low-pass filter is the Haar decomposition filter, and computes
the average of two successive signal values as follows:

aj+1[n] =
aj [2n] + aj [2n − 1]√

2
. (1)

Therefore, the low-pass decomposition filter is given by

h̄ =
{

1√
2
,

1√
2

}
(2)

which has support [0, 1].
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2. High-Pass Filter

We wish the high-pass decomposition filter ḡ to have vanishing discrete moments. This means that there
exists an integer Np such that the output through the filter of all discrete polynomial sequences of the form
p[n] =

∑Np

k=0 pknk of degree less than or equal to Np is zero, that is,∑
n∈Z

ḡ[� − n] p[n] = 0. (3)

This vanishing moments property ensures that, at every scale j, the low-resolution part of the signal after
the decomposition will retain the same number of discrete vanishing moments as the original sequence of
data points. The vanishing moments property (3) of the high-pass decomposition filter also ensures that the
corresponding low-pass reconstruction filter (h̃ in Fig. 1) will efficiently approximate sufficiently “regular”
signals with an order determined by Np. In the following we will assume that Np = 2, that is, we impose
that the proposed filters have three vanishing moments.

Recall first that, given a regularly spaced grid on R with step 2j , say xj,k = 2jk (k ∈ Z), a discrete signal
sj is a polynomial if and only if it is a sequence of the averages of a continuous polynomial p(x) over the
intervals determined by the grid, that is, if and only if

sj [k] = 2−j

∫ 2jk

2j(k−1)

p(x) dx. (4)

The proposed high-pass filter then considers the averages from (1) and identifies the unique polynomial
p(x) of degree less or equal to Np = 2 whose averages of the coarser grid with step 2j+1 coincides with
Np + 1 = 3 successive values of aj+1[n]/

√
2. It then computes the averages of p(x) on the fine grid with step

2j , subtracts the actual values of the signal from these fine averages, and normalizes the result by a factor√
2. The output of the high-pass filter is therefore the difference

dj+1[k] =
√

2
(
aj [2k] − pj+1[k]

)
. (5)

Up to
√

2, this is the difference between the actual value of the signal and its prediction from the average-
interpolating polynomial p(x). This sequence of operations is illustrated in Fig. 2. Observe that the difference
between the value p̃j+1[−1] on the left subinterval and the original value aj [−3] is the opposite of the similar
difference computed on the right interval, i.e., aj [−3] − p̃j+1[−1] = pj+1[−1] − aj [−2]. In general,

aj [2k − 1] − p̃j+1[k] = −dj+1[k]/
√

2. (6)

Hence, only one of these differences needs to be remembered during the algorithm.
As for the low-pass case, we can construct a filter to be used before the subsampling to perform these

operations. This filter can be computed from (5) after writing down explicitly the expression for pj+1[n].
The high-pass decomposition filter is given by

ḡ =

{
−
√

2
16

,−
√

2
16

,

√
2

2
,−

√
2

2
,

√
2

16
,

√
2

16

}
, (7)

which has support [−2, 3]. It can be shown9 that the detail coefficients are all zero when the input signal is
a discrete polynomial of degree two. Therefore, this filter has three vanishing moments.

B. Reconstruction

After processing, the signal is reconstructed from the coarse approximation and the detail coefficients. The
reconstruction stage is based of the same ideas as those presented in the section devoted to the high-
pass decomposition filter. The reconstruction basically involves reversing the decomposition steps. During
reconstruction we use the coarse scale data aj+1 and detail dj+1 to obtain the data aj at the finer scale.
Specifically, first a polynomial p(x) of degree less than or equal to two is identified as in the construction of
the high-pass decomposition filter, using the outputs of the decomposition low-pass filter aj+1. The part of
the signal aj which has even indices is then recovered from the prediction and details using (5), whereas the
part with odd indices uses equation (6). If after the decomposition the signal has not been modified, the
reconstruction restores the signal exactly.
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Figure 2. Average-interpolation using a polynomial of degree two.

1. Low-pass filter

The low-pass filter is constructed by writing down explicitly the two predictions pj+1[n] and p̃j+1[n] as the
outputs of the low-pass reconstruction filter after a zero insertion on aj+1. Using the expressions of the
predictions pj+1[n] and p̃j+1[n] of the interpolating polynomial on the sub-intervals [2j(2k − 1), 2j+1k] and
[2j+1(k − 1), 2j(2k − 1)] yields the following value for the low-pass reconstruction filter h̃

h̃ =
1√
2

{
−1

8
,
1
8
, 1, 1,

1
8
,−1

8

}
,

which has support [−3, 2].

2. High-pass filter

Up to
√

2, the high-pass filter outputs the detail for the even indices and the opposite of the detail for the
odd indices. This leads to the Haar reconstruction filter,4

g̃ =
{
− 1√

2
,

1√
2

}
, (8)

with support [−1, 0]. We can finally reconstruct the signal at the fine scale as follows:

aj [2n] =
1∑

p=−1

h̃[2p] aj+1[n − p]

+
0∑

p=0

g̃[2p] dj+1[n − p] (9a)

aj [2n − 1] =
1∑

p=−1

h̃[2p − 1] aj+1[n − p]

+
0∑

p=0

g̃[2p − 1] dj+1[n − p] (9b)
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III. Adaptation to the Half-Axis

The discussion thus far has assumed an infinite amount of data available in both directions. Therefore,
at each sample point there are enough samples to its left and to its right in order to construct the average-
interpolating polynomial. This may not always be possible. For instance, for on-line applications we have
only access to past data. In this section we modify the previous scheme in order to take into account the
case when only past values are available for processing. We achieve this by designing a wavelet-like scheme
that only processes the data aj [n] with −∞ ≤ n ≤ N . Without loss of generality, we may assume that
N = 0. The idea here is to decenter the prediction scheme close to the right boundary so that it uses only
the available values of the signal. Away from the boundary, the algorithm remains the same as before.

A. Decomposition

The low-pass averaging filter does not require any modification since it uses only past values; see equation (1).
For n < 0 the output of the high-pass filter dj+1[n] uses only data with negative or zero input indices. The
high-pass filter needs to be modified for the prediction at output index n = 0, since input data is not available
at the indices n = 1, 2. In order to do so, the interpolating-polynomial is identified based on the three most
recent averages, i.e., aj+1[−2], aj+1[−1] and aj+1[0] and the prediction is now computed at the index n = 0
instead of index n = −1. This is illustrated in Fig. 3. One can compute the prediction pj+1[0] explicitly as

-6 -5 -4 -3 -2 -1 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

a  [-5]j

a     [-2]j+1 2

a  [-4]j

a  [-3]j

a  [-2]j

a     [-1]j+1 2 a  [-1]j

a  [0]j

a     [0]j+1 2
p     [0]j+1

p     [0]j+1
~

Figure 3. The average interpolation scheme is decentered to produce a prediction at the boundary.
Here we assume that j = 0.

follows

pj+1[0] =
√

2
(

1
16

aj+1[−2] − 1
4
aj+1[−1] +

11
16

aj+1[0]
)

. (10)

It follows that the high-pass output dj+1[0] at the boundary is given by

dj+1[0] =
√

2
(

5
16

aj [0] − 11
16

aj [−1] +
1
4
aj [−2] +

1
4
aj [−3] − 1

16
aj [−4] − 1

16
aj [−5]

)
. (11)

The prediction has now been decentered. Nonetheless, it is still based on average interpolation. In
particular, if the input data represent a sequence of averages of a polynomial q(x) on the intervals [k2j , (k +
1)2j ], k = −6, . . . ,−1, the identified polynomial p(x) will be equal to q(x) and the detail dj+1[0] will be zero.
Overall, the high-pass filter still has three discrete vanishing moments. One can show that the details are
also oscillating at n = 0, that is,

1√
2
dj+1[0] = aj [0] − pj+1[0] = p̃j+1[0] − aj [−1] (12)
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where p̃j+1[0] is the prediction on the interval [−2j+1,−2j ] given by

p̃j+1[0] =
√

2
(
− 1

16
aj+1[−2] +

1
4
aj+1[−1] +

5
16

aj+1[0]
)

. (13)

B. Reconstruction

Except for the indices n = −1 and n = 0, the reconstruction is performed exactly as before. The value
aj [0] at the edge is recovered using equations (11) and (10), while aj [−1] is recovered from the formula
aj [−1] = p̃j+1[0] − dj+1[0]/

√
2, where p̃j+1[0] from (13).

Numerically, the reconstruction is performed at the edge by using the following equations

aj [0] =
1√
2

(1
8
aj+1[−2] − 1

2
aj+1[−1] +

11
8

aj+1[0] + dj+1[0]
)
,

aj [−1] =
1√
2

( − 1
8
aj+1[−2] +

1
2
aj+1[−1] +

5
8
aj+1[0] − dj+1[0]

)
.

IV. Redundancy on the Half-Axis

The transforms presented in the previous sections are nonredundant, that is, any pair of sequences
aj+1 and dj+1 can be interpreted as the (unique) decomposition of a signal aj . Redundant transforms which
provide more data per time step than their nonredundant counterpart can also be designed. These redundant
transforms provide reconstructions which are more robust to errors and noise. The price to pay is that not all
pairs of sequences aj+1 and dj+1 can be interpreted as a decomposition of the signal aj . One must therefore
be careful how to choose the pairs aj+1 and dj+1 to recover the original signal.

In this section we develop a redundant transform on the negative half-axis. This will be achieved in two
steps: first, we will extend the transform of the previous section into a redundant transform at the original
(fine) scale j = 0; second, by interpreting the zero insertion on filters (as opposed to signals) as filtering of
multiplexed signals, we extend the method to higher scales.

A. Redundancy at the first scale

In order to obtain a redundant transform on the half-axis, we first keep the values with even indices of
the previous transform (without subsampling). Note that keeping the odd indices also provides perfect
reconstruction, provided one also knows the last decomposition output a1[0].

1. Decomposition

The filters are first applied to the signal, and the output is now subsampled at the odd indices, the last
output index being n = −1 for the low-pass filter, and n = −3 for the high-pass filter. That is,

a1[n] =
a0[n] + a0[n − 1]√

2
, n = . . . ,−3,−1 (14)

and (n = . . . ,−5,−3)

d1[n] =
√

2
( 1
16

a0[n − 3] +
1
16

a0[n − 2] − 1
2
a0[n − 1] +

1
2
a0[n] − 1

16
a0[n + 1] − 1

16
a0[n + 2]

)
. (15)

For the index n = −1, the detail d1[−1] is computed by identifying the unique polynomial p(x) of degree less
than or equal to two, such that a1[−3]/

√
2, a1[−1]/

√
2 and a1[0]/

√
2 are the averages of p(x) on the intervals

[−5,−3], [−3,−1] and [−2, 0] respectively. The main difference with the boundary scheme of the previous
section is that the average interpolating polynomial is not selected from disjoint intervals. This prediction
scheme is illustrated in Fig. 4. The detail is now defined by

d1[−1] =
√

2(a0[−1] − p1[−1]) (16)
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Figure 4. Computation of the prediction for the index n = −1. The polynomial p(x) is fitted on overlapping
intervals, using the values a1[−3], a1[−1] and a1[0].

The detail d1[−1] can be computed by writing down the value of the prediction p1[−1]

p1[−1] =
√

2
(
− 1

24
a1[−3] +

3
8
a1[−1] +

1
6
a1[0]

)
(17)

which yields, via (14),

d1[−1] =
√

2
( 1
24

a0[−4] +
1
24

a0[−3] − 3
8
a0[−2] +

11
24

a0[−1] − 1
6
a0[0]

)
. (18)

We have just defined the outputs of the decomposition for all odd indices n = . . . ,−5,−3,−1. Along
with the output of the decomposition at the even indices a1[2k], d1[2k] obtained from the original transform,
we have designed a redundant transform with values for all negative or zero integer indices.

2. Perfect reconstruction from the redundant transform

For shift-invariant transforms on the real line, the signal is reconstructed by computing the average of the
two possible reconstructions, e.g., from the even and odd indexed subsamples of the transform. For indices
smaller than n = −2, the reconstruction is performed as for the regular shift-invariant redundant transforms
on the whole real line. For the indices n = −2, n = −1 and n = 0, the boundary filters are computed by
averaging the reconstruction formulas from the even and odd subsamples.

B. Redundancy at coarser scales

The idea is to work with time-varying filters. This point of view allows us to define the boundary filters at
all scales j > 0. First, when using wavelets on the whole real axis, the redundant transforms at the coarse
scales are obtained via the standard method, that is, by inserting zeros into the original filters. Let us recall
that, at the scale j, the zero insertion operation on the filter h results in the filter defined by

hj [n] =

⎧⎨
⎩h[p], if n = 2jp,

hj [n] = 0, otherwise.
(19)

At the decomposition from scale j ≥ 1 to scale j + 1, we consider a signal x to be a combination of 2j

signals {x�}0≤�<2j , with x�[n] = x[2jn − �]. The redundant decomposition from scale j to scale j + 1 is
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obtained by convolving the input with the zero insertion of the filters at the scale j. Then the convolution
y of the signal x with the filter hj can be split into the series of 2j convolutions

y�[n] = y[2jn − �]

=
∑
k∈Z

hj [k]x[2jn − � − k]

=
∑
p∈Z

hj [2jp]x[2jn − � − 2jp]

=
∑
p∈Z

h[p]x�[n − p]

=
∑
p∈Z

h[n − p]x�[p]

= h ∗ x�[n], 0 ≤ � < 2j

Hence the convolution with zero inserted filters can be viewed as the merging of 2j parallel convolutions y�

of the filter h with the 2j signals x�. This can be extended to time varying filters hn[p] by setting

y�[n] =
∑
p∈Z

hn[p]x�[p]. (20)

In practice, zero insertion is used away from the boundary. When close to the boundary, the multiplexed
formula (20) is used on the explicit expressions of the boundary filters. A similar approach is used during
reconstruction. Finally, the reconstructed signal is obtained by adding the outputs of the low-pass and
high-pass filters and dividing the sum by two at each scale.

V. Experimental Results

The greatest benefit of an on-line denoising algorithm, as the one proposed in this paper, is the potential
of its use for denoising signals in a feedback loop. In this section we report experimental results from the
implementation of the previous algorithm to denoise the rotational velocity signal of a three-phase permanent
magnet synchronous DC motor, which is used to drive a reaction wheel. Specifically, the DC motor used in
the experiments is part of a variable-speed control moment gyro (VSCMG) actuator module∗, which provides
attitude control for the Integrated Attitude Control Simulator (IACS) located at the School of Aerospace
Engineering at the Georgia Institute of Technology. IACS is an experimental facility for simulating three-
axis spacecraft attitude maneuvers. In reaction wheel mode four wheels are available for complete control
about all three axes (with one redundant wheel). Figure 5 shows the VSCMG assembly with the wheel spin
motor and Fig. 6 shows the complete spacecraft simulator. Details for the design, construction and other
specifications of this spacecraft simulator can be found in Ref. 10.

In reaction wheel mode control is provided by accelerating or decelerating each of the four wheels. For
accurate attitude control it is necessary for the motors to be able to promptly deliver the commanded
angular accelerations. Figures 7 and 8 show the open-loop motor responses to a square and a sinusoidal
angular acceleration command, respectively. These open-loop responses are not satisfactory owing to friction,
nonlinear effects in the motor dynamics, etc. Such discrepancies will have deleterious effects in achieving
tight pointing attitude requirements with the IACS. It was therefore deemed necessary to implement a PI
controller to achieve tight angular velocity control. The PI controller uses the angular velocity error of the
wheel as an input in order to provide tight closed-loop torque (equivalently, angular acceleration) control.
Before used by the PI controller, any measurement noise in the angular velocity should be removed. The
wavelet algorithm developed in the previous sections was used to perform the task of on-line denoising.

A C code of the proposed algorithm was written and implemented as an S-function in SIMULINK�. The
Real-Time Workshop� toolbox was used to compile and generate the code from the complete SIMULINK�

diagram and the xPCTarget� (with Embedded Option) toolbox was used to run the executable module in
real-time.

∗Each VSCMG actuator has two motors. One motor controls the wheel speed (reaction wheel mode) and the other controls
the gimbal rate (CMG mode).
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Figure 5. Main components of the VSCMG assembly. In reaction wheel mode only the wheel DC motor is
active while the gimbal remains fixed.

X

Y

Z

X

Y

Z

Figure 6. The body-axes definition for the IACS. The x-axis is designated as the roll axis, the y-axis is
designated as the pitch axis and the z-axis is designated as the yaw axis.

The results from two separate experiments are shown below. During the first experiment, measurements
of the angular velocity signal where processed off-line using the wavelet denoising algorithm. The purpose
of those experiments was to estimate appropriate values for the number of scales, threshold and delay of the
wavelet filter.

The angular velocity measurements were initially obtained from a Hall sensor embedded in the DC
motor. Figure 9 shows typical angular velocity data from the Hall sensor. The results of denoising with a
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Figure 7. Open-loop response of angular acceleration and velocity to square-wave angular acceleration com-
mands.
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Figure 8. Open-loop response of angular acceleration and velocity to sinusoidal angular acceleration commands.
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hard threshold of 50, delay 15 samples and for 4 and 6 scales are shown in Fig. 10.
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Figure 9. Angular velocity measurements from Hall sensor.
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Figure 10. Wavelet denoising of angular velocity signal from Hall sensor using a threshold of 50 and a delay
of 15 samples.

The results from closed-loop control are shown in Figs. 11 and 12. A PI control with a Smith predictor,
to handle the delay, was used in these experiments. The performance is much better than the open-loop
response, however, it is still not entirely satisfactory. The main reason for the unsatisfactory closed-
loop performance shown in Figs. 11 and 11 is the very small update rate (about 3 Hz) of the Hall sensor
measurements. This refresh rate induces severe limitations on the closed-loop bandwidth. Therefore, for
better closed-loop control a set of angular encoders (US Digital E4) were installed on each wheel. Angular
velocity was obtained from numerical differentiation of angular position data of the wheel spin axis provided
via the encoders at a sampling rate of 100 Hz. Although having a much better performance than the Hall
sensors, numerical differentiation still introduced some noise in the angular velocity signal; the purpose of
denoising was therefore to remove the noise from this signal before it is used by the PI controller.

The results of this experiment for a sawtooth angular velocity input are shown in Fig. 13. The actual and
filtered signal are very close to each other at this scale. Zooming in around t = 15 sec allows a more detailed
examination of the results. Figure 14(a) shows the results of denoising over a 3 sec interval (300 samples).
The dotted line shows the angular velocity data and the solid line is the result after wavelet denoising using
4 scales, a threshold of 20 and a delay of 5 samples. The measured data has been smoothed and most of
the noise has been removed. A small delay is evident because of the processing and a small amount of noise
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Figure 11. Closed-loop response of angular acceleration and velocity to square-wave angular acceleration
command; on-line denoising of angular velocity signal using a wavelet filter with 5 scales, a threshold of 50
and a delay of 15 samples.
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Figure 12. Closed-loop response of angular acceleration and velocity to sinusoidal angular acceleration com-
mand; on-line denoising of angular velocity signal using a wavelet filter with 5 scales, a threshold of 50 and a
delay of 15 samples.
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has remained in the signal. This noise can be further removed at the expense of more delay. For instance,
Fig. 14(b) shows the results of denoising using a delay of 15 samples or 0.15 sec. It is reminded that in
contrast to other signal processing applications, delays due to signal processing in a feedback loop may lead
to instability and should be avoided. A compromise must be reached between the level of acceptable delay
and the requirement for noise removal.
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Figure 13. Wavelet denoising of angular velocity signal using 4 scales and a threshold of 20.
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Figure 14. Wavelet denoising of angular velocity signal using 4 scales and a threshold of 20 (detailed view).

For the second experiment, the denoised angular velocity signal was used as the input to a PI controller.
The purpose of the PI controller is to achieve good tracking to torque (i.e., angular acceleration) commands.
This was achieved by a tight loop on the measured angular velocity. The block diagram schematic of the
PI/Motor interconnection is shown in Fig. 15. The results from two separate angular acceleration commands
are presented below. First, the results from a square-wave angular acceleration command of magnitude
10 rad/ sec2 are shown in Fig. 16. In Fig. 16(a) the command is shown by a dashed line and the response
is shown by a solid line. The corresponding response of the angular velocity is shown in Fig. 16(b). The
results for a sinusoidal torque command of amplitude 15 rad/ sec2 and frequency of 0.03 Hz are shown in
Fig. 17. As before, in Fig. 17 the dotted line is the reference angular velocity, whereas the solid line is the
actual response of the DC motor. Both Figs. 16 and 17 show very good tracking of the commanded signals
(compare with the open-loop responses in Figs. 7 and 8.)
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Figure 16. Closed-loop response of angular acceleration and velocity to square-wave angular acceleration
commands; on-line denoising of angular velocity signal using a wavelet filter with 4 scales, a threshold of 30
and a delay of 10 samples.

VI. Conclusion

In this paper we have proposed a method for wavelet signal processing on the half-axis. The starting
point for our developments is the method of average-interpolating polynomials of Donoho and the lifting
scheme of Sweldens. Using this method, boundary effects arising from working in a semi-infinite interval
can be handled is a straightforward manner. The motivation behind denoising on the half-axis stems from
the need for on-line denoising for certain applications (e.g., within a feedback loop) where future values of
the data are not available. We provide experimental evidence for the potential of the proposed scheme for
on-line denoising by applying it to remove the noise from a feedback signal used for angular velocity and
angular acceleration control of a brushless DC motor of a reaction wheel assembly.
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