<< scidoe_fracfact Designs scidoe_lhsdesign >>

Scidoe >> Designs > scidoe_fullfact

scidoe_fullfact

Full factorial design

Calling Sequence

B = scidoe_fullfact(levels)

Parameters

levels :

a n-by-1 or 1-by-n matrix of doubles, integer value, positive, the number of levels for each factor j, for j=1,2,...,n

B :

a m-by-n matrix of doubles, the experiments, where m=prod(levels). For j=1,2,...,n and i=1,2,...,m, and the entry B(i,j) is the level of the experiment #i for the variable #j. For a given variable j=1,2,...,n, the entries B(:,j) are in the set {1,2,...,level(j)}.

Description

Computes a full factorial design with prescribed number of levels for each factor. In other words, for each factor j, the number of levels is levels(j), for j=1,2,...,n.

Examples

// Create a full factorial design with :
// 2 levels for the first factor
// 3 levels for the second factor
levels=[2 3]
B=scidoe_fullfact(levels)
// Scale this design into [0,1]
m=size(B,"r")
C = (B-1)./(levels(ones(m,1),:)-1)
// Scale this design into [-1,1]
D=2*C-1
// Plot this design
scf();
scidoe_plotcube(2);
plot(D(:,1),D(:,2),"bo");
xtitle("Full Factorial Design","X1","X2")

// Create a full factorial design with :
// 2 levels for the first factor
// 3 levels for the second factor
// 4 levels for the third factor
levels = [2 3 4]
B=scidoe_fullfact(levels)
// Scale this design into [0,1]
m=size(B,"r")
C = (B-1)./(levels(ones(m,1),:)-1)
// Scale this design into [-1,1]
D=2*C-1
// Plot this design
h = scf();
param3d(D(:,1),D(:,2),D(:,3))
h.children.children.mark_mode="on";
h.children.children.line_mode="off";
h.children.children.mark_size=1;
scidoe_plotcube(3)
xtitle("Full Factorial Design","X1","X2","X3")

// Print the number of experiments
// Use 3 levels for each parameter
for n = 1 : 10
levels = 3*ones(n,1);
B=scidoe_fullfact(levels);
m = size(B,"r");
mprintf("n=%d, Num. Experiments=%d\n",..
n,m)
end

Authors


Report an issue
<< scidoe_fracfact Designs scidoe_lhsdesign >>