<< scidemo_normaldist Demonstration Toolbox scidemo_optimrosenbrock >>

Demonstration Toolbox >> Demonstration Toolbox > scidemo_normpdf

scidemo_normpdf

Returns the Normal (Laplace-Gauss) probability distribution function.

Calling Sequence

p = normpdf ( x , mu , sigma )

Parameters

x :

n-by-m matrix of doubles, the outcome

mu :

n-by-m matrix of doubles, the mean (default mu=0)

sigma :

n-by-m matrix of doubles, the standard deviation (default sigma=1)

p :

a n-by-m matrix of doubles, the probability

Description

Computes the probability distribution function of the Normal (Laplace-Gauss) function.

Any scalar input argument is expanded to a matrix of doubles of the same size as the other input arguments.

The function definition is:

Examples

computed = scidemo_normpdf ( [-1 1] , zeros(1,2) , ones(1,2) )
expected = [ 0.241970724519143   0.241970724519143 ];

// Plot the function
scf();
mu = [0 0 0 -2];
sigma2 = [0.2 1.0 5.0 0.5];
cols = [1 2 3 4];
nf = size(cols,"*");
lgd = [];
nx = 1000;
for k = 1 : nf
x = linspace(-5,5,nx);
y = scidemo_normpdf ( x , mu(k)*ones(1,nx) , sqrt(sigma2(k))*ones(1,nx) );
plot(x,y)
str = msprintf("mu=%s, sigma^2=%s",string(mu(k)),string(sigma2(k)));
lgd($+1) = str;
end
h = gcf();
for k = 1 : nf
h.children.children.children(nf - k + 1).foreground = cols(k);
end
legend(lgd);
xtitle("Normal Probability Distribution Function","X","Probability")

Authors

<< scidemo_normaldist Demonstration Toolbox scidemo_optimrosenbrock >>