Jacobi's elliptic function
y = %sn(x, m)
a point inside the fundamental rectangle defined by the elliptic integral; x
is a vector of complex numbers
parameter of the elliptic integral (0<m<1
)
result
Jacobi 's sn elliptic function with parameter m
: the inverse
of the elliptic integral for the parameter m
.
The amplitude am is computed in fortran and the addition formulas for elliptic functions are applied
m = 0.36; K = %k(m); P = 4*K; // Real period real_val = 0 : P/50 : P; plot(real_val, real(%sn(real_val,m))) | ![]() | ![]() |
clf m = 0.36; KK = %k(1-m); Ip = 2*KK; ima_val1 = 0 : Ip/50 : KK-0.001; ima_val2 = (KK+0.05) : Ip/25 : Ip+KK; z1 = %sn(%i*ima_val1, m); z2 = %sn(%i*ima_val2, m); plot2d([ima_val1', ima_val2'], [imag(z1)', imag(z2)']); xgrid(3) | ![]() | ![]() |
Version | Description |
6.1.0 | %sn() is declared obsolete.
ellipj() must be used instead. |
6.1.1 | %sn() will be removed from the next Scilab version |