
DSP Library
..

User Manual (draft)

DSP Library User Guide
Table of Contents

Section 1
Introduction ... 1-1

1.1 mAgic DSP Processor...1-2

1.1.1 Core processor ...1-2

1.1.2 Internal Memories, External Memories and DMA...............................1-4

1.1.3 ARM Interface...1-5

1.1.4 VLIW Program Word ..1-5

1.1.5 Instruction Set...1-6

Section 2
List of the DSP Library Function ... 2-1

2.1 General Restrictions..2-1

.. 2-2
2.2 Alphabetical DSP Function List...2-2

Section 3
DSP Functions Description... 3-1

3.1 cmulcxcy ...3-1
3.2 cmulcxy ...3-2
3.3 cmulxy ...3-3
3.4 conv ..3-4
3.5 conv2d ..3-5
3.6 cvexp...3-6
3.7 cvma ...3-7
3.8 cvrdiv...3-8
3.9 FD_RealFIR_Pair..3-9

3.9.1 C initialization for realFIR function..3-10

3.10 fft1024 ...3-11
3.11 fft128 ...3-12
3.12 fft256 ...3-13
3.13 fft288 ...3-14
3.14 fft512 ...3-15
3.15 fft64 ...3-16
3.16 FIR ..3-17
3.17 FirNlmsll ..3-18
3.18 FirNlmsv..3-20
3.19 getvq ...3-22
3.20 getvq_f2i ...3-22
3.21 getvq_i2f ...3-23
i

DRAFT–DPS–04/05

Table of Contents

DSP Library User Guide
3.22 getvqelem ...3-24
3.23 getvqfree ...3-24
3.24 hilbert ..3-25

3.24.1 C initialization for hilbert function..3-26

3.25 ifft1024 ..3-27
3.26 ifft128 ..3-28
3.27 ifft256 ..3-29
3.28 ifft288 ..3-30
3.29 ifft512 ..3-31
3.30 ifft64 ..3-32
3.31 IIR1 ...3-33
3.32 IIR2 ...3-36
3.33 Init_IIR1_struct ..3-38
3.34 Init_IIR2_struct ..3-39
3.35 initFIR..3-40
3.36 initvq..3-40
3.37 LastStage..3-41
3.38 levinson...3-42
3.39 lpc2cep..3-44
3.40 madd ...3-44
3.41 mchol ..3-45
3.42 mdeterm..3-46
3.43 mdeterm2..3-47
3.44 mdeterm3..3-47
3.45 minvert ..3-48
3.46 mmul ...3-49
3.47 mtrace ...3-50
3.48 mvmul ...3-50
3.49 mvmul3x3..3-51
3.50 mvmul4x4..3-52
3.51 mvmul8x8..3-53
3.52 pack40to16ll ..3-54
3.53 pack40to16lr ...3-55
3.54 pack40to16rl ...3-56
3.55 pack40to16rr ...3-57
3.56 putvq ...3-58
3.57 putvq_f2i ...3-59
3.58 putvq_i2f ...3-59
3.59 v2magnlrl ..3-60
3.60 v2magnv ...3-61
3.61 vacoshll ...3-62
3.62 vacoshlr...3-63
3.63 vacoshrl...3-64
3.64 vacoshrr ..3-65
3.65 vacoshv...3-66
3.66 vacosll ...3-67
ii

DRAFT–DPS–04/05

Table of Contents

DSP Library User Guide
3.67 vacoslr...3-68
3.68 vacosrl...3-69
3.69 vacosrr ..3-70
3.70 vacosv...3-71
3.71 vaddintv...3-72
3.72 vaddlll ..3-73
3.73 vaddllr ...3-74
3.74 vaddlrl ...3-75
3.75 vaddlrr ...3-76
3.76 vaddrrl ...3-77
3.77 vaddrrr...3-78
3.78 vaddv ..3-79
3.79 varll ...3-79
3.80 vasinhll ..3-80
3.81 vasinhlr..3-81
3.82 vasinhrl..3-82
3.83 vasinhrr ...3-83
3.84 vasinhv..3-84
3.85 vasinll ..3-85
3.86 vasinlr..3-86
3.87 vasinrl..3-87
3.88 vasinrr ...3-88
3.89 vasinv ..3-89
3.90 vatan2 ...3-90
3.91 vatanhll..3-91
3.92 vatanhlr ...3-92
3.93 vatanhrl ...3-93
3.94 vatanhrr ...3-94
3.95 vatanhv ...3-95
3.96 vbyvmulv ...3-96
3.97 vclipll ...3-97
3.98 vcliprr ..3-98
3.99 vclipv ...3-99
3.100 vcoshll ...3-100
3.101 vcoshlr...3-101
3.102 vcoshrl...3-102
3.103 vcoshrr ..3-103
3.104 vcoshv...3-104
3.105 vcosll ...3-105
3.106 vcoslr...3-106
3.107 vcosrl...3-107
3.108 vcosrr ..3-108
3.109 vcosv...3-109
3.110 vdist...3-110
3.111 vdiv0rll ...3-111
3.112 vdiv40lll ...3-112
3.113 vdiv40lrl ...3-113
iii

DRAFT–DPS–04/05

Table of Contents

DSP Library User Guide
3.114 vdiv40rll ...3-114
3.115 vdiv40rrl ..3-115
3.116 vdivlll ...3-116
3.117 vdivlrl ...3-117
3.118 vdivrll ...3-118
3.119 vdivrrl ..3-119
3.120 vdivv ..3-120
3.121 vexp10ll ...3-121
3.122 vexp10lr ..3-122
3.123 vexp10rl ..3-123
3.124 vexp10rr ..3-124
3.125 vexp10v...3-125
3.126 vexpll ...3-126
3.127 vexplr ..3-127
3.128 vexprl ..3-128
3.129 vexprr ..3-129
3.130 vexpv...3-130
3.131 vfillll ...3-131
3.132 vfilllr ...3-132
3.133 vfillrl ...3-132
3.134 vfillrr ..3-133
3.135 vfillv ...3-134
3.136 vfix1ll ...3-135
3.137 vfix1lr...3-136
3.138 vfix1rl...3-137
3.139 vfix1rr ..3-138
3.140 vfix1v...3-139
3.141 vfix2ll ...3-140
3.142 vfix2lr...3-141
3.143 vfix2rl...3-142
3.144 vfix2rr ..3-143
3.145 vfix2v...3-144
3.146 vfix3ll ...3-145
3.147 vfix3lr...3-146
3.148 vfix3rl...3-147
3.149 vfix3rr ..3-148
3.150 vfix3v...3-149
3.151 vfloat1ll ..3-151
3.152 vfloat1lr ...3-152
3.153 vfloat1rl ...3-153
3.154 vfloat1rr ...3-154
3.155 vfloat1v..3-155
3.156 vfloat2ll ..3-156
3.157 vfloat2lr ...3-157
3.158 vfloat2rl ...3-158
3.159 vfloat2rr ...3-159
3.160 vfloat2v..3-160
iv

DRAFT–DPS–04/05

Table of Contents

DSP Library User Guide
3.161 vlog10ll ..3-161
3.162 vlog10lr ...3-162
3.163 vlog10rl ...3-163
3.164 vlog10rr ...3-164
3.165 vlog10v..3-165
3.166 vlogll ..3-166
3.167 vloglr ...3-167
3.168 vlogrl ...3-168
3.169 vlogrr ...3-169
3.170 vlogv..3-170
3.171 vmagnlrl ..3-171
3.172 vmagnv ...3-172
3.173 vmaxv..3-173
3.174 vmax1v..3-173
3.175 vmax2v..3-174
3.176 vmmul ...3-175
3.177 vmove2cx..3-176
3.178 vmove2cxint ..3-177
3.179 vmove2v..3-178
3.180 vmove2vint ..3-179
3.181 vmove2x..3-180
3.182 vmove2xint ..3-181
3.183 vmovell ..3-182
3.184 vmovelr ...3-182
3.185 vmoverl ...3-183
3.186 vmoverr ...3-184
3.187 vmovev..3-185
3.188 vmvell ..3-186
3.189 vmvelr ...3-187
3.190 vmverl ...3-187
3.191 vmverr ...3-188
3.192 vmvev..3-189
3.193 vq2vq ..3-190
3.194 vrandl ..3-191
3.195 vrandr ..3-192
3.196 vrandv ...3-193
3.197 vrmvesqll ...3-195
3.198 vrmvesqlr...3-196
3.199 vrmvesqrl...3-197
3.200 vrmvesqrr ..3-198
3.201 vrmvesqv...3-199
3.202 vrotate32v ...3-199
3.203 vshandv...3-200
3.204 vshiftv ..3-201
3.205 vsinhll ..3-202
3.206 vsinhlr..3-203
3.207 vsinhrl..3-204
v

DRAFT–DPS–04/05

Table of Contents

DSP Library User Guide
3.208 vsinhrr ...3-205
3.209 vsinhv..3-206
3.210 vsinll ..3-207
3.211 vsinlr..3-208
3.212 vsinrl..3-209
3.213 vsinrr ...3-210
3.214 vsinv ..3-211
3.215 vsqrt0ll...3-212
3.216 vsqrt0lr ..3-213
3.217 vsqrt0rl ..3-214
3.218 vsqrt0rr ..3-215
3.219 vsqrt0v ..3-216
3.220 vsqrtll...3-217
3.221 vsqrtlr ..3-218
3.222 vsqrtrl ..3-219
3.223 vsqrtrr ..3-220
3.224 vsqrtv ..3-221
3.225 vsubll ...3-222
3.226 vsubrr ..3-223
3.227 vsubv...3-224
3.228 vsumv..3-225
3.229 vtanhll..3-226
3.230 vtanhlr ...3-227
3.231 vtanhrl ...3-228
3.232 vtanhrr ...3-229
3.233 vtanhv ...3-230
3.234 vtanll..3-231
3.235 vtanlr ...3-232
3.236 vtanrl ...3-233
3.237 vtanrr ...3-234
3.238 vtanv ...3-234
3.239 xcorrc ..3-236
3.240 xcorrlll..3-237
3.241 xcorrllr ...3-238
3.242 xcorrlrl ...3-239
3.243 xcorrlrr ...3-240
3.244 xcorrrrl ...3-241
3.245 xcorrrrr...3-242
3.246 xcorrv ..3-243

Section 4
Related Documents .. 4-1
vi

DRAFT–DPS–04/05

Table of Contents

DSP Library User Guide
 vii

DRAFT–DPS–04/05

Table of Contents

DSP Library User Guide
 viii

DRAFT–DPS–04/05

Section 1

Introduction

This document describes the functions contained in the basic DSP function library for
mAgic.

Notes: 1. All the number of cycles given in each function description includes the C-
calling protocol (register push-pop and stack management as appropriate).

2. Some further optimization can be obtained by appropriately modifying the
code at micro assembler level.

The functions are C-callable and respect the C-calling protocol (refer to [4] in Section
“Related Documents” on page 4-1).

An overview of mAgic DSP is given in the next paragraphs. For details refer to [2] in
Section “Related Documents” on page 4-1.
DSP Library User Manual (draft) 1-1

 DRAFT–DPS–04/05

Introduction
Figure 1-1. mAgic DSP Block Diagram

1.1 mAgic DSP
Processor

The mAgic DSP is the VLIW numeric processor of the D740. It operates on IEEE 754
40-bit extended precision floating-point and 32-bit integer numeric format. The main
components of the DSP subsystem are the core processor, the on-chip memories and
the interfaces to and from the ARM subsystem. The operators block, the register file, the
address generation unit and the program decoding and sequencing unit compose the
core processor. In the following paragraphs a short description of each block is given.
For detailed information refer to the specific section in document [2] in Section “Related
Documents” on page 3-1.

1.1.1 Core processor mAgic is a VLIW engine but, from an user point of view, it works like a RISC machine,
implementing triadic computing operations on data coming from the register file, and
data move operations between the local memories and the register file. The operators
are pipe-lined for maximum performance. The pipe-line depth depends on the operator
used. The operations scheduling and parallelism are automatically defined and man-
aged at compile time by the assembler-optimizer, allowing efficient code execution. To
give the best support to the RISC-like programming model, mAgic is equipped with a
complex 256-entry register file. It can be used as a complex register file (real and imagi-
nary part), or as dual register file for vectorial operations. When performing single
instructions the register file can be used as an ordinary 512 register file. Both the left
and right side of the register file are 8-ported, making a total of 16 I/O port available for
the data move to and from the operator block and the memory. The total data bandwidth
between the register file and the operator block is 70 bytes per clock cycle, avoiding bot-
tlenecks in the data flow between the two units.The operators' block, the register file, the
address generation unit and the program-sequencing unit compose the core proces-
sor.The hardware that performs arithmetical operations is contained in the Operators
Block. It works on 32-bit integers and IEEE 754 extended precision 40-bit floating-point
data.

Data Register
File

Buffer Data
Memory Left

2Kx40

mAgic – ARM I/F

PARM Memory
Left 512x40

PARM Memory
Right 512x40

Data Memory
Left 6Kx40

Data Memory
Right 6Kx40

Buffer Data
Memory Right

2Kx40

External Memory I/F

Multiple
Address

Generation
Unit

Address
Register File

Operator Block

VLIW Program Memory

Local Controller and VLIW Decoder

Instr ucti on
Decoder

Condition
Gener ation

Status
Regis ter

Program
Counter

DMA
Controller

Data Register
File

Buffer Data
Memory Left

2Kx40

mAgic – ARM I/F

PARM Memory
Left 512x40

PARM Memory
Right 512x40

Data Memory
Left 6Kx40

Data Memory
Right 6Kx40

Buffer Data
Memory Right

2Kx40

External Memory I/F

Multiple
Address

Generation
Unit

Address
Register File

Operator Block

VLIW Program Memory

Local Controller and VLIW Decoder

Instr ucti on
Decoder

Condition
Gener ation

Status
Regis ter

Program
Counter

DMA
Controller
1-2 DSP Library User Manual (draft)

DRAFT–DPS–04/05

Introduction
Figure 1-2. Register Files and Operators Block.

The Operator Block is composed of four integer/floating point multipliers: an adder, a
subtractor and two add-subtract integer/floating point units. It has two shift/logic units, a
Min/Max operator and two seed generators for efficient division and inverse square root
computation also. The operator block is arranged to support complex arithmetic (single
cycle complex multiply or multiply and add), fast FFT (single cycle butterfly computation)
and vectorial computations. The mAgic peak performance is achieved during single
cycle FFT butterfly execution, when it delivers 10 floating-point operations per clock
cycle.

mAgic is equipped with two independent address generation units. It is able to generate
up to two couple of addresses, one to access the left and right memory for reading and
one to access the left and right memory for writing. It is also used in the loop control to
test if the end of a loop is reached. The Multiple Address Generation Unit (MAGU) sup-
ports indexed addressing, linear addressing with stride, circular addressing and bit
reversed addressing. The address generation unit is composed by 16 registers.

The Program Address Generation Unit is devoted to manage the correct Program
Counter generation according to the program flow. It generates addresses for linear
code execution as well as for non-sequential program flow. The Condition Generation
Unit combines the flags generated by the operators to produce complex conditions flags
used to control the program execution. Predicated instruction execution is supported for
different groups of instructions: arithmetical instructions, memory write, immediate load,
or all of them. The Program Address Generation Unit allows also to perform conditioned
and unconditioned branch instructions, loops, call to subroutines and return from
subroutines.

Conv2

Div2

Sh/Log2

Conv1

Div1
Sh/Log1

LEFT
0 1 2 3

4 5 6 7

FP/I

*
FP/I

*

RIGHT
0 1 2 3

4 5 6 7

FP/I

*
FP/I

*

FP/I

-
FP/I

+

FP/I

- +
FP/I

+ -

L Memory R Memory

L
M

e
m

or
y

R
M

e
m

ory

Mul1 Mul2 Mul4Mul3

Cadd1 Cadd2

Add1 Add2
Min
Max2

Min
Max1

Conv2

Div2

Sh/Log2

Conv1

Div1
Sh/Log1

LEFT
0 1 2 3

4 5 6 7

LEFT
0 1 2 3

4 5 6 7

FP/I

*
FP/I

*
FP/I

*
FP/I

*
FP/I

*
FP/I

*

RIGHT
0 1 2 3

4 5 6 7

RIGHT
0 1 2 3

4 5 6 7

FP/I

*
FP/I

*
FP/I

*
FP/I

*
FP/I

*
FP/I

*

FP/I

-
FP/I

+

FP/I

- +
FP/I

+ -

L Memory R Memory

L
M

e
m

or
y

R
M

e
m

ory

Mul1 Mul2 Mul4Mul3

Cadd1 Cadd2

Add1 Add2
Min
Max2

Min
Max1
DSP Library User Manual (draft) 1-3

DRAFT–DPS–04/05

Introduction
1.1.2 Internal Memories,
External Memories
and DMA

mAgic has four on chip memory blocks: the Program Memory, the Data Memory, the
Data Buffer, and the dual ported memory shared with the ARM processor. An External
Memory Interface multiplexes the Data accesses and the Program accesses to and
from the External Memory.The Program Memory stores the VLIW program to be exe-
cuted by mAgic. It is 8K words by 128-bit single port memory. When mAgic is in System
mode ARM can modify the content of the mAgic Program Memory in two different ways.
ARM can directly write a Program Memory location by accessing the memory address
space assigned to the mAgic Program Memory in the ARM memory map. In this access
mode ARM writes four 32-bit words to four consecutive addresses at correct address
boundaries, in order to properly complete a single VLIW word write cycle. ARM can also
modify the content of the mAgic Program Memory by initiating a DMA transfer from the
external memory to the mAgic Program Memory. In this access mode a single VLIW
word is transferred from the mAgic external memory to the mAgic Program Memory
64-bit per cycle, that is one complete word every two clock cycles. Due to the program
compression scheme used (see later), allowing average program compression between
2 and 3, the code accessing capability of mAgic from its external memory is greater then
one instruction per clock cycle. When mAgic is in Run mode, ARM can't get access to
the mAgic Program Memory. When in Run mode mAgic can initiate a DMA transfer from
the external memory to the mAgic Program Memory to load a new code segment.

In order to optimize the internal Program Memory usage and the code bandwidth from
the external Program Memory to the internal Program Memory, a code compression
mechanism has been implemented. The code for mAgic can be generated and exe-
cuted in compressed or encompassed form. When the code stored in Program Memory
is compressed, the decompression is done "on flight" just after the Instruction Fetch.
The current code compression scheme allows getting compression factors between 2
and 3, depending on the code structure without performance loss.

Anyway the classic DSP execution determinism is maintained: only the amount of pro-
gram memory used can change, as function of the compression factor achieved, not the
program execution timing. Thanks to the code compression, the code density obtained
for mAgic is similar to the code density available on other non VLIW DSP, while main-
taining the advantage in terms of instruction level parallelism.

The mAgic internal Data Memory is made of three memory pages, 2K words by 40-bit
for the left data memory and 2K words by 40-bit for the right data memory, giving a total
of 6K word left and right memory banks (12 Kword total). Each Data Memory bank is a
dual port memory that allows four simultaneous accesses, two accesses in reading
mode and two in writing. The core can access vectorial and single data stored in data
memory. Accessing a complex data is equivalent to accessing a vectorial data. During
simultaneous read and write memory accesses, the MAGU generates two independent
read and write addresses common to the left and right memory banks. The total avail-
able bandwidth between the register file and the data memory is 20 bytes per clock
cycle, allowing full speed implementation of numerically intensive algorithms (e.g. com-
plex FFT and FIR).

The Buffer Memory is 2K words by 40-bit for both the left and right memory. The Buffer
Memory is a dual port memory. One port is connected to the core processor. The MAGU
generates the Buffer Memory addresses for transferring data to and from the core. The
second port of the Buffer Memory is connected to the External Memory Interface. The
Buffer Memory doesn't support dual read and write accesses neither from the core nor
from the External Memory Interface. The available bandwidth between the core proces-
sor and the Buffer Memory is equal to the available bandwidth between the External
Memory Interface and the Buffer Memory: 10 bytes per clock cycle. The maximum
external memory size of mAgic is 16 Mword Left and Right (equivalent to 32 Mword or
160 Mbytes; 24-bit address bus). A DMA controller manages the data transfer between
1-4 DSP Library User Manual (draft)

DRAFT–DPS–04/05

Introduction
the external memory and the Buffer Memory. The DMA controller can generate
accesses with stride both for the External Memory and the Buffer Memory. The DMA
transfers to and from the Buffer Memory can be executed in parallel with the full speed
core instructions execution with zero-overhead and without the intervention of the core
processor used only to initiate it.

Two kind of DMA transfer are allowed: non-blocking transfers and blocking transfers.
The first type (non-blocking transfers) consists of a transfer that is immediately launched
if the DMA machine is idle. If the DMA machine is busy, the transfer request is queued
into a FIFO. The second type of transfers (blocking transfers) consists of a transfer that
is immediately launched if the DMA machine is idle. If the DMA machine is busy, the end
of the current transfer is waited and then the burst is started. In this case the execution
of core instruction is suspended until the requested transfer is started. The core can be
synchronized with the DMA engine through the usage of specific synchronization
instructions.

The last memory block in the address space of mAgic DSP is the memory shared
(PARM) between mAgic and the ARM processor. It is a dual port memory 512 words by
40-bit for the left and right banks (total 1K by 40-bit). This memory can be used to effi-
ciently transfer data between the two processors. The available bandwidth between the
core processor and the shared memory is 10 bytes per clock cycle. On the ARM side
the available bandwidth is limited by the bus size of the ARM processor (32 bits) giving a
bandwidth of 4 bytes per ARM clock cycle.

1.1.3 ARM Interface The DIOPSIS 740 master is the ARM7 RISC processor. mAgic behaves as standard
AMBA ASB slave device, allowing access to different resources depending on the oper-
ating mode (Run or System).

In System Mode, mAgic halts its execution and ARM takes control on it. When mAgic is
in System mode ARM can access many mAgic internal devices. The ability of ARM to
access internal mAgic resources in System Mode can be used for initialization and
debugging purposes. Accessing the Command Register, ARM can change the operat-
ing status of the DSP (Run/System Mode), initiate DMA transactions, force single or
multiple step execution, or simply read the DSP operating status.

In Run Mode, mAgic works under direct control of its own VLIW program and ARM has
access only to the 1K x 40-bit dual ported shared memory (PARM) and to the mAgic
Command Register.

In order to allow a tight coupling between the operations of mAgic and ARM at run time,
they can exchange synchronization signals, based on interrupts.

1.1.4 VLIW Program Word The mAgic VLIW program word can assume different configurations according to the
kind of instructions it contains.

In the first configuration, that is also the most typical one, the VLIW is divided in four
fields, corresponding to the building blocks of the VLIW core: Flow Control Unit, Multiple
Address Generation Unit, Data Register File Addresses, and Operators Block. In this
configuration each field directly drives the architectural blocks to which it’s connected.

A second kind of mAgic instruction uses all the bits in the long instruction word to per-
form a single cycle, multiple loading of immediate data, multiple addressing initialization
and looping set up.

A third kind of instruction contains the parameters for launching DMAs between the
external memory interface and the local buffers. This instruction is passed to the DMA
engine and is executed in complete parallelism with the activities of the VLIW core.
DSP Library User Manual (draft) 1-5

DRAFT–DPS–04/05

Introduction
1.1.5 Instruction Set The operands supported in the instruction set are different for the different kind of
instruction. The available operands types are summarized in Table 1-1.

mAgic treats complex numbers as couples of 40-bit floating-point. The real part is stored
in the left (L) memory bank and the imaginary part is stored at the same address of the
right (R) memory bank. The Register File is also divided in real (L) and imaginary parts
(R).

mAgic instruction set supports the kind of instruction summarized in Table 1-2.

Some assembly instructions operate on complex conjugated numbers. They can be of
two types: the CJ ones in which the first operand is a complex number while the second
is conjugated before its use and the CJJ in which both operands are conjugated.

It is also possible the execution of additions and multiplications between a complex
number and a real number (40-bit floating point or 32-bit integer). This kind of instruc-
tions are obtained with a complex additions or products in which the second complex
operand has the imaginary part masked with zero.

The vectorial numbers are couple of data of the same type (40-bit floating point, or 32-bit
integer). The first element of the couple must be in the L memory or registers; the sec-
ond element must be in the R memory or registers. On vectorial numbers, two

Table 1-1. Operands Data Type

Complex (Float or Integer)

Complex Conjugated (Float or Integer)

Complex Double Conjugated (Float or Integer)

Complex with Real (Float or Integer)

Vectorial (Float or Integer)

Single Operand (Float or Integer)

Table 1-2. Instructions Summary

Add-Sub Instructions

Address Register File Management Instructions

Branch Instructions

DMA (Burst Transfer) Instructions

Compare Instructions

Condition Code and Loop Instructions

Control and Miscellaneous Instructions

Convertion Instructions

Interrupt Management Instructions

Logical and Shift Instructions

Mathematical Seed Generation Instructions

Miscellaneous Arithmetic Instructions

Move Instructions

Multiply Instructions

Repeat Instructions
1-6 DSP Library User Manual (draft)

DRAFT–DPS–04/05

Introduction
operations of the same type (two additions, two products, etc.) are performed (Vectorial
Operations). The operands for vectorial instructions are couple of registers. Real num-
bers (40-bit floating point and 32-bit integer) can be placed either in the L or R space.
The single arithmetical operations are performed exclusively on one path (L or R
depending on the destination register). The input and destination registers can be in any
bank.

The combination of the available computing operations and the different kind of oper-
ands for the complex domain operations allows implementing in a very natural way
many common signal-processing operations (e.g. a sampled correlation computation is
simply a multiply with conjugate and add; Inverse FFT is a scaled FFT with conjugate
coefficients). The operations scheduling and parallelization is automatically defined and
managed at compile time by the assembler-optimizer, allowing efficient code execution
and substantially simplifying the code development.
DSP Library User Manual (draft) 1-7

DRAFT–DPS–04/05

Introduction
1-8 DSP Library User Manual (draft)

DRAFT–DPS–04/05

Section 2

List of the DSP Library Function

2.1 General
Restrictions

The library functions are designed to work with the mAgic C compiler mcc. The functions
make use of the C stack to push the used registers when appropriate. In the chapter 3
are listed for each function the number of locations of the stack used. The library func-
tions can also be called from an assembly code using the same conventions used by the
C compiler to pass the parameters. In this case, it is advisable to copy the registers with
the passed parameters of the function who calls the leaf function, in not scratch regis-
ters and push them.

Sometime the functions rely on the value of the C initialized registers (e.g. the register
already initialized to 1.0f or to 1 or to 0). Thus to correctly execute a function from the
library the mcc runtime initialization code must be executed to appropriately initialize the
constant register values and to initialize a stack. Moreover the mcc register usage con-
ventions are adopted. Refer to the mcc manual for all the details.

The vectorial functions operates on arrays that have a size less or equal to 2K locations,
independently if they are of type int, float, __vector__ float, __vector__ int, __complex__
float or __complex__int. Arrays defined in Parm Memory must have a maximum of 512
elements. The arrays used in the DSP library functions can be allocated in Internal
Memory. It is also possible to declare an array in Buffer Memory or in Parm Memory, but
the simultaneous access in reading and writing mode to input/temporary/output arrays
must be granted. For example, if the user defines an input array in Parm Memory, any
other array of that function can’t be defined in the same Parm Memory. As a general
rule, for each function it is possible to allocate a maximum of one array in Parm Memory,
a maximum of one array in Buffer Memory and as many arrays as required in Internal
Memory.

Note that the Internal Memory and the Buffer Memory corrispond respectively to the
Data Memory and Buffer Data Memory indicated in the Figure 1-1 on page 2. The mAgic
C compiler mcc refers to the Internal Memory with: P0, P1, P2, to the Buffer Memory
with P3 and to the Parm Memory with P4.

The __vector__ int value returned by some functions described in the chaper 3 has the
following meaning: it stores the content of the two Sticky Status registers in the return
registers (498 and 499) of the Register File after the computation. If an operation has
happened on invalid values or arithmetic operation has resulted in an exception, the rel-
evant bits of these registers are set. For more details on the Status Flags and
Exceptions refer to the DIOPSIS 740 Data Sheet (doc7001.pdf).
DSP Library User Manual (draft) 2-1

 DRAFT–DPS–04/05

2.2 Alphabetical DSP
Function List

The DSP functions are all C-callable and comply with the mAgic C Compiler (MCC) pro-
tocol. The execution cycles listed include the C-calling protocol overhead.

Table 2-1. DSP Function List

Function name Execution Cycles
Code Size
(in VLIW) Notes

cmulcxcy 24 + 2 × Nelements 20
Complex conjugate element by
element multiplication

cmulxy 25 + 2 × Nelements 21
Complex element by element
multiplication with the first input
conjugate

cmulxy 25 + 2 × Nelements 21
Complex element by element
multiplication

conv

Initialization: 25

Input transient: 14 + 34 × (M - 1) + 6 × M / 2
× (M - 1)

Steady state: 38 + 44 × L / 2 +13 × M / 4 × L
/ 2 --> L = N-- M + 1

Output transient: 6 + 35 × (M - 1) + 6 × M / 2
× (M - 1)

123 Convolution with complex vectors

conv2d
171 + 4 × K + 3 × (M - K + 1) × (N - K + 1) +
(((9 × K / 2 + 30) × (N - K + 1) + 7 × K / 2 +
25) × K / 2 + 28) × (M - K+1)

165
2-dimensional convolution of
complex matrix A with complex
kernel matrix H

cvexp 137 + 23.5 × Nelements 67
Complex exponential of an input
array stored in left memory

cvma 37 + 3 × Nelements 33
Product of 2 complex input arrays
and sum with the third complex
input array

cvrdiv 83 + 8 × Nelements 51
Division of a complex array by a real
array stored in left memory element
by element

FD_RealFIR_Pair 268 + 20 × (N / 4 - 5) + fft cycles + ifft cycles 164
FIR filter on two real signals using
two different filter sequences

fft1024 6405 230 Complex FFT on 1024 points

fft128 1053 183 Complex FFT on 128 points

fft256 1729 175 Complex FFT on 256 points

fft288 2623 193 Complex FFT on 288 points

fft512 3251 178 Complex FFT on 512 points

fft64 769 148 Complex FFT on 64 points

FIR 136 + (79 + 13 × (M / 4 - 3)) × L / 2 99 Complex FIR filter

FirNlmsll 77+ (94+ 4.25 × (P-4)) × (N-P+1) +8.0 × P 130
Fir filter using Least Mean Square
Algorithm
2-2 DSP Library User Manual (draft)

DRAFT–DPS–04/05

FirNlmsv
78 + (94+ 4.25 × (P-4)) × (N-P+1) +8.0 × P -
7 135

Pair of FIR filters using Least Mean
Square Algorithm

getvq 65 + 1× Nelements 39
Extraction of vectorial data from a
vector queue to the destination
vector

getvq_f2i 60 + 1 × Nelements 36

Extraction of vectorial data from a
vector queue to the destination
vector and float to integer
conversion

getvq_i2f 71 + 1 × Nelements 40

Extraction of vectorial data from a
vector queue to the destination
vector and integer to
floatconversion

getvqelem 12 4
Number of unread elements in a
vector queue

getvqfree 12 4
Number of free positions in a vector
queue

hilbert 174 + 2.6875 × N + fft cycles + ifft cycles 113
Discrete time hilbert function on a
complex input vector of N elements

ifft1024 6527 233
Complex inverse FFT on 1024
points

ifft128 1112 176 Complex inverse FFT on 128 points

ifft256 1829 183 Complex inverse FFT on 256 points

ifft288 2836 179 Complex inverse FFT on 288 points

ifft512 3487 181 Complex inverse FFT on 512 points

ifft64 767 151 Complex inverse FFT on 64 points

IIR1
189 + [47 + 14 × (Stages_Nr - 2)] × Ch_Nr ×
Samples_Nr/2

109
Cascaded vectorial IIR biquad
section with pipeline on sections

IIR2
187 + [66 + 20 × (Stages_Nr × Ch_Nr -4)/ 2]
× Samples_Nr

122
Cascaded vectorial IIR biquad
section on input sequences

Init_IIR1_struct 277 + 6 × Stages_Nr × Ch_Nr × 2 49
Initialization procedure for IIR1
function

Init_IIR2_struct 204 + 6 × Stages_Nr × Ch_Nr × 2 64
Initialization procedure for IIR2
function

initFIR 35 + 3 × M 23
Initialization procedure for FIR
function

initvq 45 22
Initialization of the data structure
used to manage a vector circular
buffer

LastStage 137 + 3.25 × N 71 Plain radix two butterfly

levinson 3297 (P = 11) 131 Levinson-Durbin recursion

lpc2cep 5074 (N = 11 and M = 32) 122
Cepstral coefficients of a real float
array in left memory

madd 35 + 7 × (M × N / 2 -1) 25 Sum of two complex matrices

mchol 0.4166 × + 23.75 × +47.84 × N + 138 212
L-U decomposition of a positive
definite square matrix using
Cholesky algorithm

Table 2-1. DSP Function List (Continued)
DSP Library User Manual (draft) 2-3

DRAFT–DPS–04/05

mdeterm
28 + 1.33 × + 23 × + 36.5 × N + Cycles for
swap operation, which is data dependent

195
Determinant of a complex matrix of
the order

mdeterm2 29 9
Determinant of a complex matrix of
the order

mdeterm3 22 22
Determinant of a complex matrix of
the order

minvert
4.66 × + 68.5 × - N × 18.17 - 44 + 130 +
Cycles for swap operation which is data
dependent

400
Inverse of a complex square matrix
of the order

mmul 112+ (((((6 × (N-1)+13) × M)+11) × P) 56 Product of 2 complex matrices

mtrace 35 + 5 × N / 2 22 Trace of complex matrix

mvmul 46 + ((((6 × (N-1)) + 17) × M) + 11) × P 48
Product of a complex matrix with a
set of complex vectors

mvmul3x3 59 + 9 × Nelements 44
Product of a complex 3×3 matrix
with a set of complex vectors of size
3

mvmul4x4 125 + 16 × Nelements 68
Product of a complex 4×4 matrix
with a set of complex vectors of size
4

mvmul8x8 461 + 69 × Nelements 203
Product of a complex 8×8 matrix
with a set of complex vectors of size
8

pack40to16ll 39 + 6 × Nelements 40

Multiplication by a float value,
addition of a float offset, clipping in
a float range of a pair of data in left
memory and conversion of the
results in a 16 bit integer arranged
in a 32 bit word in left memory

pack40to16lr 39 + 6 × Nelements 41

Multiplication by a float value,
addition of a float offset, clipping in
a float range of a pair of data in left
memory and conversion of the
results in a 16 bit integer arranged
in a 32 bit word in right memory

pack40to16rl 42 + 6 × Nelements 41

Multiplication by a float value,
addition of a float offset, clipping in
a float range of a pair of data in right
memory and conversion of the
results in a 16 bit integer arranged
in a 32 bit word in left memory

pack40to16rr 41 + 6 × Nelements 42

Multiplication by a float value,
addition of a float offset, clipping in
a float range of a pair of data in right
memory and conversion of the
results in a 16 bit integer arranged
in a 32 bit word in right memory

putvq 64 + 1× Nelements 37
Filling of a vector queue with
vectorial data

putvq_f2i 72 + 1 × Nelements 38
Filling of a vector queue with
vectorial data converted from float
to integer

Table 2-1. DSP Function List (Continued)

N N�

2 2�

3 3�

N N�

N N�
2-4 DSP Library User Manual (draft)

DRAFT–DPS–04/05

putvq_i2f 72 + 1 × Nelements 38
Filling of a vector queue with
vectorial data converted from
integer to float

v2magnlrl 24 + 14 × Nelements 18 Vector squared magnitude

v2magnv 26 + 2.75 × Nelements 24
Vectorial complex squared
magnitude

vacoshll 400 + 27.75 × Nelements 251
Inverse hyperbolic cosine of a float
input array and left to left move

vacoshlr 389 + 27.75 × Nelements 254
Inverse hyperbolic cosine of a float
input array and left to right move

vacoshrl 400 + 27.75 × Nelements 252
Inverse hyperbolic cosine of a float
input array and right to left move

vacoshrr 391 + 27.75 × Nelements 254
Inverse hyperbolic cosine of a float
input array and right to right move

vacoshv 354 + 50.5 × Nelements 220
Inverse hyperbolic cosine of a
vectorial input array

vacosll 310 + 26.25 × Nelements 232
Inverse cosine of a float input array
and left to left move

vacoslr 300 + 26.75 × Nelements 232
Inverse cosine of a float input array
and left to right move

vacosrl 308 + 26 × Nelements 233
Inverse cosine of a float input array
and right to left move

vacosrr 298 + 26.5 × Nelements 232
Inverse cosine of a float input array
and right to right move

vacosv 292 + 52 × Nelements 208
inverse cosine of vectorial input
array

vaddintv 39 + 2 × Nelements 34 Sum of 2 vectorial integer arrays

vaddlll 31+ 2 × Nelements 24
Sum of 2 input float array stored in
left memory and output in left
memory

vaddllr 32 + 2.25 × Nelements 36
Sum of 2 input float array stored in
left memory and output in right
memory

vaddlrl 31+ 2 × Nelements 25

Sum of 2 input float array : the first
is stored in left memory while the
second in right memory. The output
is written in left memory

vaddlrr 31+ 2 × Nelements 25

Sum of 2 input float array: the first is
stored in left memory while the
second in right memory. The result
is written in right memory

vaddrrl 40 + 2 × Nelements 36
Sum of 2 input float array stored in
right memory and output in left
memory

vaddrrr 35 + 2 × Nelements 25
Sum of 2 input float array stored in
right memory and output in right
memory

vaddv 32 + 2.75 × Nelements 27 Sum of 2 vectorial float array

Table 2-1. DSP Function List (Continued)
DSP Library User Manual (draft) 2-5

DRAFT–DPS–04/05

varll 53 + 1.75 × Nelements 33 Variance of a float array

vasinhll 400 + 27.75 × Nelements 249
Inverse hyperbolic sine of a float
input array and left to left move

vasinhlr 389 + 27.75 × Nelements 252
Inverse hyperbolic sine of a float
input array and left to right move

vasinhrl 400 + 27.75 × Nelements 250
Inverse hyperbolic sine of a float
input array and right to left move

vasinhrr 390 + 27.75 × Nelements 252
Inverse hyperbolic sine of a float
input array and right to right move

vasinhv 354 + 50.5 × Nelements 219
Inverse hyperbolic sine of a
vectorial input array

vasinll 310 + 26.25 × Nelements 233
Inverse sine of a float input array
and left to left move

vasinlr 299 + 26.75 × Nelements 231
Inverse sine of a float input array
and left to right move

vasinrl 290 + 26 × Nelements 232
Inverse sine of a float input array
and right to left move

vasinrr 297 + 26.5 × Nelements 236
Inverse sine of a float input array
and right to right move

vasinv 290 + 51 × Nelements 210
Inverse sine of a vectorial input
array

vatan2 339 + 26.5 × Nelements 224
argument (arctan2) of a complex
input array and result in a float array
in left memory

vatanhll 323 +19.25 × Nelements 184
Inverse hyperbolic tangent of a float
input array and left to left move

vatanhlr 320 +19.25 × Nelements 186
Inverse hyperbolic tangent of a float
input array and left to right move

vatanhrl 321 +19.25 × Nelements 182
Inverse hyperbolic tangent of a float
input array and right to left move

vatanhrr 318 +19.25 × Nelements 184
Inverse hyperbolic tangent of a float
input array and right to right move

vatanhv 300 + 35 × Nelements 161
Inverse hyperbolic tangent of a
vectorial input array

vbyvmulv 25 + 2 × Nelements 19
Vectorial element by element
multiplication

vclipll 25 + 2 × Nelements 26

Clipping of a float array in left
memory between two float values
ClipUp and ClipDown and left to left
move

vcliprr 31 + 2 × Nelements 27

Cipping of a float array in right
memory between two float values
ClipUp and ClipDown and right to
right move

vclipv 36 + 2 × Nelements 30
Vectorial clipping between the two
values ClipUp and ClipDown

vcoshll 307 + 19 × Nelements 165
Hyperbolic cosine of a float input
array and left to left move

Table 2-1. DSP Function List (Continued)
2-6 DSP Library User Manual (draft)

DRAFT–DPS–04/05

vcoshlr 306 +18.5 × Nelements 159
Hyperbolic cosine of a float input
array and left to right move

vcoshrl 304 +19 × Nelements 166
Hyperbolic cosine of a float input
array and right to left move

vcoshrr 306 + 18.5 × Nelements 161
Hyperbolic cosine of a float input
array and right to right move

vcoshv 320 + 31× Nelements 156
Hyperbolic cosine of a vectorial
input array

vcosll 125 + 13.25 × Nelements 65
Cosine of a float input array and left
to left move

vcoslr 124 + 13 × Nelements 66
Cosine of a float input array and left
to right move

vcosrl 125 + 13 × Nelements 67
Cosine of a float input array and
right to left move

vcosrr 123 + 13 × Nelements 66
Cosine of a float input array and
right to right move

vcosv 107 + 20.5 × Nelements 58 Cosine of a vectorial input array

vdist 173 + 10.5 × Nelements 109
Euclidean distance between two
input complex arrays

vdiv0rll 32 + 25 × Nelements 27
Float array division element by
element

vdiv40lll 78 + 7.75 × Nelements 64

Float array division element by
element with Y and X il left memory
and precision equal to 31 bit of
mantissa

vdiv40lrl 79 + 7.75 × Nelements 68

Float array division element by
element with Y in left memory and X
in right memory and precision equal
to 31 bit of mantissa

vdiv40rll 78 + 7.75 × Nelements 66

Float array division element by
element with Y in right memory and
X in left memory and precision
equal to 31 bit of mantissa

vdiv40rrl 80 + 7.75 × Nelements 65

Float array division element by
element with Y and X in right
memory and precision equal to 31
bit of mantissa

vdivlll 96 + 3.75 × Nelements 59

Float array division element by
element with Y and X in left memory
and precision equal to 23 bit of
mantissa

vdivlrl 98 + 3.25 × Nelements 61

Float array division division element
by element with Y in left memory
and X in right memory and precision
equal to 23 bit of mantissa

vdivrll 98 + 3.5 × Nelements 59

Float array division element by
element with Y in right memory and
X in left memory and precision
equal to 23 bit of mantissa

Table 2-1. DSP Function List (Continued)
DSP Library User Manual (draft) 2-7

DRAFT–DPS–04/05

vdivrrl 93 + 3.75 × Nelements 59

Float array division element by
element with X and Y in right
memory and precision equal to 23
bit of mantissa

vdivv 90 + 6.75 × Nelements 51
Vectorial float division element by
element

vexp10ll 124 + 10 × Nelements 69
exponential to base 10 () of a
float input array and left to left move

vexp10lr 126 + 10 × Nelements 69
exponential to base 10 () of a
float input array and left to right
move

vexp10rl 123 + 10 × Nelements 69
exponential to base 10 () of a
float input array and right to left
move

vexp10rr 123 + 10 × Nelements 69
exponential to base 10 () of a
float input array and right to right
move

vexp10v 115 + 18.5 × Nelements 60
exponential to base 10 () of a
vectorial input array

vexpll 125 + 10 × Nelements 70
exponential to base e () of a float
input array and left to left move

vexplr 124 + 9.75 × Nelements 66
exponential to base e () of a float
input array and left to right move

vexprl 124 + 10 × Nelements 70
exponential to base e () of a float
input array and right to left move

vexprr 123 + 9.75 × Nelements 66
exponential to base e () of a float
input array and right to right move

vexpv 116 + 18.5 × Nelements 61
exponential to base e () of a
vectorial input array

vfillll 20 + 1.5 × Nelements 18
Filling of an array in left memory
with a constant stored in left
memory

vfilllr 20 + 1.5 × Nelements 18
Filling of an array in right memory
with a constant stored in left
memory

vfillrl 22 + 1.5 × Nelements 19
Filling of an array in left memory
with a constant stored in right
memory

vfillrr 22 + 1.5 × Nelements 19
Filling of an array in right memory
with a constant stored in right
memory

vfillv 22 + 1.5 × Nelements 19
Filling of a vectorial array with a
vectorial constant

vfix1ll 42 + 1 × Nelements 29
Addition of a float offset, float to
integer conversion and left to left
move

vfix1lr 42 + 1 × Nelements 29
Addition of a float offset, float to
integer conversion and left to right
move

Table 2-1. DSP Function List (Continued)

10x

10x

10x

10x

10x

ex

ex

ex

ex

ex
2-8 DSP Library User Manual (draft)

DRAFT–DPS–04/05

vfix1rl 43 + 1 × Nelements 29
Addition of a float offset, float to
integer conversion and right to left
move

vfix1rr 43 + 1 × Nelements 29
Addition of a float offset, float to
integer conversion and right to right
move

vfix1v 53 + 1× Nelements 30
Addition of a vectorial float offset,
float to integer conversion and
vectorial move

vfix2ll 34 + 2 × Nelements 36

Multiplication by a float value,
addition of a float offset, float to
integer conversion and left to left
move

vfix2lr 34 + 2 × Nelements 36

Multiplication by a float value,
addition of a float offset, float to
integer conversion and left to right
move

vfix2rl 36 + 2 × Nelements 35

Multiplication by a float value,
addition of a float offset, float to
integer conversion and right to left
move

vfix2rr 36 + 2 × Nelements 35

Multiplication by a float value,
addition of a float offset, float to
integer conversion and right to right
move

vfix2v 36 + 2 × Nelements 35

Multiplication by a vectorial float
value, addition of a vectorial float
offset and float to integer
conversion

vfix3ll 24 + 3.75 × Nelements 55

Multiplication by a float value,
addition of a float offset, clipping in
a float range, float to integer
conversion and left to left move

vfix3lr 24 + 3.75 × Nelements 57

Multiplication by a float value,
addition of a float offset, clipping in
a float range, float to integer
conversion and left to right move

vfix3rl 27 + 3.75 × Nelements 55

Multiplication by a float value,
addition of a float offset, clipping in
a float range, float to integer
conversion and right to left move

vfix3rr 27 + 3.75 × Nelements 57

Multiplication by a float value,
addition of a float offset, clipping in
a float range, float to integer
conversion and right to right move

vfix3v 44 + 3 × Nelements 61

Multiplication by a vectorial float
value, addition of a vectorial float
offset, clipping in a vectorial float
range and float to integer
conversion

vfloat1ll 36 + 1 × Nelements 28
Integer to float conversion, addition
of a float offset and left to left move

Table 2-1. DSP Function List (Continued)
DSP Library User Manual (draft) 2-9

DRAFT–DPS–04/05

vfloat1lr 36 + 1 × Nelements 28
Integer to float conversion, addition
of a float offset and left to right
move

vfloat1rl 39 + 1 × Nelements 29
Integer to float conversion, addition
of a float offset and right to left
move

vfloat1rr 39 + 1 × Nelements 29
Integer to float conversion, addition
of a float offset and right to right
move

vfloat1v 39 + 1 × Nelements 29
Vectorial integer to float conversion
and addition of a vectorial float
offset

vfloat2ll 37 + 2 × Nelements 33

Integer to float conversion,
multiplication by a float scale factor,
addition of a float offset and left to
left move

vfloat2lr 37 + 2 × Nelements 33

Integer to float conversion,
multiplication by a float scale factor,
addition of a float offset and left to
right move

vfloat2rl 39 + 2 × Nelements 34

Integer to float conversion,
multiplication by a float scale factor,
addition of a float offset and right to
left move

vfloat2rr 39 + 2 × Nelements 34

Integer to float conversion,
multiplication by a float scale factor,
addition of a float offset and right to
right move

vfloat2v 39 + 2 × Nelements 34

Vectorial integer to vectorial float
conversion, multiplication by a
vectorial float scale factor and
addition of a vectorial float offset

vlog10ll 156 + 13 × Nelements 85
Logarithm to base 10 of a float input
array and left to right move

vlog10lr 156 + 13 × Nelements 85
Logarithm to base 10 of a float input
array and right to left move

vlog10rl 156 + 13 × Nelements 85
Logarithm to base 10 of a float input
array and right to left move

vlog10rr 154 + 13 × Nelements 86
Logarithm to base 10 of a float input
array and right to right move

vlog10v 143 + 24.5 × Nelements 74
Logarithm to base 10 of a vectorial
input array

vlogll 157 + 13 × Nelements 85
Natural logarithm of a float input
array and left to left move

vloglr 156 + 13 × Nelements 82
Natural logarithm of a float input
array and left to right move

vlogrl 157 + 13 × Nelements 86
Natural logarithm of a float input
array and right to left move

vlogrr 154 + 13 × Nelements 86
Natural logarithm of a float input
array and right to right move

Table 2-1. DSP Function List (Continued)
2-10 DSP Library User Manual (draft)

DRAFT–DPS–04/05

vlogv 143 + 24.5 × Nelements 74
Natural logarithm of a vectorial input
array

vmagnlrl 30 + 41 × Nelements 31 Vector magnitude

vmagnv 115 + 8.75 × Nelements 84 Complex magnitude

vmaxv 43 + 1 × Nelements 29 Vectorial maximum

vmax1v 54 + 7.25 × Nelements 63
Pipelined vectorial maximum with
indexes extraction

vmax2v 33 + 8 × Nelements 35
Vectorial maximum with indexes
extraction

vmmul 50 + ((6 × (M - 1)) + 18) × N 42
Product of a complex vector with a
complex matrix

vmove2cx 30 + 1× Nelements 26
Complex conjugate vector move
with scale factor and offset

vmove2cxint 32 + 2.25 × Nelements 31
Complex conjugate vector integer
move with scale factor and offset

vmove2v 28 + 1× Nelements 25
Vectorial move with scale factor and
offset

vmove2vint 30 + 2 × Nelements 30
Vectorial integer move with scale
factor and offset

vmove2x 30 + 1× Nelements 27
Complex vector move with scale
factor and offset

vmove2xint 32 + 2.25 × Nelements 31
Complex integer vector move with
scale factor and offset

vmovell 20 + 1× Nelements 18 Left to left float array move

vmovelr 20 + 1 × Nelements 18 Left to right float array move

vmoverl 24 + 1 × Nelements 18 Right to left float array move

vmoverr 23 + 1× Nelements 19 Right to right float array move

vmovev 19 + 1× Nelements 18 Vectorial move

vmvell 54 + 1 × Nelements 29
Mean stored in left memory of a
float input array stored in left
memory

vmvelr 54 + 1 × Nelements 29
Mean stored in right memory of a
float input array stored in left
memory

vmverl 54 + 1 × Nelements 30
Mean stored in left memory of a
float input array stored in right
memory

vmverr 55 + 1 × Nelements 30
Mean stored in right memory of a
float input array stored in right
memory

vmvev 55 + 1 × Nelements 31 Mean of a vectorial input array

vq2vq 132 + 1 × Nelements 56
Copy of vectorial data from the
vector queue 1 to vector queue 2

vrandl 37 + 2.5 × Nelements 41
Random numbers generator in left
memory

Table 2-1. DSP Function List (Continued)
DSP Library User Manual (draft) 2-11

DRAFT–DPS–04/05

vrandr 41 + 2.25 × Nelements 41
Random numbers generator in right
memory

vrandv 35 + 4.5 × Nelements 37
Vectorial float array random
numbers generator

vrmvesqll 104 + 1 × Nelements 46
Root mean square stored in left
memory of an input array stored in
left memory

vrmvesqlr 104 + 1 × Nelements 46
Root mean square stored in right
memory of an input array stored in
left memory

vrmvesqrl 104 + 1 × Nelements 47
Root mean square stored in left
memory of an input array stored in
right memory

vrmvesqrr 105 + 1 × Nelements 47
Root mean square stored in right
memory of an input array stored in
right memory

vrmvesqv 109 + 1× Nelements 47
Root mean square of a vectorial
input array

vrotate32v 47 + 1 × Nelements 31
Vectorial integer array left or right
shift mod.32 with number of shifts
(0 to 31)

vshandv 57 + 1 × Nelements 33
Vectorial integer array left or right
shift with number of shifts (0 to 31)
and logical AND

vshiftv 44 + 1 × Nelements 30
Vectorial integer array left or right
shift with number of shifts (0 to 31)

vsinhll 307 + 19 × Nelements 164
Hyperbolic sine of a float input array
and left to left move

vsinhlr 303 + 18.5 × Nelements 161
Hyperbolic sine of a float input array
and left to right move

vsinhrl 304 + 19 × Nelements 165
Hyperbolic sine of a float input array
and right memory to left move

vsinhrr 306 + 18.5 × Nelements 161
Hyperbolic sine of a float input array
and right to right move

vsinhv 313 + 31 × Nelements 167
Hyperbolic sine of a vectorial input
array

vsinll 117 + 11.25 × Nelements 63
Sine of a float input array and left to
left move

vsinlr 117 + 11.25 × Nelements 63
Sine of a float input array and left to
right move

vsinrl 119 + 11.25 × Nelements 64
Sine of a float input array and right
to left move

vsinrr 118 + 11.25 × Nelements 64
Sine of a float input array and right
to right move

vsinv 109 + 21.5 × Nelements 58 Sine of a vectorial input array

vsqrt0ll 118 + 22 × Nelements 55
Single vector square root
computation and left to left move

Table 2-1. DSP Function List (Continued)
2-12 DSP Library User Manual (draft)

DRAFT–DPS–04/05

vsqrt0lr 118 + 22 × Nelements 55
Single vector square root
computation and left to right move

vsqrt0rl 118 + 22 × Nelements 55
Single vector square root
computation and right to left move

vsqrt0rr 118 + 22 × Nelements 55
Single vector square root
computation and right to right move

vsqrt0v 118 + 22 × Nelements 55 Vectorial square root computation

vsqrtll 130 + 7.75 × Nelements 74
Pipelined single vector square root
computation and left to left move

vsqrtlr 130 + 7.75 × Nelements 74
Pipelined single vector square root
computation and left to right move

vsqrtrl 122 + 7.75 × Nelements 74
Pipelined single vector square root
computation and right to left move

vsqrtrr 122 + 7.75 × Nelements 74
Pipelined single vector square root
computation and right to right move

vsqrtv 115 + 15.5 × Nelements 66
Pipelined vectorial square root
computation

vsubll 27 + 2 × Nelements 22
Subtraction of 2 float array in left
memory

vsubrr 32 + 2 × Nelements 20
Subtraction of 2 float array in right
memory

vsubv 29 + 2.75 × Nelements 24 Subtraction of 2 vectorial float array

vsumv 44 + 1 × Nelements 27 Sum of vector elements

vtanhll 309 +19.75 × Nelements 165
Hyperbolic tan of a float input array
and left to left move

vtanhlr 304 + 18.75 × Nelements 161
Hyperbolic tan of a float input array
and left to right move

vtanhrl 302 + 18.75 × Nelements 165
Hyperbolic tan of a float input array
and right to left move

vtanhrr 308 + 19 × Nelements 162
Hyperbolic tan of a float input array
and right to right move

vtanhv 325 + 30 × Nelements 178
Hyperbolic tan of a vectorial input
array

vtanll 142 + 18 × Nelements 79
Tan of a float input array and left to
left move

vtanlr 140 + 17.5 × Nelements 79
Tan of a float input array and left to
right move

vtanrl 141+ 17.5 × Nelements 79
Tan of a float input array and right to
left move

vtanrr 143 + 18 × Nelements 74
Tan of a float input array and right to
right move

vtanv 134 + 34.5 × Nelements 74 Tan of a vectorial input array

xcorrc
80 + (26 + 20) × NCorr / 4 + 11 / 8 × sum(N
... (N-NCorr))

94
Cross-correlation between complex
float array or auto-correlation of a
complex float array

Table 2-1. DSP Function List (Continued)
DSP Library User Manual (draft) 2-13

DRAFT–DPS–04/05

xcorrlll
80 + (26 + 20) × NCorr / 4 + 11 / 8 × sum(N
... (N-NCorr))

94

Cross-correlation between 2 float
float array stored in left memory or
auto-correlation of a float array
stored in left memory. The result is
stored in left memory

xcorrllr
80 + (26 + 20) × NCorr / 4 + 11 / 8 × sum(N
... (N-NCorr))

94

Cross-correlation between 2 float
float array stored in left memory or
auto-correlation of a float array
stored in left memory. The result is
stored in right memory

xcorrlrl
80 + (26 + 20) × NCorr / 4 + 11 / 8 × sum(N
... (N-NCorr))

94

Cross-correlation between 2 float
array: the first stored in left memory
and the second in right memory.
The result is stored in left memory

xcorrlrl
80 + (26 + 20) × NCorr / 4 + 11 / 8 × sum(N
... (N-NCorr))

94

Cross-correlation between 2 float
array: the first stored in left memory
and the second in right memory.
The result is stored in right memory

xcorrlrr
80 + (26 + 20) × NCorr / 4 + 11 / 8 × sum(N
... (N-NCorr))

94

xcorrrrl
80 + (26 + 20) × NCorr / 4 + 11 / 8 × sum(N
... (N-NCorr))

94

Cross-correlation between 2 float
array stored in right memory or
auto-correlation of a float array
stored in right memory. The result is
stored in left memory

xcorrrrr
80 + (26 + 20) × NCorr / 4 + 11 / 8 × sum(N
... (N-NCorr))

94

Cross-correlation between 2 float
array stored in right memory or
auto-correlation of a float array
stored in right memory. The result is
stored in right memory

xcorrv
80 + (26+20) × NCorr / 4 + 11 / 8 × sum(N ...
(N-NCorr))

94
Cross-correlation between vectorial
float array or auto-correlation of a
vectorial float array

Table 2-1. DSP Function List (Continued)
2-14 DSP Library User Manual (draft)

DRAFT–DPS–04/05

Section 3

DSP Functions Description

3.1 cmulcxcy Function: complex conjugate element by element multiplication

Synopsis: __vector__ int cmulcxcy(*X, strideX, *Y, strideY, *Z, strideZ,
Nelements)

Include file: DSPlib.h.

X: pointer to the first input vector. Type: __complex__ float

strideX: stride to be used for the X data. Type: int

Y: pointer to the second input vector. Type: __complex__ float

strideY: stride to be used for the Y data.Type: int

Z: pointer to the output vector. Type: __complex__ float

strideZ: stride to be used for the Z data. Type: int

Nelements: number of elements to be computed.Type: int

The function cmulcxcy performs complex conjugate element-by-element multiplication
on complex vectors only.

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

Number of cycles:

24 + 2 × Nelements

Number of VLIW:

Z k� � conj X k� �� � conj Y k� �� ��= k 0�Nelements=
DSP Library User Manual (draft) 3-1

 DRAFT–DPS–04/05

DSP Functions Description
20

File: cmulcxcy.mas

3.2 cmulcxy Function: complex element by element multiplication with the first input
conjugate

Synopsis: __vector__ int cmulcxy(*X, strideX, *Y, strideY, *Z, strideZ,
Nelements)

Include file: DSPlib.h.

X: pointer to the first input vector. Type: __complex__ float

strideX: stride to be used for the X data. Type: int

Y: pointer to the second input vector. Type: __complex__ float

strideY: stride to be used for the Y data.Type: int

Z: pointer to the output vector. Type: __complex__ float

strideZ: stride to be used for the Z data. Type: int

Nelements: number of elements to be computed.Type: int

The function cmulcxy performs complex element-by-element multiplication on complex
vectors with first vector conjugate.

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

Number of cycles:

25 + 2 × Nelements

Number of VLIW:

21

File: cmulcxy.mas

Z k� � conj X k� �� � Y k� ��= k 0�Nelements=
3-2 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
3.3 cmulxy Function: complex element by element multiplication

Synopsis: __vector__ int cmulxy(*X, strideX, *Y, strideY, *Z, strideZ, Nelements)

Include file: DSPlib.h.

X: pointer to the first input vector. Type: __complex__ float

strideX: stride to be used for the X data. Type: int

Y: pointer to the second input vector. Type: __complex__ float

strideY: stride to be used for the Y data.Type: int

Z: pointer to the output vector. Type: __complex__ float

strideZ: stride to be used for the Z data. Type: int

Nelements: number of elements to be computed.Type: int

The function cmulxy performs complex element-by-element multiplication on complex
vectors.

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

Number of cycles:

25 + 2 × Nelements

Number of VLIW:

21

File: cmulxy.mas

Z k� � X k� � Y k� ��= k 0�Nelements=
DSP Library User Manual (draft) 3-3

DRAFT–DPS–04/05

DSP Functions Description
3.4 conv Function: convolution with complex vectors

Synopsis: __vector__ int conv(*X, *H, *Y, N, M, Transient)

Include file: DSPlib.h.

*X: pointer to the input vector (size N). Type: __complex__ float *

*H: pointer to the filter coefficients (size M). They must be stored in ordi-
nary sequence, i.e. starting from index 0 to M-1.Type: __complex__
float *

*Y: pointer to the output vector (size N + M - 1). After function call, Y con-
tains the result of the X vector convolved with the filter. Type:
__complex__ float *

N: input vectors length. Type: int

M: filter length. Type: int

Transient: integer value used to compute or not the transient codes of the con-
volution:if Transient=0 the transient isn't computed, otherwise it's
calculated. Type: int

The function conv is the implementation of the convolution of the input vector X with the
filter H. The function corresponds to the Matlab conv(a,b) function. The conv function
can compute or not the transient states, according to the value set with the Transient
parameter: if the transient isn't computed, otherwise it's calculated. For
the continuous FIR filtering on an infinite stream of input data, see the function “FIR” on
page 3-17.

Restrictions:

N must be an odd value

M must be an even value multiple of 4

Number of cycles:

Initialization: 25

Input transient: 14 + 34 × (M - 1) + 6 × M / 2 × (M - 1)

Steady state: 38 + 44 × L / 2 +13 × M / 4 × L / 2 --> L =
N-- M + 1

Output transient: 6 + 35 × (M - 1) + 6 × M / 2 × (M - 1)

Number of VLIW:

123

Y k� � X n� � H k n–� � k�
n 0=

M 1–

� 0�N M 1–+= =

Transient 0=
3-4 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
File: conv.mas

3.5 conv2d Function: 2-dimensional convolution of complex matrix A with complex kernel
matrix H

Synopsis: __vector__ int conv2d(*A, M, N, *H, *C, K)

Include file: DSPlib.h

A: pointer to the input complex matrix. Type: __complex__ float

M: number of rows of matrix AType: int

N: number of columns of matrix AType: int

H: pointer to the complex kernel matrix. Type: __complex__ float

C: pointer to the output complex matrix Type: __complex__ float

K: order of the complex kernel square matrix H. Type: int

The function conv2d performs 2-dimensional convolution of matrix A of the order
with matrix H of the order without the zero-padded edges. It is equivalent to the
Matlab function conv2(a,b,’valid). For this reason the output matrix C is of the
order. and not .

Restrictions:

K must be multiple of 2

M must be greater or equal to K

N must be greater or equal to K

Number of cycles:

171 + 4 × K + 3 × (M - K + 1) × (N - K + 1) + (((9 × K / 2 + 30) × (N -
K + 1) + 7 × K / 2 + 25) × K / 2 + 28) × (M - K+1)

Number of VLIW:

165

C r c(,) H K 1– i–� � K 1– j–� � A r i+� � c j+� ��

j 0=

K 1–

�
i 0=

K 1–

�=
r 0�M K– 1+=

c 0�N K– 1+=�
�
	

M N�
K K�

M K– 1+� � N K– 1+� �� M K 1–+� � N K 1–+� ��
DSP Library User Manual (draft) 3-5

DRAFT–DPS–04/05

DSP Functions Description
File: conv2d.mas

3.6 cvexp Function: complex exponential of an input array stored in left memory

Synopsis: __vector__ int cvexp (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array in vector memory space into which the
computed value is written.Type: __complex__ float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function cvexp computes the complex exponential. The complex value obtained is
written to a complex array.

Precision:

see Table 3-14 on page 211, Table 3-8 on page 109

Restrictions:

Nelements must be greater or equal to 2 and multiple of 2

X must be in memory left

Number of cycles:

137 + 23.5 × Nelements

Number of VLIW:

67

File: cvexp.mas, sinCosCoeff.mas

Y k� � ejX k� �
= k 0�Nelements 1–=
3-6 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
3.7 cvma Function: product of 2 complex input arrays and sum with the third complex
input array

Synopsis: __vector__ int cvma (*X, strideX, *Y, strideY, *Z, strideZ,*W, strideW,
Nelements)

Include file: DSPlib.h

*X: pointer to the input array . Type: __complex__ float *

strideX: stride to be used for input array X. Type: int

*Y: pointer to the input array . Type: __complex__ float *

strideY: stride to be used for input array Y. Type: int

*Z: pointer to the input array . Type: __complex__ float *

strideZ: stride to be used for input array Z. Type: int

*W: pointer to the output array . Type: __complex__ float *

strideW: stride to be used for output array W. Type: int

Nelements: Number of elements to be computed. Type: int

The function cvma computes the product of two complex arrays and the product
obtained is added with the third complex array.

Restrictions:

Nelements must be greater or equal to 4 and multiple of 2

Number of cycles:

37 + 3 × Nelements

Number of VLIW:

33

File: cvma.mas

W k� � X k� � Y k� � Z k� �+�= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-7

DRAFT–DPS–04/05

DSP Functions Description
3.8 cvrdiv Function: division of a complex array by a real array stored in left memory ele-
ment by element

Synopsis: __vector__ int cvrdiv (*X, strideX, *Y, strideY, *Z, strideZ,
Nelements)

Include file: DSPlib.h

X: pointer to the complex input array. Type: __complex__ float

strideX: stride to be used for the input array. Type: int

Y: pointer to the real input array. Type: float

strideY: stride to be used for the real input array. Type: int

Z: pointer to the complex output array. Type: __complex__ float

strideZ: stride to be used for the output array. Type: int

Nelements: number of elements to be divided.Type: int

The function cvrdiv performs the division of a complex array by a real array, element by
element.

Restrictions:

Nelements must be multiple of 2

Y must be in left memory

Number of cycles:

83 + 8 × Nelements

Number of VLIW:

51

File: cvrdiv.mas

Re Z k� �� � Re X k� �� �
Y k� �

-----------------------=

Im Z k� �� � Im X k� �� �
Y k� �

-----------------------=�
�
�
�
�

3-8 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
3.9 FD_RealFIR_Pair Function: FIR filter on two real signals using two different filter sequences

Synopsis: __vector__ int FD_RealFIR_Pair(*W,*X,*data_temp, *Y, *H1, *H2,
fft_ptr, ifft_ptr, N)

Include file: DSPlib.h

*W: pointer to the ordinary trigonometric coefficients table exp(-i × 2 × pi ×
n/N), with n=0..N/2-1. Type: __complex__ float*

X: pointer to the input vector (size N). Type: __complex__ float

*data_temp: pointer to a temporary vector for FFT computation (size N).

Type: __complex__ float*

*H1: pointer to the first filter vector in the frequency domain (size N/2+1).
Type: __complex__ float*

*H2: pointer to the second filter vector in the frequency domain (size
N/2+1). Type: __complex__ float*

Y_ptr: pointer to the output vector (size N). Type: __complex__ float

fft_ptr: memory address for the FFT function to be called. Note that the
function depends from the input vector length N. If , then the
called function will be ifft256, if , it will be fft64, etc. For the
fft_ptr initialization see Section 3.9.1 on page 3-10. Type: int

ifft_ptr: memory address for the IFFT function to be called. Note that the func-
tion depends from the input vector length N. If , then the
called function will be ifft256, if , it will be ifft64, etc. For the
ifft_ptr initialization see Section 3.9.1 on page 3-10. Type: int

N: input vector length. Type: int

Called files:

fft and ifft functions (with fft32M.mas and ifft32M.mas) of the required
length.

The function FD_RealFIR_Pair is a library routine used for the computation of couples of
real independent FIRs of length M using complex FFTs. This implementation is equiva-
lent to the FIR computation on two real input sequences s1 and s2, both of length N,
with the filter coefficients respectively h1 and h2. The difference from a linear convolu-
tion implementation is that the one using complex FFTs allows an increase of
performances whose amount depends from the length of the filter and from the number
of computed elements. It is responsibility of the caller to extract from the output
sequence the subsequence corresponding to the desired output (typically the part corre-

Y k� � X n� � H k n–� � k�
n 0=

M 1–

� 0�N 1–= =

N 256=
N 64=

N 256=
N 64=
DSP Library User Manual (draft) 3-9

DRAFT–DPS–04/05

DSP Functions Description
sponding to the linear convolution discarding the part corresponding to the circular
convolution).

The processing follows the following steps:

1- compute the FFT of a pair of real signals (s1 and s2) using a single
complex FFT on . The complex s signal is obtained
storing the s1 real vector in the left memory bank at the address X
and the s2 real vector in the right memory bank at the same address
of s1

2- FFT post-processing to extract the two complex sequences S1 and
S2

3- element by element (.*) product between the FFT of the signal and
the FFTs of the filters and

4- build a complex signal composed by the superposition of the two sig-
nals in the frequency domain

5- compute the IFFT of the signal O, obtaining the complex signal o. The
result of the FIR filtering of the two real sequences is available as the
real and the imaginary part of o:

Due to the circular convolution implementation, only a subset of the output o data will be
equal to the one computed using linear convolution. Note that it is possible to exploit the
hermitianity of the FFT of a real signal in order to compute only ½ + 1 points of the post-
processed sequence O1 and O2; moreover, due to the same reason, it is possible to
store only ½ + 1 of the point of the transform of the filters H1 and H2 in the frequency
domain.

3.9.1 C initialization for
realFIR function.

Before the FD_RealFIR_Pair call, the integer variables fft_ptr and ifft_ptr must be initial-
ized with the fft and ifft functions pointers. To do this, the following Macro must be used :

__GetFuncPtrMem__(name,funcname)

 where: name is the integerer variable (global or local) initialized with the func-
name function pointer

funcname is the function called.

In particular FD_RealFIR_Pair calls 2 functions: fft and ifft , so you need to use the pre-
vious Macro for both:

__GetFuncPtrMem__(name1,funcname1)

__GetFuncPtrMem__(name2,funcname2)

s s1 j s2�+=

O1 S1, H1�=� � O2 S2, H2�=� �

O O1 j O2�+=� �

0� �real conv s1 h1(,)=

0� �imag conv s2 h2(,)=
3-10 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
 where: name1 is the seventh parameter passed to the FD_RealFIR_Pair
function (fft_ptr)

funcname1 is one of the following functions: fft1024, fft512, fft256,
fft288, fft128, fft64

name2 is the eighth parameter passed to the FD_RealFIR_Pair func-
tion (ifft_ptr)

funcname2 is one of the following functions: ifft1024, ifft512, ifft256,
ifft228, ifft128, ifft64

Note: the function FD_RealFIR_Pair uses 75 locations of the stack included
that utilized by the fft and ifft functions

Restrictions:

N must be one of the following values: 1024, 128, 256, 288, 512, 64

see the restrictions for the fft and ifft functions

Number of cycles:

268 + 20 × (N / 4 - 5) + fft cycles + ifft cycles

Number of VLIW:

164

File: FD_RealFIR_Pair.mas

3.10 fft1024 Function: complex FFT on 1024 points

Synopsis: __vector__ int fft1024(*W, *x, *data_temp, *X)

Include file: DSPlib.h.

*W: pointer to the ordinary trigonometric coefficients table exp(-i2 × pi ×
n/1024), with n=0..511. Type: __complex__ float*

x: pointer to the input vector (size 1024). Type: __complex__ float

*data_temp: pointer to a temporary vector for FFT computation (size 1024).

Type: __complex__ float*

*X: pointer to the output vector (size 1024). After function call X contains
the FFT of x vector. Type: __complex__ float*

X k� � W1024
n k� x n� � k�

n 0=

1023

� 0�1024= =
DSP Library User Manual (draft) 3-11

DRAFT–DPS–04/05

DSP Functions Description
The function fft1024 is the mixed radix implementation of the 1024 points FFT. The
fft32m assembly function is used as component block. If more than one fft size is used
in an application the module fft32m is shared among them.

Note: the function fft1024 uses 75 locations of the stack

Restrictions:

only the following vectors combinations are allowed:

x�� data_temp�� X

x = data_temp � X

x = X � data_temp

x and X can be allocated in Internal Memory, in Buffer Memory or in
Parm memory

data_temp must be always in Internal Memory

Number of cycles:

6405

Number of VLIW:

230

File: fft1024.mas

3.11 fft128 Function: complex FFT on fft128 points

Synopsis: __vector__ int fft128(*W, *x, *data_temp, *X)

Include file: DSPlib.h.

*W: pointer to the ordinary trigonometric coefficients table exp(-i × 2 × pi ×
n/128),with n=0..63. Type: __complex__ float*

x: pointer to the input vector (size 128). Type: __complex__ float

*data_temp: pointer to a temporary vector for FFT computation (size 128).

Type: __complex__ float*

X k� � W128
n k� x n� � k�

n 0=

127

� 0�127= =
3-12 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
*X: pointer to the output vector (size 128). After function call X contains
the FFT of x vector. Type: __complex__ float*

The function fft128 is the mixed radix implementation of the 128 points FFT. The fft32m
assembly function is used as component block. If more than one fft size is used in an
application the module fft32m is shared among them.

Note: the function fft128 uses 75 locations of the stack

Restrictions: only the following vectors combinations are allowed:

x � data_temp � X

x = data_temp � X

x = X � data_temp

x and X can be allocated in Internal Memory, in Buffer Memory or in
Parm memory

data_temp must be always in Internal Memory

Number of cycles:

1053

Number of VLIW:

183

File: fft128.mas

3.12 fft256 Function: complex FFT on fft256 points

Synopsis: __vector__ int fft256(*W, *x, *data_temp, *X)

Include file: DSPlib.h.

*W: pointer to the ordinary trigonometric coefficients table exp(-i × 2 × pi ×
n /256), with n=0...127. Type: __complex__ float*

x: pointer to the input vector (size 256). Type: __complex__ float

*data_temp: pointer to a temporary vector for FFT computation (size 256).

Type: __complex__ float*

X k� � W256
x k� x n� � k�

n 0=

255

� 0�255= =
DSP Library User Manual (draft) 3-13

DRAFT–DPS–04/05

DSP Functions Description
*X: pointer to the output vector (size 256). After function call X contains
the FFT of x vector. Type: __complex__ float*

The function fft256 is the mixed radix implementation of the 256 points FFT. The fft32m
assembly function is used as component block. If more than one fft size is used in an
application the module fft32m is shared among them.

Note: the function fft256 uses 75 locations of the stack

Restrictions. only the following vectors combinations are allowed:

x � data_temp � X

x = data_temp � X

x = X � data_temp

x and X can be allocated in Internal Memory, in Buffer Memory or in
Parm memory

data_temp must be always in Internal Memory

Number of cycles:

1729

Number of VLIW:

175

File: fft256.mas

3.13 fft288 Function: complex FFT on 288 points

Synopsis: __vector__ int fft288 (*W, *x, *data_temp, *X)

Include file: DSPlib.h.

*W: pointer to the ordinary trigonometric coefficients table exp(-
i*2*pi*n/288), with n=0..143. Type: __complex__ float*

x: pointer to the input vector (size 288). Type: __complex__ float

*data_temp: pointer to a temporary vector for FFT computation (size 288).

Type: __complex__ float*

X k� � W288
n k� x n� � k�

n 0=

287

� 0�287= =
3-14 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
*X: pointer to the output vector (size 288). After function call X contains
the FFT of x vector. Type: __complex__ float*

The function fft288 is the mixed radix implementation of the 288 points FFT. The fft32m
assembly function is used as component block. If more than one fft size is used in an
application the module fft32m is shared among them.

Note: the function fft288 uses 75 locations of the stack

Restrictions. only the following vectors combinations are allowed:

x � data_temp � X

x = data_temp � X

x = X � data_temp

x and X can be allocated in Internal Memory, in Buffer Memory or in
Parm memory

data_temp must be in always in Internal Memory

Number of cycles:

2623

Number of VLIW:

193

File: fft288.mas

3.14 fft512 Function: complex FFT on 512 points

Synopsis: __vector__ int fft512 (*W, *x, *data_temp, *X)

Include file: DSPlib.h.

*W: pointer to the ordinary trigonometric coefficients table exp(-i × 2 × pi ×
n/512), with n=0..255. Type: __complex__ float*

x: pointer to the input vector (size 512). Type: __complex__ float

*data_temp: pointer to a temporary vector for FFT computation (size 512).Type:
__complex__ float*

*X: pointer to the output vector (size 512). After function call X contains
the FFT of x vector. Type: __complex__ float*

X k� � W512
n k� x n� � k�

n 0=

511

� 0�511= =
DSP Library User Manual (draft) 3-15

DRAFT–DPS–04/05

DSP Functions Description
The function fft512 is the mixed radix implementation of the 512 points FFT. The fft32m
assembly function is used as component block. If more than one fft size is used in an
application the module fft32m is shared among them.

Note: the function fft512 uses 75 locations of the stack

Restrictions.

only the following vectors combinations are allowed:

x � data_temp � X

x = data_temp � X

x = X � data_temp

x and X can be allocated in Internal Memory, in Buffer Memory or in
Parm memory

data_temp must be always in Internal Memory

Number of cycles:

3251

Number of VLIW:

178

File: fft512.mas

3.15 fft64 Function: complex FFT on 64 points

Synopsis: __vector__ int fft64(*W, *x, *data_temp, *X)

Include file: DSPlib.h.

*W: pointer to the ordinary trigonometric coefficients table exp(-i × 2 × pi ×
n/64), with n=0.31. Type: __complex__ float*

x: pointer to the input vector (size 64). Type: __complex__ float

*data_temp: pointer to a temporary vector for FFT computation (size 64) Type:
__complex__ float*

*X: pointer to the output vector (size 64). After function call X contains the
FFT of x vector. Type: __complex__ float*

X k� � W64
n k� x n� � k�

n 0=

63

� 0�31= =
3-16 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
The function fft64 is the mixed radix implementation of the 64 points FFT. The fft32m
assembly function is used as component block. If more than one fft size is used in an
application the module fft32m is shared among them.

Note: the function fft64 uses 75 locations of the stack

Restrictions.

only the following vectors combinations are allowed:

x � data_temp � X

x = data_temp � X

x = X � data_temp

x and X can be allocated in Internal Memory, in Buffer Memory or in
Parm memory

data_temp must be always in Internal Memory

Number of cycles:

769

Number of VLIW:

148

File: fft64.mas

3.16 FIR Function: complex FIR filter

Synopsis: __vector__ int FIR(*X, **address_buffer, *H, *Y, L, M)

Include file: DSPlib.h.

X: pointer to the input vector (size L). Type: __complex__ float

**address_buffer: pointer to the pointer to the delay_line (size M). Type: __complex__
float**

*H: pointer to the FIR filter coefficients (size M). They must be stored in
ordinary sequence, i .e. starting from index 0 to M-1. Type:
__complex__ float*

*Y: pointer to the output vector (size L). After function call, Y contains the
filtered sequence of data input vector X. Type: __complex__float*

Y k� � X n� � H k n–� � k�
n 0=

M 1–

� 0�L 1–= =
DSP Library User Manual (draft) 3-17

DRAFT–DPS–04/05

DSP Functions Description
L: input and output vectors length. Type: int

M: filter length. Type: int

The function FIR is a FIR filter implementation able to filter complex input vectors of
length L with a filter of length M. A running filter can be obtained making infinite calls to
the FIR function. In this way it's allowed the computation of a complex vector of infinite
length. The input data pointed by "X" are copied in the circular delay-line during the
function execution: thus the delay-line is kept updated from function call to call. The
assembly function “initFIR” on page 3-40, is used to initialize the FIR computation. It
must be called only once, before the first FIR call.For the single execution of the FIR fil-
ter function see the function “conv” on page 3-4, which allows computing the FIR filter
without maintaining a delay-line (less memory occupation).

Note: the function FIR uses 3 locations of the stack

Restrictions:

L must be an even value

M must be an even value multiple of 4 and greater or equal to 16

L must be less-equal M

Number of cycles:

136 + (79 + 13 × (M / 4 - 3)) × L / 2

Number of VLIW:

99

File: FIR.mas, initFIR.mas

3.17 FirNlmsll Function: FIR filter computed using Least Mean Square Algorithm

Synopsis: __vector__ int FirNlmsll (*X, *H, *Y, *D, N, P, B)

Include file: DSPlib.h

X: pointer to the input buffer in vector memory space. Type: float

H: pointer to the buffer containing filter kernel coefficients. Type: float

Y: pointer to the buffer containing reference output. Type: float

D: pointer to the delay buffer of length P. Type: float
3-18 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
N: number of samples over which the fitler is adapted (adaptation time).
Type: int

P: filter kernel size. Type: int

B: adaption coefficient. Type: float*

The function FirNlmsll computes a FIR filter using coefficients stored in the float array H
applied to the elements of the input float array X. The float array H has to be initialized to
zero or to meaningful values. The adapted filter coefficients are available in the same
buffer at the end of the execution of the function. The Algorithm for the filter is as given
below:

1. copy of 1 sample from the input buffer X into the delay buffer D

2. convolution of D by the filter kernel H to obtain the output value T

3. compute of the difference between the obtained output and the desired
output

4. compute of the energy of the previous P-1 samples stored in the delay buffer

5. compute of the correction factor by the expression

6. applying of the correction factor to the filter kernel according as follow

Restrictions:

T n� � D n k–� � H k� ��

k 0=

P 1–

�=

e T n� � Y n� �–=

E D k� �
2

k 0=

P 1–

�=

C B e�
E

------------=

H k� � H k� � C D k� ��+= �k 0�P 1–=
DSP Library User Manual (draft) 3-19

DRAFT–DPS–04/05

DSP Functions Description
P must be multiple of 4

X must be in left memory

H must be in left memory

Y must be in left memory

D must be in left memory

Number of cycles:

77+ (94+ 4.25 × (P-4)) × (N-P+1) +8.0 × P

Number of VLIW:

130

File: FirNlmsll.mas

3.18 FirNlmsv Function: pair of FIR filters computed using Least Mean Square Algorithm

Synopsis: __vector__ int FirNlmsv (*X, *H, *Y, *D, N, P, B)

Include file: DSPlib.h

*X: pointer to the input buffer in vector memory space. Type: __vector__
float*

*H: pointer to the buffer containing filter kernel coefficients. Type:
__vector__ float*

*Y: pointer to the buffer containing reference output. Type: __vector__
float*

D: pointer to the delay buffer of length P. Type: __vector__ float

N: number of samples over which the fitler is adapted (adaptation time).
Type: int

P: filter kernel size. Type: int

B: adaption coefficient. Type: __vector__ float*

The function FirNlmsv computes a pair of FIR filters using coefficients stored in the vec-
torial float array H applied to the elements of the vectorial float input array X. The
vectorial float array H has to be initialized to zero or to meaningful values. The adapted
filter coefficients are available in the same buffer at the end of the execution of the func-
tion. The Algorithm for the filter is as given below:
3-20 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
1. copy of 1 sample from the input buffer X into the delay buffer D

2. convolution of D by the filter kernel H to obtain the output value T

3. compute of the difference between the obtained output and the desired
output

4. compute of the energy of the previous P-1 samples stored in the delay buffer

5. compute of the correction factor by the expression

6. applying of the correction factor to the filter kernel according as follow

Restrictions:

P must be multiple of 4

Number of cycles:

78 + (94+ 4.25 × (P-4)) × (N-P+1) +8.0 × P - 7

Number of VLIW:

135

File: FirNlmsv.mas

T n� � D n k–� � H k� ��

k 0=

P 1–

�=

e T n� � Y n� �–=

E D k� �
2

k 0=

P 1–

�=

C B e�
E

------------=

H k� � H k� � C D k� ��+= �k 0�P 1–=
DSP Library User Manual (draft) 3-21

DRAFT–DPS–04/05

DSP Functions Description
3.19 getvq Function: extraction of vectorial (left - right) data from a vector queue to the des-
tination vector X

Synopsis: int getvq(*q, *X, StrideX, Nelements)

*q: pointer to a queue structure defined using the vqdef macro. Type:
void *

*X: pointer to the destination vector where the data are copied. Type:
void *

StrideX: stride used to write data to the X vector. Type: int

Nelements: number of elements copied. Type: int

The function getvq copies the data from the vector queue (q) to the destination buffer
(X). If the number of elements in the vector queue is lower than Nelements a -1 is
returned (q underrun), but the copy is anyway done. This allows using the getvq also in
a non-strictly queued structure, but in structures where circular addressing is used over
a vector. A vector queue is a structure defined using the macro "vqdef" and explicitly
declared using that macro: see the function “initvq” on page 3-40. If the return code is
not checked the structure is simply a circular buffer and the user must guarantee
consistency.

Restrictions:

Nelement must be greater than 12 and multiple of 4

Recall:

Nelement can be 2047 elements max

Number of cycles:

65 + 1× Nelements

Number of VLIW:

39

File: getvq.mas

3.20 getvq_f2i Function: extraction of vectorial (left - right) data from a vector queue to the des-
tination vector and float to integer conversion

Synopsis: int getvq_f2i(*q, *X, StrideX, Nelements)

*q: pointer to a vector queue structure defined using the vqdef macro.
Type: __vector__ float *
3-22 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
*X: pointer to the destination vector where the data are copied. Type:
__vector__ int *

StrideX: stride used to write data to the X vector. Type: int

Nelements: number of elements copied. Type: int

The function getvq_f2i copies data from the vector queue to the destination buffer after
their conversion from float to integer. If the number of elements in the vector queue is
lower than Nelements a -1 is returned (q underrun), but the copy is anyway done. This
allows using the getvq_f2i also in a non-strictly queued structure, but in structures where
circular addressing is used over a vector. A vector queue is a structure defined using the
macro “vqdef” explicitly declared using that macro see the function: “initvq” on page 3-
40. If the return code is not checked the structure is simply a circular buffer and the user
must guarantee a consistency.

Restrictions:

Nelements must be greater than 12 and multiple of 4

Recall:

Nelements can be 2047 elements max

Number of cycles:

60 + 1 × Nelements

Number of VLIW:

36

File: getvq_f2i.mas

3.21 getvq_i2f Function: extraction of vectorial (left - right) data from a vector queue to the des-
tination vector and integer to float conversion

Synopsis: int getvq_i2f (*q, *Z, StrideZ, Nelements)

*q: pointer to a vector queue structure defined using the vqdef macro.
Type: __vector__ int*

*Z: pointer to the destination vector where the data are copied. Type:
__vector__ float *

StrideZ: stride used to write data to the X vector. Type: int

Nelements: number of elements copied. Type: int

The function getvq_i2f copies data from the vector queue to the destination buffer after
their conversion from integer to float. If the number of elements in the vector queue is
lower than Nelements a -1 is returned (q underrun), but the copy is anyway done. This
allows using the getvq_i2f also in a non-strictly queued structure, but in structures where
DSP Library User Manual (draft) 3-23

DRAFT–DPS–04/05

DSP Functions Description
circular addressing is used over a vector. A vector queue is a structure defined using the
macro “vqdef” explicitly declared using that macro see the function: “initvq” on page 3-
40. If the return code is not checked the structure is simply a circular buffer and the user
must guarantee consistency.

Restrictions:

Nelements must be greater than 12 and multiple of 4

Recall:

Nelements can be 2047 elements max

Number of cycles:

71 + 1 × Nelements

Number of VLIW:

40

File: getvq_i2f.mas

3.22 getvqelem Function: number of unread elements in a vector queue

Synopsis: int getvqelem(*q)

*q: pointer to a vector queue structure defined using the vqdef macro:
Type: void *

A vector queue is a structure defined using the macro "vqdef" and explicitly declared
using that macro see the function: “initvq” on page 3-40.

Recall:

the vector queue length can be 2047 elements max

Number of cycles:

12

Number of VLIW:

4

File: getvqelem.mas

3.23 getvqfree Function: number of free positions in a vector queue
3-24 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
Synopsis: int getvqfree(*q)

*q: pointer to a vector queue structure defined using the vqdef macro:
Type: void *

A vector queue is a structure defined using the macro "vqdef" and explicitly declared
using that macro see the function: “initvq” on page 3-40.

Recall:

the vector queue length can be 2047 elements max

Number of cycles:

12

Number of VLIW:

4

File: getvqfree.mas

3.24 hilbert (1) Function: discrete time Hilbert function on a complex input vector of N elements

where z(k) is a sequence defined as:

Synopsis: __vector__ int hilbert(*W, *X, *data_temp, *Y, *Z, fft_ptr, ifft_ptr, N)

Include file: DSPlib.h.

*W: pointer to the ordinary trigonometric coefficients table exp(-i × 2 × pi ×
n/N), with n=0..N/2-1.Type: __complex__ float*

X: pointer to the input vector (size N). Type: __complex__ float

1. See S. Lawrence Marple, Jr. "Computing the Discrete-Time 'Analytic' Signal via FFT", IEEE Transactions on Signal Processing,
Vol 47, No 9, September 1999, page 2600.

Z k� � ifft fft Re X k� �� �� � z k� ��	
= k 0�N 1–=

z k� �

1 for k 0=

2 for 1 k N 2 1–�� �

1 for k N 2�=

0 for N 2 1+� k N��
�
�
�
�
�
�

=

DSP Library User Manual (draft) 3-25

DRAFT–DPS–04/05

DSP Functions Description
*data_temp: pointer to a temporary vector for FFT computation (size N) Type:
__complex__ float*

Y: pointer to the first output vector (size N). Type: __complex__ float

*Z: pointer to the second output vector (size N). Type: __complex__
float*

fft_ptr: integer containing the program memory address for the FFT function
to be called. Note that the function depends from the input vector
length N. If , then the called function will be fft256, if

, it will be fft64, etc.See "C initialization for hilbert function" in
the follow, for the fft_ptr initialization. Type: int

ifft_ptr: integer containing the program memory address for the IFFT function
to be called. Note that the function depends from the input vector
length N. If , then the called function will be ifft256, if

, it will be ifft64, etc. See "C initialization for hilbert function" in
the follow, for the ifft_ptr initialization. Type: int

N: input and output vectors length. Type: int

The function hilbert computes the Hilbert transform of the real part of a complex input
vector (X). It calls the function vmove2v to build a temporary complex vector input in
wich the real part is equal to the real part of X and the imaginary part is equal to 0. The
real part of the second complex output vector (Z) is the original data input, the imaginary
part contains the Hilbert transform.

3.24.1 C initialization for
hilbert function.

Before the hilbert call, the integer variables fft_ptr and ifft_ptr must be initialized with the
fft and ifft functions pointers. To do this, the following Macro must be used:

__GetFuncPtrMem__(name,funcname)

 where:

name is the integerer variable (global or local) initialized with the func-
name function pointer

funcname is the function called.

In particular hilbert calls 2 functions: fft and ifft , so you need to use the previous Macro
for both:

__GetFuncPtrMem__(name1,funcname1)

__GetFuncPtrMem__(name2,funcname2)

 where:

name1 is the fifth parameter passed to the hilbert function (fft_ptr)

funcname1 is one of the following functions: fft1024, fft512, fft256,
fft288, fft128, fft64

N 256=
N 64=

N 256=
N 64=
3-26 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
name2 is the sixth parameter passed to the hilbert function (ifft_ptr)

funcname2 is one of the following functions: ifft1024, ifft512, ifft256,
ifft228, ifft128, ifft64

In order to use the previous Macro, the file “magic.h” must be included in your project.

Note: the function hilbert uses 75 locations of the stack included that utilized
by the fft and ifft functions

Restrictions:

can be 2 differents configuration of the parameter passed to the hil-
bert function:

1.hilbert(*W, *X, *data_temp, *Z, *Z, fft_ptr, ifft_ptr, N)

2.hilbert(*W, *X, *data_temp, *Y, *Z, fft_ptr, ifft_ptr, N)

the configuration 1 can be used only to store the output of the hilbert
function. In this case the output of the fft function is lost. The output of
the hilbert function is memorized in the data array Z.

the configuration 2 can be used to store both the output of the fft func-
tion and the output of the hilbert function . The first is saved in the
data array Y, the second in the data array Z.

N must be one of the following values: 1024, 128, 256, 288, 512, 64

see the restrictions for the fft and ifft functions

Number of cycles:

174 + 2.6875 × N + fft cycles + ifft cycles

Number of VLIW:

113

File: hilbert.mas, vmove2v.mas

3.25 ifft1024 Function: complex IFFT on 1024 points

Synopsis: __vector__ int ifft1024(*W, *X, *data_temp, *x)

Include file: DSPlib.h.

x k� � 1
1024
------------- W1024

n k�– X n� � k�
n 0=

1023

� 0�1024==
DSP Library User Manual (draft) 3-27

DRAFT–DPS–04/05

DSP Functions Description
*W: pointer to the ordinary trigonometric coefficients table exp(-i × 2 × pi ×
n/1024), with n=0..511. Type: __complex__ float*

X: pointer to the input vector (size 1024). Type: __complex__ float

*data_temp: pointer to a temporary vector for IFFT computation (size 1024).

Type: __complex__ float*

*x: pointer to the output vector (size 1024). After function call x contains
the FFT of X vector. Type: __complex__ float*

The function ifft1024 is the mixed radix implementation of the 1024 points IFFT. The
ifft32m assembly function is used as component block. If more than one fft size is used
in an application the module ifft32m is shared among them.

Note: the function ifft1024 uses 75 locations of the stack

Restrictions: only the following vectors combinations are allowed:

X � data_temp � x

X = data_temp � x

X = x � data_temp

X and x can be allocated in Internal Memory, in Buffer Memory or in
Parm memory

data_temp must be always in Internal Memory

Number of Cycles:

6527

Number of VLIW:

233

File: ifft1024.mas

3.26 ifft128 Function: complex IFFT on 128 points

Synopsis: __vector__ int ifft128(*W, *X, *data_temp, *x)

Include file: DSPlib.h.

x k� � 1
128
---------- W128

n– k�– X n� � k�
n 0=

128

�= 0�1024=
3-28 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
*W: pointer to the ordinary trigonometric coefficients table exp(-i × 2 × pi ×
n/128), with n=0..63.Type: __complex__ float*

X: pointer to the input vector (size 128). Type: __complex__ float

*data_temp: pointer to a temporary vector for IFFT computation (size 128).

Type: __complex__ float*

*x: pointer to the output vector (size 128). After function call x contains
the FFT of X vector. Type: __complex__ float*

The function ifft128 is the mixed radix implementation of the 128 points IFFT. The
ifft32m assembly function is used as component block. If more than one fft size is used
in an application the module ifft32m is shared among them.

Note: the function ifft128 uses 75 locations of the stack

Restrictions.

only the following vectors combinations are allowed:

X � data_temp � x

X = data_temp � x

X = x � data_temp

X and x can be allocated in Internal Memory, in Buffer Memory or in
Parm memory

data_temp must be always in Internal Memory

Number of cycles:

1112

Number of VLIW:

176

File: ifft128.mas

3.27 ifft256 Function: complex IFFT on 256 points

Synopsis: __vector__ int ifft256(*W, *X, *data_temp, *x)

Include file: DSPlib.h.

x k� � 1
256
---------- W256

n– k� X n� � k�
n 0=

255

�= 0�255=
DSP Library User Manual (draft) 3-29

DRAFT–DPS–04/05

DSP Functions Description
*W: pointer to the ordinary trigonometric coefficients table exp(-i × 2 × pi ×
n/256), with n=0..127. Type: __complex__ float*

X: pointer to the input vector (size 256). Type: __complex__ float

*data_temp: pointer to a temporary vector for IFFT computation (size 256).

Type: __complex__ float*

*x: pointer to the output vector (size 256). After function call x contains
the FFT of X vector. Type: __complex__ float*

The function ifft256 is the mixed radix implementation of the 256 points IFFT. The
ifft32m assembly function is used as component block. If more than one fft size is used
in an application the module ifft32m is shared among them.

Note: the function ifft256 uses 75 locations of the stack

Restrictions.

only the following vectors combinations are allowed:

X � data_temp � x

X = data_temp � x

X = x � data_temp

X and x can be allocated in Internal Memory, in Buffer Memory or in
Parm memory

data_temp must be always in Internal Memory

Number of cycles:

1829

Number of VLIW:

183

File: ifft256.mas

3.28 ifft288 Function: complex IFFT on 288 points

Synopsis: __vector__ int ifft288 (*W, *X, *data_temp, *x)

Include file: DSPlib.h.

x k� � 1
288
---------- W288

n– k� X n� � k�
n 0=

287

�= 0�287=
3-30 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
*W: pointer to the ordinary trigonometric coefficients table exp(-i × 2 × pi ×
n/288), with n=0..143. Type: __complex__ float*

X: pointer to the input vector (size 288). Type: __complex__ float

*data_temp: pointer to a temporary vector for IFFT computation (size 288).

Type: __complex__ float*

*x: pointer to the output vector (size 288). After function call x contains
the FFT of X vector. Type: __complex__ float*

The function ifft288 is the mixed radix implementation of the 288 points FFT. The ifft32m
assembly function is used as component block. If more than one fft size is used in an
application the module ifft32m is shared among them.

Note: the function ifft288 uses 75 locations of the stack

Restrictions.

only the following vectors combinations are allowed:

X � data_temp � x

X = data_temp � x

X = x ��data_temp

X and x can be allocated in Internal Memory, in Buffer Memory or in
Parm memory

data_temp must be always in Internal Memory

Number of cycles:

2836

Number of VLIW:

179

File: ifft288.mas

3.29 ifft512 Function: complex IFFT on 512 points

Synopsis: __vector__ int ifft512 (*W, *X, *data_temp, *x)

Include file: DSPlib.h.

x k� � 1
512
---------- W512

n– k� X n� � k�
n 0=

511

�= 0�512=
DSP Library User Manual (draft) 3-31

DRAFT–DPS–04/05

DSP Functions Description
*W: pointer to the ordinary trigonometric coefficients table exp(-i × 2 × pi ×
n/512), with n=0..255. Type: __complex__ float*

X: pointer to the input vector (size 512). Type: __complex__ float

*data_temp: pointer to a temporary vector for IFFT computation (size 512).

Type: __complex__ float*

*x: pointer to the output vector (size 512). After function call x contains
the FFT of X vector. Type: __complex__ float*

The function ifft512 is the mixed radix implementation of the 512 points IFFT. The
ifft32m assembly function is used as component block. If more than one fft size is used
in an application the module ifft32m is shared among them.

Note: the function ifft512 uses 75 locations of the stack

Restrictions.

only the following vectors combinations are allowed:

X�� data_temp � x

X = data_temp � x

X = x � data_temp

X and x can be allocated in Internal Memory, in Buffer Memory or in
Parm memory

data_temp must be always in Internal Memory

Number of cycles:

3487

Number of VLIW:

181

File: ifft512.mas

3.30 ifft64 Function: complex IFFT on 64 points

Synopsis: __vector__ int ifft64(*W, *X, *data_temp, *x)

Include file: DSPlib.h.

x k� � 1
64
------ W64

n–– k� X k� � k�
n 0=

63

�= o�31=
3-32 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
*W: pointer to the ordinary trigonometric coefficients table exp(-i × 2 × pi ×
n/64), with n=0..31. Type: __complex__ float*

X: pointer to the input vector (size 64). Type: __complex__ float

*data_temp: pointer to a temporary vector for IFFT computation (size 64).

Type: __complex__ float*

*x: pointer to the output vector (size 64). After function call x contains the
FFT of X vector. Type: __complex__ float*

The function ifft64 is the mixed radix implementation of the 64 points IFFT. The ifft32m
assembly function is used as component block. If more than one fft size is used in an
application the module ifft32m is shared among them.

Note: the function ifft64 uses 75 locations of the stack

Restrictions.

only the following vectors combinations are allowed:

X � data_temp � x

X = data_temp ��x

X = X�� data_temp

X and x can be allocated in Internal Memory, in Buffer Memory or in
Parm memory

data_temp must be always in Internal Memory

Number of cycles:

767

Number of VLIW:

151

File: ifft64.mas

3.31 IIR1 Function: cascaded vectorial IIR biquad sections on input sequences

Synopsis: __vector__ int IIR1(*chan, *in, *out)

Include file: DSPlib.h.

*chan: pointer to an "iir_biquad_struct" structure. Type: pointer to the struc-
ture name type used in the declaration (see later for description)

*in: pointer to the input vector. Type: __vector__ float *
DSP Library User Manual (draft) 3-33

DRAFT–DPS–04/05

DSP Functions Description
*out: pointer to the output vector. Type: __vector__ float *

A running filter can be obtained making infinite calls to the IIR1 function. This allows fil-
tering infinite length vectors. This implementation is pipelined on the stages parameter,
i.e. it is best suited when the number of stages is greater than the number of input data
channel and of the number of output samples to be computed at each call. See the func-
tion “IIR2” on page 3-36 for other function optimization flavors. At least one data
structure of the type "type_name" must be declared to allow proper function execution.
The structure of type "type_name" can be declared using the macro IIR1_struct_def
(see DSPlib.h). The structure "type_name" contains the coefficients and the status val-
ues of the different biquad sections for each stage and processing channel, the gain
value for the different processing channels and the pointers to the array declared with
structure.

typedef struct type_name

{

float *a_circ_ptr;

float *b_circ_ptr;

float *k_circ_ptr;

float *s_circ_ptr;

float *G_circ_ptr;

float a[channel_Nr][stage_Nr][2];

float b[channel_Nr][stage_Nr][2];

float k[channel_Nr][stage_Nr][2];

float s[channel_Nr][stage_Nr][2];

float Gain[channel_Nr];

]type_name;

#define IIR1_struct_def(tag, stage_Nr, channel_Nr) typedef struct tag { \

__vector__ float *a_circ_ptr;\

__vector__ float *b_circ_ptr;\

__vector__ float *k_circ_ptr;\

__vector__ float *s_circ_ptr;\

__vector__ float *G_circ_ptr;\

__vector__ float a[channel_Nr][stage_Nr][2];\

__vector__ float b[channel_Nr][stage_Nr][2];\

__vector__ float k[channel_Nr][stage_Nr][2];\

__vector__ float s[channel_Nr][stage_Nr][2];\

__vector__ float Gain[channel_Nr];} tag;
3-34 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
The IIR1_struct_def has as parameters the type name (type_name) to be assigned to
the structure, the number of IIR channels to be processed (channel_Nr) and the IIR filter
stage number (stage_Nr).

The input and output vectors must be ordered as follows:

x1(k), x1(k+1), x2(k), x2(k+1), x3(k), x3(k+1), xNch(k), xNch(k+1),

x1(k+2), x1(k+3), x2(k+2), x2(k+3), x3(k+2), x3(k+3), xNch(k+2), xNch(k+3),

..

x1(k+Ns-1), x1(k+Ns), x2(k+Ns-1), x2(k+Ns), x3(k+Ns-1), x3(k+Ns), xNch(k+Ns-1),
xNch(k+Ns)

i.e. the input and output vectors are composed by Nch pair of data (vectorial processing)
with consecutive indexes k and k+1. If more than two samples must be computed then
the different samples will follow in the array.The input and output vector structure is:

x[Ns/2][Nch][2].

The ordinary (anyway vectorial) filtering of an input sequence like the Matlab "fil-
ter(b,a,x)" can be performed using stage_Nr = length(x), channel_Nr = 1 and initializing
the coefficent arrays as described later. A single biquad section has the following form:

The Gain term is the DC gain of the biquad section.

The equations implementing the canonical form II of the IIR filter are:

In the actual implementation of a cascade of sections, one single multiply is performed
at the end, combining all the gains of the cascade.

In order to decouple the output computation equation from the state evolution equation,
allowing better computation pipelining, the following modification has been done on the
biquad equation:

w(k) = x(k) + a1 × w(k-1) + a2 × w(k-2);

w(k+1) = x(k+1) + a1 × x(k) + k1 × w(k-1) + a1 × a2 × w(k-2);

y(k) = x(k) + b1 × w(k-1) + b2 × w(k-2);

y(k+1) = x(k+1) + b1 × x(k) + k2 × w(k-1) + b1 × a2 × w(k-2);

Here w(k), w(k+1), y(k) and y(k+1) depends only on w(k-1) and w(k-2).

If the coefficients are expressed in the Matlab format, the following equations have to be
used to compute the coefficients a1, a2, b1, b2, k1 and k2:

a1 = -a(2);

a2 = -a(3);

H z� � gain
1 b1 z 1– b2 z 2–�+�+

1 a1 z 1– a2 z 2–�–�–
---�=

w n� � x n� � a1 w n 1–� �� a2 w n 2–� ��+ +=

y n� � w n� � b1 w n 1–� �� b2 w n 2–� ��+ +=
DSP Library User Manual (draft) 3-35

DRAFT–DPS–04/05

DSP Functions Description
b1 = (-a(2)+b(2)/b(1));

b2 = (-a(3)+b(3)/b(1));

k1 = a1^2 + a2;

k2 = a1 × b1 + b2;

The coefficients must be stored in the respective arrays ordered as follows:

a[Channel][Stage][0] = a2

a[Channel][Stage][1] = a1

b[Channel][Stage][0] = b2

b[Channel][Stage][1] = b1

k[Channel][Stage][0] = k1

k[Channel][Stage][1] = k2

Note the index inversion for the array "a" and "b". This coefficients are used in the com-
putation performed by the function "IIR1".The assembly function “Init_IIR1_struct” on
page 3-38 is used to initialize the private IIR filter data structure. It must be called before
the first "IIR1" call. Then the function "init_IIR1_struct" can be called to clear the status
of the IIR filter; the coefficient values will not be affected. The init_IIR1_struct function
must be called to initialize the pointer to the status locations and coefficient locations
with the correct values of the S,L,A,M and P fields for appropriate looping and circular
addressing control.

Note: the function IIR1 uses 10 locations of the stack

Restrictions:

the number of stages must be greater or equal to 3

the number of input and output samples pair must be multiple of 2

Number of cycles:

189 + [47 + 14 × (Stages_Nr - 2)] × Ch_Nr × Samples_Nr/2

Number of VLIW:

109

File: IIR1.mas, Init_IIR1_struct.mas

3.32 IIR2 Function: cascaded vectorial IIR biquad sections on input sequences (one sam-
ple on the left and one on the right data memory)

Synopsis: __vector__ int IIR2(*chan, *in)

Include file: DSPlib.h.
3-36 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
chan: pointer to an "iir_biquad_struct" structure. Type: pointer to the struc-
ture name type used in the declaration (see later for description)

*in: pointer to the input vector. Type: __vector__ float *

A running filter can be obtained making infinite calls to the “IIR1” on page 3-33 function.
This allows filtering infinite length vectors. This function works "in place", overwriting the
input data with the output results.

The initialization function “Init_IIR2_struct” on page 3-39 initializes the coefficient for
independent biquad section coefficient values. All the biquad sections can be different
allowing multiple-input-multiple-output computation in true multichannel way. The func-
tion filters N_IIR_CH channel with N_IIR_CH different filter cascade.

This implementation is pipelined on the channels and stages parameter, i.e. it is best
suited when the number of stages is greater than the number of input data channel and
of the number of output samples to be computed at each call. See also IIR1 for other
function optimization flavors.

At least one data structure of the type "type_name" must be declared to allow proper
function execution. The structure of type "type_name" can be declared using the macro
IIR2_struct_def (see DSPlib.h). The structure "type_name" contains the coefficients and
the status values of the different biquad sections for each stage and processing chan-
nel, the gain value for the different processing channels and the pointers to the array
declared with structure.

The structure is:

typedef struct type_name

{

__vector__ float × a_circ_ptr;

__vector__ float × k_circ_ptr;

__vector__ float × w_circ_ptr;

__vector__ float a[stage_Nr][channel_Nr][2];

__vector__ float k[stage_Nr][channel_Nr][3];

__vector__ float w[stage_Nr][channel_Nr][2]

} type_name;

The IIR2_struct_def has as parameters a type name (type_name) to be assigned to the
structure, a number of IIR channels to be processed (channel_Nr) and a IIR filter stage
number (stage_Nr).

Note: the function IIR2 uses 10 locations of the stack

Restrictions:

the number of samples must be greater than 0;

the number of input channel must even and greater than 5 (6 min)
DSP Library User Manual (draft) 3-37

DRAFT–DPS–04/05

DSP Functions Description
the product Number_of_Stages × Number_of_Samples must be
lower than 2048 ince data are stored in an array of contiguous loca-
tions and thus the restriction on max array size applies

the init_IIR2_struct function must be called to initialize the pointer to
the status locations and coefficient locations with the correct values of
the S,L,A,M and P fields for appropriate looping and circular address-
ing control.

Number of cycles:

187 + [66 + 20 × (Stages_Nr × Ch_Nr -4)/ 2] × Samples_Nr

Number of VLIW:

122

File: IIR2.mas, Init_IIR2_struct.mas

3.33 Init_IIR1_struct Function: initialization procedure for the IIR1 function

Synopsis: void init_IIR1_struct(*bq_ptr, Ch_Nr, Stages_Nr, Samples_Nr)

Include file: DSPlib.h.

*bq_ptr: pointer to a structure of the type defined using the IIR1_struct_def
macro (see IIR1 description) containing the coefficient and status val-
ues for the IIR1 function. Type: type name assigned using the
IIR1_struct_def *

Ch_Nr: number of independent input channels to be processed. Type: int

Stages_Nr: number of biquad stages composing the desired filter. Type: int

Samples_Nr: number of samples to be filtered (equal to the number of samples
produced in output).Type: int

The function init_IIR1_struct is used to initialize the structure used by the function “IIR1”
on page 3-33. The operations performed are:

initialization of the status locations with all elements equal to 0.0f
(vectorial)

initialization of the pointer to the status locations and coefficient loca-
tions with the correct values of the S,L,A,M and P fields for
appropriate looping and circular addressing control.

Restrictions:

the restrictions are the same of the function IIR1, but they are not
checked by the function

the number of stages (Stages_Nr) must be greater than 3
3-38 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
the number of input and output samples pair (Samples_Nr) must be
multiple of 2.

Number of cycles:

277 + 6 × Stages_Nr × Ch_Nr × 2
Number of VLIW:

 49

File: Init_IIR1_struct.mas

3.34 Init_IIR2_struct Function: initialization procedure for the IIR2 function

Synopsis: void init_IIR2_struct(*bq_ptr, Ch_Nr, Stages_Nr, Samples_Nr)

Include file: DSPlib.h.

*bq_ptr: pointer to a structure of the type defined using the IIR1_struct_def
macro (see IIR2 description) containing the coefficient and status val-
ues for the IIR2 function. Type: type name assigned using the
IIR2_struct_def *

Ch_Nr: number of independent input channels to be processed. Type: int

Stages_Nr: number of biquad stages composing the desired filter. Type: int

Samples_Nr: number of samples to be filtered (equal to the number of samples
produced in output).Type: int

init_IIR2_struct is used to initialize the structure used by the IIR2 function.The opera-
tions performed are:

initialization of the status locations with all elements equal to 0.0f
(vectorial);

initialization of the pointer to the status locations and coefficient loca-
tions with the correct values of the S,L,A,M and P fields for
appropriate looping and circular addressing control.

Restrictions:

the restrictions are the same of the function IIR2, but they are not
checked by the function

Number of cycles:

204 + 6 × Stages_Nr × Ch_Nr × 2

Number of VLIW:

64

File: Init_IIR2_struct.mas
DSP Library User Manual (draft) 3-39

DRAFT–DPS–04/05

DSP Functions Description
3.35 initFIR Function: initialization procedure for the FIR function

Synopsis: __vector__ int initFIR(**address_buffer, M)

Include file: DSPlib.h.

**address_buffer: pointer to the pointer to the delay_line (size M) used in the FIR filter.

Type: __complex__ float**

M: delay_line length. Type: int

The function initFIR is used to initialize the variables of a FIR filter. The operations per-
formed are:

initialization of the delay_line with all elements equal to (0+ 0i)

initialization of the pointer to the delay_line (**address_buffer) with
the correct values of L (length = M), A (index = last element in the
vector, because it's used in decrement mode) and M (increment = -1,
because it's used in decrement mode)

Restrictions:

M must be an even value multiple of 4 and greater or equal to 16

Number of cycles:

35 + 3 × M

Number of VLIW:

23

File: initFIR.mas

3.36 initvq Function: initialization of the data structures used to manage a vector circular
buffer (vector queue)

Synopsis: void initvq(*q, Nelements)

Include file: DSPlib.h.

*q: pointer to a vector queue structure defined using the macro vqdef.
Type: void *

Nelements: length of the queue array contained in the structure: Type: int

A vector queue is a structure defined using the macro "vqdef" explicitly declared:
3-40 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
#define vqdef(tag, type, size) typedef struct tag { \

int qlen; \

int Nelements __attribute__((packed)); \

void *wptr; \

void *rptr; \

type queue[Nelements];} tag;

The pointer locations are set to the proper values in order to be used by the put and get
functions. Specifically the S field of q.wptr and q.rptr are the address of queue[0] while A
is set to 0.

This pseudo code describes the function performed:

q.wptr(S field) = &(q.queue[0]);

q.rptr(S field) = &(q.queue[0]);

q.wptr(L field) = Nelements;

q.rptr(L field) = Nelements;

q.wptr(A field) = 0;

q.rptr(A field) = 0;

q.wptr(M field) = 1;

q.rptr(M field) = 1;

Restrictions:

the vector queue length can be 2047 elements max

Number of cycles:

45

Number of VLIW:

22

File: initvq.mas

3.37 LastStage Function: "plain" radix two butterfly

Synopsis: __vector__ int LastStage(*X1, *X2, *W, *Y1, *Y2, N)

Include file: DSPlib.h.

X1: pointer to X1 input vector. Type: __complex__ float

Y1 k� � X1 k� � W k� � X2 k� ��+=

Y2 k� � X1 k� � W k� � X2 k� ��+=
k 0�N 1–=
DSP Library User Manual (draft) 3-41

DRAFT–DPS–04/05

DSP Functions Description
X2: pointer to X2 input vector. Type: __complex__ float

W: pointer to W coefficient vector. Type: __complex__ float

Y1: pointer to Y1 output vector. Type: __complex__ float

Y2: pointer to Y2 output vector. Type: __complex__ float

N: number of butterfly to be computed. Type: int

The function LastStage can be used as last FFT stage of a complete FFT by proving the
proper coefficients.

Note: the function LastStage uses 3 locations of the stack

Restrictions:

N must be greater or equal to 8 and multiple of 4

Number of cycles:

137 + 3.25 × N

Number of VLIW:

71

File: LastStage.mas

3.38 levinson Function: Levinson-Durbin recursion

M LPC� B=

R 0� � R 1� � � R P 1–� �
R 1� � R 0� � � R P 2–� �
� � � �

R P 1–� � R P 2–� � � R 0� �

LPC 1� �
LPC 2� �

�
LPC P� �

�

R 1� �
R 2� �
�
R P� �

=�
3-42 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
The previous set of equations computes the predictor coefficients LPC[P]. This set is
solved using the Levinson-Durbin recursion:

Synopsis: levinson(float *R, float *LPC, float *d, int P)

Include file: DSPlib.h.

*R: pointer to the autocorrelation input vector. Type: float *

LPC: pointer to the output vector. Type: float

*d: pointer to the scalar output. It stores the value of E calculated in the
last iteration : . Type: float*

P: number of coefficients to be computed. Type: int

The function levinson solves the order system of linear equations:
described above in matrix format, for the particular case where M is a real symmetric,
Toeplitz matrix and B is identical to the first coloumn of M shifted by one element.

Restrictions:

R must be in the left memory

LPC must be in the left memory

d must be in left memory

Number of cycles:

3297 (P = 11)

Number of VLIW:

131

File: levinson.mas

E 0� � R 0� �=

k i� �

R i� � LPC j� �
i 1–� � R i j–� ��

j 1=

i 1–

�–

E i 1–� �
---=

LPC i� �
i� � k i� �

=

LPC j� �
i� � LPC j� �

i 1–� � k i� � LPC i j–� �
i 1–� �

�–=

E i� �
1 k i� �

� �
2

–� � E i 1–� �
�=

1 j i 1–

 1 i p

E P� �

Pth M LPC� B=
DSP Library User Manual (draft) 3-43

DRAFT–DPS–04/05

DSP Functions Description
3.39 lpc2cep Function: cepstral coefficients of a real float array in left memory

Synopsis: lpc2cep (float *X, float *CEP, int N, int M)

Include file: DSPlib.h.

*X: pointer to the input vector. Type: float *

CEP: pointer to the output vector. Type: float

N: length of the input vector X. Type: int

P: number of coefficients to be computed. Type: int

The function lpc2cep returns int the float arry CEP, the cepstrum of the real float array X.

Restrictions:

X must be in the left memory

CEP must be in the left memory

Number of cycles:

5074 (N = 11 and M = 32)

Number of VLIW:

122

File: lpc2cep.mas

3.40 madd Function: sum of two complex matrices

Synopsis: __vector__ int madd(*A, *B, M, N, *C)

Include file: DSPlib.h

*A: pointer to the first input matrix . Type: __complex__ float *

*B: pointer to the second input matrix . Type: __complex__ float *

M: number of rows of matrix A and matrix B. Type: int

C r c(,) A r c�� � B r c�� �+=
r 0�M 1–=

c 0�N 1–=�
�
	

3-44 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
N: number of columns of matrix A and matrix B Type: int

*C: pointer to the output matrix . Type: __complex__ float *

The function madd computes the sum of 2 complex matrices of order .

Restrictions:

the product of must be > 1.

Number of cycles:

35 + 7 × (M × N / 2 -1)

Number of VLIW:

25

File: madd.mas

3.41 mchol Function: L - U decomposition of a positive definite square matrix using
Cholesky algorithm

Synopsis: __vector__ int mchol (*A, *L, *U, N)

Include file: DSPlib.h

*A: pointer to the input square matrix . Type: __complex__ float *

*L: pointer to the output square matrix into which the decomposed lower
triangular matrix is written. Type: __complex__ float *

*U: pointer to the output square matrix into which the decomposed upper
triangular matrix is written . Type: __complex__ float *

N: order of matrix A. Type: int

The function mchol decomposes a positive definite complex square matrix A into the
lower and upper triangular complex matrices L and U respectively using Cholesky
decomposition algorithm.

Note: the function mchol uses 3 locations of the stack

M N�

M N�

A r c(,) L r i�� � U i c�� ��

i 0=

N 1–

�=
r 0�N 1–=

c 0�N 1–=�
�
	

DSP Library User Manual (draft) 3-45

DRAFT–DPS–04/05

DSP Functions Description
Restrictions:

N should be > 3

Number of cycles:

0.4166 × + 23.75 × +47.84 × N + 138

Number of VLIW:

212

File: mchol.mas

3.42 mdeterm Function: determinant of a complex matrix of the order

Synopsis: __vector__ int mdeterm (*A, N, *C)

Include file: DSPlib.h

*A: pointer to the input square matrix . Type: __complex__ float *

N: order of matrix A. Type: int

*C: pointer to the output scalar . Type: __complex__ float *

The function mdeterm computes the determinant of a complex square matrix A of the
order . Gaussian elimination with partial pivoting is used for finding the determi-
nant. In place decomposition of matrix A into upper triangular matrix takes place and
hence the original values of input matirx is lost. The computed determinant value is writ-
ten to a complex scalar value whose pointer is passed to the function.

Note: the function mdeterm uses 5 locations of the stack

Restrictions:

N should be > 3

Number of cycles:

28 + 1.33 × + 23 × + 36.5 × N + Cycles for swap operation,
which is data dependent

Number of VLIW:

195

N3 N2

N N�

C det A=

N N�

N3 N2
3-46 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
File: mdeterm.mas

3.43 mdeterm2 Function: determinant of a complex matrix of the order

Synopsis: __vector__ int mdeterm2 (*A, *C)

Include file: DSPlib.h

*A: pointer to the input square matrix . Type: __complex__ float *

*C: pointer to the output complex scalar . Type: __complex__ float *

The function mdeterm2 computes the determinant of a complex square matrix A of the
order .

Number of cycles:

29

Number of VLIW:

9

File: mdeterm2.mas

3.44 mdeterm3 Function: determinant of a complex matrix of the order

Synopsis: __vector__ int mdeterm3 (*A, *C)

Include file: DSPlib.h

*A: pointer to the input square matrix . Type: __complex__ float *

*C: pointer to the output complex scalar . Type: __complex__ float *

2 2�

C det A=

2 2�

3 3�

C det A=
DSP Library User Manual (draft) 3-47

DRAFT–DPS–04/05

DSP Functions Description
The function mdeterm3 computes the determinant of a complex square matrix A of the
order .

Number of cycles:

70

Number of VLIW:

22

File: mdeterm3.mas

3.45 minvert Function: inverse of a complex square matrix of the order matrix

Synopsis: __vector__ int minvert (*A, *C, N)

Include file: DSPlib.h

*A: pointer to the input square matrix . Type: __complex__ float *

*C: pointer to the output square matrix . Type: __complex__ float *

N: order of matrix A. Type: int

The function minvert computes the inverse of a complex square matrix A of the order
. Gaussian-Jordan elimination with partial pivoting is used for finding the inverse.

In place decomposition of matrix A into upper triangular matrix takes place and hence
the original values of input matirx A is lost. The inverse of the matrix A computed is writ-
ten to the complex output vector C.

Note: the function minvert uses 9 locations of the stack

Restrictions:

N should be > 3

Number of cycles:

4.66 × + 68.5 × - N × 18.17 - 44 + 130 + Cycles for swap oper-
ation which is data dependent

3 3�

N N�

C A 1–
=

N N�

N3 N2
3-48 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
Number of VLIW:

400

File: minvert.mas

3.46 mmul Function: product of two complex matrices

Synopsis: __vector__ int mmul(*A, M, N, *B, P, *C)

Include file: DSPlib.h

*A: pointer to the first input matrix . Type: __complex__ float *

M: number of rows of matrix A. Type: int

N: number of columns of matrix A and rows of matrix B. Type: int

*B: pointer to the second input matrix . Type: __complex__ float *

P: number of columns of matrix B. Type: int

*C: pointer to the output matrix . Type: __complex__ float *

The function mmul computes the product of 2 complex matrices of order and
 respectively. The output matrix is of the order .

Restrictions:

N should be > 1.

Number of cycles:

112+ (((((6 × (N-1)+13) × M)+11) × P)

Number of VLIW:

56

File: mmul.mas

C r c(,) A r i�� � B i c�� ��

i 0=

N 1–

�=
r 0�M 1–=

c 0�P 1–=�
�
	

M N�
N P� M P�
DSP Library User Manual (draft) 3-49

DRAFT–DPS–04/05

DSP Functions Description
3.47 mtrace Function: trace of complex matrix

Synopsis: __vector__ int mtrace(*A, N, *Y)

Include file: DSPlib.h

*A: pointer to the input matrix . Type: __complex__ float *

N: order of the input matrix . Type: int

*Y: pointer to the output complex scalar. Type: __complex__ float *

The function mtrace computes the trace of a complex matrix of order .

Number of cycles:

35 + 5 × N / 2

Number of VLIW:

22

File: mtrace.mas

3.48 mvmul Function: product of a complex matrix with a set of complex vectors

Synopsis: __vector__ int mvmul (*A, M, N, *B, *C, P)

Include file: DSPlib.h

*A: pointer to the input matrix A(i,j). The matrix must be stored by row
(row-major order). Type: __complex__ float *

M: number of rows of matrix A. Type: int

N: number of columns of matrix A and rows of matrix B. Type: int

N N�

Y A i i(,)

i 0=

N 1–

�=

N N�

Yk i� � A i j�� � Xk� j� �

j 0=

N 1–

�= i 0�M 1–= k 0�P=
3-50 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
*X: pointer to the second input vector. Type: __complex__ float *

*Y: pointer to the output vector . Type: __complex__ float *

P: number of vectors. Type: int

The function mvmul computes the product of a matrix of order with P vectors
each of length N. The matrix A(i, j) is loaded into the register file and then is used to mul-
tiply the vectors. The input vector X must be stored in memory in subsequent locations
i.e. data storage must be equivalent to an array of vectors: X[P][N]. The output vector Y
will be equivalent to an array of vectors: X[P][M].

Restrictions:

N should be > 1

Number of cycles:

46 + ((((6 × (N-1)) + 17) × M) + 11) × P

Number of VLIW:

48

File: mvmul.mas

3.49 mvmul3x3 Function: product of a complex matrix with a set of complex vectors of
size 3

Synopsis: __vector__ int mvmul3x3(*A, *X, *Y, Nelements)

Include file: DSPlib.h.

*A: pointer to the input matrix A(i,j). The matrix must be stored by row
(row-major order).Type: __complex__ float*

X: pointer to the second input vector. Type: __complex__ float

Y pointer to the output vector. Type: __complex__ float

Nelements: number of input vectors. Type: int

The function mvmul3x3 executes the multiply of a matrix by a set of vectors. The matrix
A(i, j) is loaded into the register file and then is used to multiply the vectors. The input
vector X must be stored in memory in subsequent locations (i.e. data storage must be

M N�

3 3�

Yk i� � A i j�� � Xk� j� �
j 0=

2

�= i 0�2= k 0�Nelements=
DSP Library User Manual (draft) 3-51

DRAFT–DPS–04/05

DSP Functions Description
equivalent to an array of vectors: X[Nelements][3]). The output vector Y will be written in
memory like the input vector X.

Number of cycles:

59 + 9 × Nelements

Number of VLIW:

44

File: mvmul3x3.mas

3.50 mvmul4x4 Function: product of a complex matrix with a set of complex vectors of
size 4

Synopsis: __vector__ int mvmul4x4(*A, *X, *Y, Nelements)

Include file: DSPlib.h.

*A: pointer to the input matrix A(i,j). The matrix must be stored by row
(row-major order). Type: __complex__ float*

X: pointer to the second input vector. Type: __complex__ float

Y: pointer to the output vector. Type: __complex__ float

Nelements: number of input vectors. Type: int

The function mvmul4x4 executes the multiply of a matrix by a set of vectors. The matrix
A(i, j) is loaded into the register file and then is used to multiply the vectors. The input
vector X must be stored in memory in subsequent locations (i.e. data storage must be
equivalent to an array of vectors:X[Nelements][4]). The output vector Y will be written in
memory like the input vector X.

Number of cycles:

125 + 16 × Nelements

Number of VLIW:

68

File: mvmul4x4.mas

4 4�

Yk i� � A i j�� � Xk� j� �
j 0=

3

�= i 0�3= k 0�Nelements=
3-52 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
3.51 mvmul8x8 Function: product of a complex matrix with a set of complex vectors of
size 8

Synopsis: __vector__ int mvmul8x8(*A, *X, *Y, Nelements)

Include file: DSPlib.h.

*A: pointer to the input matrix A(i,j). The matrix must be stored by row
(row-major order). Type: __complex__ float*

X: pointer to the second input vector. Type: __complex__ float

Y: pointer to the output vector. Type: __complex__ float

Nelements: number of input vectors. Type: int

The function mvmul8x8 executes the multiplication of a matrix by a set of vectors. The
matrix A(i, j) is loaded into the register file and then is used to multiply the vectors. The
input vector X must be stored in memory in subsequent locations (i.e. data storage must
be equivalent to an array of vectors: X[Nelements][8]). The output vector Y will be writ-
ten in memory like the input vector X.

Note: the function mvmul8x8 uses 168 locations of the stack

Number of cycles:

461 + 69 × Nelements

Number of VLIW:

203

File: mvmul8x8.mas

8 8�

Yk i� � A i j�� � Xk� j� �
j 0=

7

�= i 0�7= k 0�Nelements=
DSP Library User Manual (draft) 3-53

DRAFT–DPS–04/05

DSP Functions Description
3.52 pack40to16ll Function: multiplication by a float value, addition of a float offset, clipping in a
float range of a pair of data in left memory: X1 and X2 and conversion
of the results in 16 bit integer arranged in a 32 bit word in left memory

Synopsis: __vector__ int pack40to16ll(*X, strideX, *Y, strideY, scale, offset,
ClipUp, ClipDown, Nelements)

Include file: DSPlib.h.

*X: pointer to the input vector (size N). Type: float *

StrideX: stride to be used for the X data. Type: int

Y: pointer to the output vector (size N/2). Type: int

StrideY: stride to be used for the Y data. Type: int

Scale: scalar multiply factor to scale the input vector. Type: float

Offset: scalar offset to be added to the input vector.Type: float

ClipUp: value to be used as upper limit for the data. Type: float

ClipDown: value to be used as lower limit for the data. Type: float

Nelements: number of elements to be computed. Type: int

The function pack40to16ll takes pair of data X: X1 and X2, scales them by a float factor,
adds a float offset, clips the values in a float range and converts the results to a pair of
16 bit integer arranged in a 32 bit word Y.

Restrictions:

Nelements must be greater or equal to 8 and multiple of 4

X must be in the left memory

Y must be in the left memory

ClipUp must be less or equal to 2^15 - 1

ClipDown must be greater or equal to -2^(16-1)

Number of cycles:

39 + 6 × Nelements

Number of VLIW:

40

Y k� � round clip X1 Scale Offset+�� �� � 16«= or round clip X2 Scale Offset+�� �� �
3-54 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
File: pack40to16ll.mas

3.53 pack40to16lr Function: multiplication by a float value, addition of a float offset, clipping in a
float range of a pair of data in left memory: X1 and X2 and conversion
of the results in 16 bit integer arranged in a 32 bit word in right
memory

Synopsis: __vector__ int pack40to16lr(*X, strideX, *Y, strideY, scale, offset,
ClipUp, ClipDown, Nelements)

Include file: DSPlib.h.

*X: pointer to the input vector (size N). Type: float *

StrideX: stride to be used for the X data. Type: int

Y: pointer to the output vector (size N/2). Type: int

StrideY: stride to be used for the Y data. Type: int

Scale: scalar multiply factor to scale the input vector. Type: float

Offset: scalar offset to be added to the input vector.Type: float

ClipUp: value to be used as upper limit for the data. Type: float

ClipDown: value to be used as lower limit for the data. Type: float

Nelements: number of elements to be computed. Type: int

The function pack40to16lr takes pair of data X: X1 and X2, scales them by a float factor,
adds a float offset, clips the values in a float range and converts the results to a pair of
16 bit integer arranged in a 32 bit word Y.

Restrictions:

Nelements must be greater or equal to 8 and multiple of 4

X must be in the left memory

Y must be in the right memory

ClipUp must be less or equal to 2^15 - 1

ClipDown must be greater or equal to -2^(16-1)

Number of cycles:

39 + 6 × Nelements

Y k� � round clip X1 Scale Offset+�� �� � 16«= or round clip X2 Scale Offset+�� �� �
DSP Library User Manual (draft) 3-55

DRAFT–DPS–04/05

DSP Functions Description
Number of VLIW:

41

File: pack40to16lr.mas

3.54 pack40to16rl Function: multiplication by a float value, addition of a float offset, clipping in a
float range of a pair of data in right memory: X1 and X2 and conver-
sion of the results in 16 bit integer arranged in a 32 bit word in left
memory

Synopsis: __vector__ int pack40to16rl(*X, strideX, *Y, strideY, scale, offset,
ClipUp, ClipDown, Nelements)

Include file: DSPlib.h.

*X: pointer to the input vector (size N). Type: float *

StrideX: stride to be used for the X data. Type: int

Y: pointer to the output vector (size N/2). Type: int

StrideY: stride to be used for the Y data. Type: int

Scale: scalar multiply factor to scale the input vector. Type: float

Offset: scalar offset to be added to the input vector.Type: float

ClipUp: value to be used as upper limit for the data. Type: float

ClipDown: value to be used as lower limit for the data. Type: float

Nelements: number of elements to be computed. Type: int

The function pack40to16rl takes pair of data X: X1 and X2, scales them by a float factor,
adds a float offset, clips the values in a float range and converts the results to a pair of
16 bit integer arranged in a 32 bit word Y.

Restrictions:

Nelements must be greater or equal to 8 and multiple of 4

X must be in the right memory

Y must be in the left memory

ClipUp must be less or equal to 2^15 - 1

Y k� � round clip X1 Scale Offset+�� �� � 16«= or round clip X2 Scale Offset+�� �� �
3-56 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
ClipDown must be greater or equal to -2^(16-1)

Number of cycles:

42 + 6 × Nelements

Number of VLIW:

41

File: pack40to16rl.mas

3.55 pack40to16rr Function: multiplication by a float value, addition of a float offset, clipping in a
float range of a pair of data in right memory: X1 and X2 and conver-
sion of the results in 16 bit integer arranged in a 32 bit word in right
memory

Synopsis: __vector__ int pack40to16rr(*X, strideX, *Y, strideY, scale, offset,
ClipUp, ClipDown, Nelements)

Include file: DSPlib.h.

*X: pointer to the input vector (size N). Type: float *

StrideX: stride to be used for the X data. Type: int

Y: pointer to the output vector (size N/2). Type: int

StrideY: stride to be used for the Y data. Type: int

Scale: scalar multiply factor to scale the input vector. Type: float

Offset: scalar offset to be added to the input vector.Type: float

ClipUp: value to be used as upper limit for the data. Type: float

ClipDown: value to be used as lower limit for the data. Type: float

Nelements: number of elements to be computed. Type: int

The function pack40to16rr takes pair of data X: X1 and X2, scales them by a float factor,
adds a float offset, clips the values in a float range and converts the results to a pair of
16 bit integer arranged in a 32 bit word Y.

Restrictions:

Nelements must be greater or equal to 8 and multiple of 4

Y k� � round clip X1 Scale Offset+�� �� � 16«= or round clip X2 Scale Offset+�� �� �
DSP Library User Manual (draft) 3-57

DRAFT–DPS–04/05

DSP Functions Description
X must be in the right memory

Y must be in the right memory

ClipUp must be less or equal to 2^15 - 1

ClipDown must be greater or equal to -2^(16-1)

Number of cycles:

41 + 6 × Nelements

Number of VLIW:

42

File: pack40to16rr.mas

3.56 putvq Function: filling of a vector queue with vecorial (left - right) data stored in the
vectorial array X

Synopsis: int putvq(*q, *X, StrideX, Nelements)

*q: pointer to a vector queue structure defined using the vqdef macro.
Type: void *

*X: pointer to the destination vector where the data are copied. Type:
void *

StrideX: stride used to read data to the X vector. Type: int

Nelements: number of elements copied. Type: int

The function putvq copies data to the vector queue from the X buffer. If the number of
elements available in the vector queue is lower than Nelements a -1 is returned (q over-
run), but the copy is anyway done. This allows using the putvq also in a non-strictly
queued structure, but in structures where circular addressing is used over a vector. A
vector queue is a structure defined using the macro “vqdef” explicitly declared using that
macro see the function: “initvq” on page 3-40. If the return code is not checked the struc-
ture is simply a circular buffer and consistency must be guaranteed by the user.

Recall:

Nelements can be 2047 elements max

Restrictions:

Nelements must be greater than 12 and multiple of 4

Number of cycles:

64 + 1× Nelements

Number of VLIW:
3-58 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
37

File: putvq.mas

3.57 putvq_f2i Function: filling of a vector queue with vecorial (left - right) data stored in the
vectorial array X after their conversion from float to integer

Synopsis: int putvq_f2i(*q, *X, StrideX, Nelements)

*q: pointer to a vector queue structure defined using the vqdef macro.
Type: __vector__ int *

*X: pointer to the destination vector where the data are copied. Type:
__vector__ float*

StrideX: stride used to read data to the X vector. Type: int

Nelements: number of elements copied. Type: int

The function putvq_f2i copies data to the vector queue from the X buffer after their con-
version from float to integer. If the number of elements available in the vector queue is
lower than Nelements a -1 is returned (q overrun), but the copy is anyway done. This
allows using the putvq_f2i also in a non-strictly queued structure, but in structures where
circular addressing is used over a vector. A vector queue is a structure defined using the
macro “vqdef” explicitly declared using that macro see the function: “initvq” on page 3-
40. If the return code is not checked the structure is simply a circular buffer and consis-
tency must be guaranteed by the user.

Recall:

Nelements can be 2047 elements max

Restrictions:

Nelement must be greater than 12 and multiple of 4

Number of cycles:

72 + 1 × Nelements

Number of VLIW:

38

File: putvq_f2i.mas

3.58 putvq_i2f Function: filling of a vector queue with vecorial (left - right) data stored in the
vectorial array X after their conversion from integer to float
DSP Library User Manual (draft) 3-59

DRAFT–DPS–04/05

DSP Functions Description
Synopsis: putvq_i2f (*q, *X, StrideX, Nelements)

*q: pointer to a vector queue structure defined using the vqdef macro.
Type: __vector__ float *

*X: destination vector where the data are copied. Type: __vector__ int *

StrideX: stride used to read data to the X vector. Type: int

Nelements: number of elements copied. Type: int

The function putvq_i2f copies data to the vector queue from the X buffer after their con-
version from integer to float. If the number of elements available in the vector queue is
lower than Nelements a -1 is returned (q overrun), but the copy is anyway done. This
allows using the putvq_i2f also in a non-strictly queued structure, but in structures where
circular addressing is used over a vector. A vector queue is a structure defined using the
macro “vqdef” explicitly declared using that macro see the function: “initvq” on page 3-
40. If the return code is not checked the structure is simply a circular buffer and consis-
tency must be guaranteed by the user.

Recall:

Nelements can be 2047 elements max

Restrictions:

Nelements must be greater than 12 and multiple of 4

Number of cycles:

72 + 1 × Nelements

Number of VLIW:

38

File: putvq_i2f.mas

3.59 v2magnlrl Function: vector squared magnitude

Synopsis: __vector__ int v2magnlrl(*X, strideX, *Y, strideY, *Z, strideZ,
Nelements)

Include file: DSPlib.h.

Z k� � X k� �2 Y k� �2+= k 0�Nelements=
3-60 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
*X: pointer to the first input vector. Type: float *

strideX: stride to be applied on X vector. Type: int

*Y: pointer to the second input vector. Type: float *

strideY: stride to be applied on Y vector. Type: int

*Z: pointer to the output vector. Type: float *

strideZ: stride to be applied on Z vector. Type: int

Nelements: number elements to be computed. Type: int

The function v2magnlrl computes the square magnitude of a pair of float array: X and Y.
The first must be stored in left memory, the second in right memory. The result is written
in left memory.

Restrictions:

Nelements can be any number greater or equal to 1

vector X must be in left data memory

vector Y must be in right data memory

vector Z must be in left data memory

Number of cycles:

24 + 14 × Nelements

Number of VLIW:

18

File: v2magnlrl.mas

3.60 v2magnv Function: vectorial complex squared magnitude

Synopsis: __vector__ int v2magnv(*X, strideX, *Z, strideZ, Nelements)

Include file: DSPlib.h.

*X: pointer to the complex input vector. Type: __complex__ float *

strideX: stride to be applied on X vector. Type: int

*Z: pointer to the output vector. Type: float *

StrideZ: stride to be applied on Z vector. Type: int

Z k� � ReX k� �� �2 ImX k� �� �2+= k 0�Nelements=
DSP Library User Manual (draft) 3-61

DRAFT–DPS–04/05

DSP Functions Description
Nelements: number elements to be computed. Type: int

The function v2magnv computes the square magnitude of a complex vector and writes
the result in left memory.

Restrictions:

Nelements must be greater or equal to 8 and multiple of 4

Z must be in left memory

Number of cycles:

26 + 2.75 × Nelements

Number of VLIW:

24

File: v2magnv.mas

3.61 vacoshll Function: inverse hyperbolic cosine of a float input array and left to left move

Synopsis: __vector__ int vacoshll (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array . Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vacoshll computes the inverse hyperbolic cosine of an input array stored in
left memory space and writes the output to an array in left memory space.

Y k� � X k� �� �acosh= k 0�Nelements 1–=
3-62 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
Precision:

see Table 3-1 on page 66

Restrictions:

Nelements must be multiple of 4

X must be in left memory

Y must be in left memory

Number of cycles:

400 + 27.75 × Nelements

Number of VLIW:

251

File: vacoshll.mas, vlogll.mas, vsqrtll.mas, lnCoeff.mas

3.62 vacoshlr Function: inverse hyperbolic cosine of a float input array and left to right move

Synopsis: __vector__ int vacoshlr (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array . Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vacoshlr computes the inverse hyperbolic cosine of an input array stored in
left memory space and writes the output to an array in right memory space.

Precision:

see Table 3-1 on page 66

Y k� � X k� �� �acosh= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-63

DRAFT–DPS–04/05

DSP Functions Description
Restrictions:

Nelements must be multiple of 4

X must be in left memory

Y must be in right memory

Number of cycles:

389 + 27.75 × Nelements

Number of VLIW:

254

File: vacoshlr.mas, vlogrr.mas, vsqrtrr.mas, lnCoeff.mas

3.63 vacoshrl Function: inverse hyperbolic cosine of a float input array and right to left move

Synopsis: __vector__ int vacoshrl (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array . Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vacoshrl computes the inverse hyperbolic cosine of an input array stored in
right memory space and writes the output to an array in left memory space.

Precision:

see Table 3-1 on page 66

Restrictions:

Nelements must be multiple of 4

X must be in right memory

Y must be in left memory

Y k� � X k� �� �acosh= k 0�Nelements 1–=
3-64 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
Number of cycles:

400 + 27.75 × Nelements

Number of VLIW:

252

File: vacoshrl.mas, vlogll.mas, vsqrtll.mas, lnCoeff.mas

3.64 vacoshrr Function: inverse hyperbolic cosine of a float input array and right to right move

Synopsis: __vector__ int vacoshrr (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array . Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vacoshrr computes the inverse hyperbolic cosine of an input array stored in
right memory space and writes the output to an array in right memory space.

Precision:

see Table 3-1 on page 66

Restrictions:

Nelements must be multiple of 4

X must be in right memory

Y must be in right memory

Number of cycles:

391 + 27.75 × Nelements

Number of VLIW:

254

Y k� � X k� �� �acosh= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-65

DRAFT–DPS–04/05

DSP Functions Description
File: vacoshrr.mas, vlogrr.mas, vsqrtrr.mas, lnCoeff.mas

3.65 vacoshv Function: inverse hyperbolic cosine of a vectorial input array

Synopsis: __vector__ int vacoshv (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: __vector__ float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: __vector__ float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vacoshv computes the inverse hyperbolic cosine of an input array stored in
vector space and writes the output to an array in vector space. For computing the
Inverse hyperbolic cosine, with the input stored in left/right memory space and to output
the values into left/right memory space, see the functions: “vacoshll” on page 3-62,
“vacoshlr” on page 3-63, “vacoshrl” on page 3-64 and “vacoshrr” on page 3-65.

Precision:

the following table provides the information about the precision for
this function

Restrictions:

Table 3-1.

Range of input values Absolute error Relative error

1 to 1.414 3.35331e-009 Inf

1 to 1.19466e-009 1.74353e-009

 to 1.03627e-009 1.38434e-009

0 to 1 1.96387e-009 Inf

-1 to- 3.01231e-009 1.72469e-010

 to 163.56 60.8094

Y k� � X k� �� �acosh= k 0�Nelements 1–=

1018

1018 1038

108

10–
8 10–

38
3-66 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
Nelements must be multiple of 2

Number of cycles:

354 + 50.5 × Nelements

Number of VLIW:

220

File: vacoshv.mas, vlogv.mas, vsqrtv.mas, lnCoeff.mas

3.66 vacosll Function: inverse cosine of a float input array and left to left move

Synopsis: __vector__ int vacosll (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array . Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vacosll computes the arc cosine of an input array stored in left memory
space and writes the output to an array in left memory space.

Note: to use this function correctly, some numerical exceptions must be
masked. This can be done including the following instruction:
MaarGSR_BASE->GSR_mask=0x7, in the ARM source C before
RUNMAGIC. For more details on the Exception Mask Registers
(GSR_mask) refer to the DIOPSIS 740 Data Sheet (doc7001.pdf).

Precision:

see Table 3-2 on page 71

Restrictions:

Nelements must be multiple of 4

X must be in left memory

Y must be in left memory

Number of cycles:

Y k� � X k� �� �acos= k 0�Nelements=
DSP Library User Manual (draft) 3-67

DRAFT–DPS–04/05

DSP Functions Description
310 + 26.25 × Nelements

Number of VLIW:

232

File: vacosll.mas, vsqrtll.mas,acosCoeff.mas

3.67 vacoslr Function: inverse cosine of a float input array and left to right move

Synopsis: __vector__ int vacoslr (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array . Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written
Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vacoslr computes the arc cosine of an input array stored in left memory
space and writes the output to an array in right memory space.

Note: to use this function correctly, some numerical exceptions must be
masked. This can be done including the following instruction:
MaarGSR_BASE->GSR_mask=0x7, in the ARM source C before
RUNMAGIC. For more details on the Exception Mask Registers
(GSR_mask) refer to the DIOPSIS 740 Data Sheet (doc7001.pdf).

Precision:

see Table 3-2 on page 71

Restrictions:

Nelements must be multiple of 4

X must be in left memory

Y must be in right memory

Number of cycles:

300 + 26.75 × Nelements

Number of VLIW:

232

Y k� � X k� �� �acos= k 0�Nelements=
3-68 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
File: vacoslr.mas, vsqrtrr.mas,acosCoeff.mas

3.68 vacosrl Function: inverse cosine of a float input array and right to left move

Synopsis: __vector__ int vacosrl (*X, strideX, *Y, strideY, Nelements)

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written
Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vacosrl computes the arc cosine of an input array stored in right memory
space and writes the output to an array in left memory space.

Note: to use this function correctly, some numerical exceptions must be
masked. This can be done including the following instruction:
MaarGSR_BASE->GSR_mask=0x7, in the ARM source C before
RUNMAGIC. For more details on the Exception Mask Registers
(GSR_mask) refer to the DIOPSIS 740 Data Sheet (doc7001.pdf).

Precision:

see Table 3-2 on page 71

Restrictions:

Nelements must be multiple of 4

X must be in right memory

Y must be in left memory

Number of cycles:

308 + 26 × Nelements

Number of VLIW:

233

File: vacosrl.mas, vsqrtll.mas, acosCoeff.mas

Y k� � X k� �� �acos= k 0�Nelements=
DSP Library User Manual (draft) 3-69

DRAFT–DPS–04/05

DSP Functions Description
3.69 vacosrr Function: inverse cosine of a float input array and right to right move

Synopsis: __vector__ int vacosrr (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written
Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vacosrr computes the arc cosine of an input array stored in right memory
space and writes the output to an array in right memory space.

Note: to use this function correctly, some numerical exceptions must be
masked. This can be done including the following instruction:
MaarGSR_BASE->GSR_mask=0x7, in the ARM source C before
RUNMAGIC. For more details on the Exception Mask Registers
(GSR_mask) refer to the DIOPSIS 740 Data Sheet (doc7001.pdf).

Precision:

see Table 3-2 on page 71

Restrictions:

Nelements must be multiple of 4

X must be in right memory

Y must be in right memory

Number of cycles:

298 + 26.5 × Nelements

Number of VLIW:

232

File: vacosrr.mas, vsqrtrr.mas, acosCoeff.mas

Y k� � X k� �� �acos= k 0�Nelements=
3-70 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
3.70 vacosv Function: inverse cosine of vectorial input array

Synopsis: __vector__ int vacosv (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: __vector__ float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: __vector__ float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vacosv computes the arc cosine of an input array stored in vector space
and writes the output to an array in vector space. For computing the arc cosine, with the
input stored in left/right memory space and to output the values into left/right memory
space, see the functions: “vacosll” on page 3-67, “vacoslr” on page 3-68, “vacosrl” on
page 3-69, “vacosrr” on page 3-70.

Note: to use this function correctly, some numerical exceptions must be
masked. This can be done including the following instruction:
MaarGSR_BASE->GSR_mask=0x7, in the ARM source C before
RUNMAGIC. For more details on the Exception Mask Registers
(GSR_mask) refer to the DIOPSIS 740 Data Sheet (doc7001.pdf).

Precision:

the following table provides the information about the precision for
this function

Restrictions:

Nelements must be multiple of 2

Number of cycles:

292 + 52 × Nelements

Number of VLIW:

Table 3-2.

Description of input values Absolute error Relative error

0.01 to 0.5 5.64143e-009 5.27317e-008

0.5 to 0.9999 5.45383e-009 5.27317e-008

-0.9999 to -0.0001 5.64143e-009 5.27317e-008

Y k� � X k� �� �acos= k 0�Nelements=
DSP Library User Manual (draft) 3-71

DRAFT–DPS–04/05

DSP Functions Description
208

File: vacosv.mas, vsqrtv.mas, acosCoeff.mas

3.71 vaddintv Function: sum of 2 vectorial integer arrays

Synopsis: __vector__ int vaddintv(*X, strideX, *Y, strideY, *Z, strideZ,
Nelements)

Include file: DSPlib.h.

*X: pointer to the first input vector. Type: __vector__ int *

strideX: stride to be used for the X the data. Type: int

*Y: pointer to the second input vector. Type: __vector__ int *

strideY: stride to be used for the Y the data. Type: int

*Z: pointer to the output vector Z. Type: __vector__ int *

strideZ: stride to be used for the Z data. Type: int

Nelements: Number of element to be computed. Type: int

The function vaddintv performs the sum between two vectorial integer data: X and Y.
They can be complex vectors or two vectorial streams of real vectors that will be pro-
cesed in parallel.

Restrictions:

Nelements must be greater or equal to 8 and multiple of 4

Number of cycles:

39 + 2 × Nelements

Number of VLIW:

34

File: vaddintv.mas

Z k� � X k� � Y k� � k+ 0�Nelements 1–= =
3-72 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
3.72 vaddlll Function: sum of 2 input float array stored in left memory and output in left
memory

Synopsis: __vector__ int vaddlll(*X, strideX, *Y, strideY, *Z, strideZ, Nelements)

Include file: DSPlib.h.

*X: pointer to the first input vector. Type: float *

strideX: stride to be used for the X the data. Type: int

*Y: pointer to the second input vector. Type: float *

strideY: stride to be used for the Y the data. Type: int

*Z: pointer to the output vector. Type: float *

strideZ: stride to be used for the Z data. Type: int

Nelements: Number of element to be computed. Type: int

The function vaddlll adds two float vectors stored in left memory and writes the output in
left memory.

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in left memory

Y must be in left memory

Z must be in left memory

Number of cycles:

31+ 2 × Nelements

Number of VLIW:

24

File: vaddlll.mas

Z k� � X k� � Y k� � k+ 0�Nelements 1–= =
DSP Library User Manual (draft) 3-73

DRAFT–DPS–04/05

DSP Functions Description
3.73 vaddllr Function: sum of 2 input float array stored in left memory and output in right
memory

Synopsis: __vector__ int vaddllr(*X, strideX, *Y, strideY, *Z, strideZ, Nelements)

Include file: DSPlib.h.

*X: pointer to the first input vector. Type: float *

strideX: stride to be used for the X the data. Type: int

*Y: pointer to the second input vector. Type: float *

strideY: stride to be used for the Y the data. Type: int

*Z: pointer to the output vector. Type: float *

strideZ: stride to be used for the Z data. Type: int

Nelements: Number of element to be computed. Type: int

The function vaddllr adds two float vectors stored in left memory and writes the output in
right memory.

Restrictions:

Nelements must be greater or equal to 12 and multiple of 4

X must be in left memory

Y must be in left memory

Z must be in right memory

Number of cycles:

32 + 2.25 × Nelements

Number of VLIW:

36

File: vaddllr.mas

Z k� � X k� � Y k� � k+ 0�Nelements 1–= =
3-74 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
3.74 vaddlrl Function: sum of 2 input float array : the first is stored in left memory while the
second in right memory. The output is written in left memory

Synopsis: __vector__ int vaddlrl(*X, strideX, *Y, strideY, *Z, strideZ, Nelements)

Include file: DSPlib.h.

*X: pointer to the first input vector. Type: float *

strideX: stride to be used for the X the data. Type: int

*Y: pointer to the second input vector. Type: float *

strideY: stride to be used for the Y the data. Type: int

*Z: pointer to the output vector. Type: float *

strideZ: stride to be used for the Z data. Type: int

Nelements: Number of element to be computed. Type: int

The function vaddlrl adds two float vectors: the first is stored in left memory while the
second in right memory. It writes the output in left memory.

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in left memory

Y must be in right memory

Z must be in left memory

Number of cycles:

31+ 2 × Nelements

Number of VLIW:

25

File: vaddlrl.mas

Z k� � X k� � Y k� � k+ 0�Nelements 1–= =
DSP Library User Manual (draft) 3-75

DRAFT–DPS–04/05

DSP Functions Description
3.75 vaddlrr Function: sum of 2 input float array: the first is stored in left memory while the
second in right memory. The result is written in right memory

Synopsis: __vector__ int vaddlrr(*X, strideX, *Y, strideY, *Z, strideZ, Nelements)

Include file: DSPlib.h.

*X: pointer to the first input vector. Type: float *

strideX: stride to be used for the X the data. Type: int

*Y: pointer to the second input vector. Type: float *

strideY: stride to be used for the Y the data. Type: int

*Z: pointer to the output vector. Type: float *

strideZ: stride to be used for the Z data. Type: int

Nelements: Number of element to be computed. Type: int

The function vaddlrr adds two float vectors: the first is stored in left memory while the
second in right memory. It writes the output in right memory.

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in left memory

Y must be in right memory

Z must be in left memory

N umber of cycles:

31+ 2 × Nelements

Number of VLIW:

25

File: vaddlrr.mas

Z k� � X k� � Y k� � k+ 0�Nelements 1–= =
3-76 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
3.76 vaddrrl Function: sum of 2 input float array stored in right memory and output in left
memory

Synopsis: __vector__ int vaddrrl(*X, strideX, *Y, strideY, *Z, strideZ, Nelements)

Include file: DSPlib.h.

*X: pointer to the first input vector. Type: float *

strideX: stride to be used for the X the data. Type: int

*Y: pointer to the second input vector. Type: float *

strideY: stride to be used for the Y the data. Type: int

*Z: pointer to the output vector. Type: float *

strideZ: stride to be used for the Z data. Type: int

Nelements: Number of element to be computed. Type: int

The function vaddrrl adds two float vectors stored in right memory and writes the output
in left memory.

Restrictions:

Nelements must be greater or equal to 12 and multiple of 4

X must be in right memory

Y must be in right memory

Z must be in left memory

Number of cycles:

40 + 2 × Nelements

Number of VLIW:

36

File: vaddrrl.mas

Z k� � X k� � Y k� � k+ 0�Nelements 1–= =
DSP Library User Manual (draft) 3-77

DRAFT–DPS–04/05

DSP Functions Description
3.77 vaddrrr Function: sum of 2 input float array stored in right memory and output in right
memory

Synopsis: __vector__ int vaddrrr(*X, strideX, *Y, strideY, *Z, strideZ,
Nelements)

Include file: DSPlib.h.

*X: pointer to the first input vector. Type: float *

strideX: stride to be used for the X the data. Type: int

*Y: pointer to the second input vector. Type: float *

strideY: stride to be used for the Y the data. Type: int

*Z: pointer to the output vector. Type: float *

strideZ: stride to be used for the Z data. Type: int

Nelements: Number of element to be computed. Type: int

The function vaddrrr adds two float vectors stored in right memory and writes the output
in right memory.

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in right memory

Y must be in right memory

Z must be in right memory

Number of cycles:

35 + 2 × Nelements

Number of VLIW:

25

File: vaddrrr.mas

Z k� � X k� � Y k� � k+ 0�Nelements 1–= =
3-78 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
3.78 vaddv Function: sum of 2 vectorial float array

Synopsis: __vector__ int vaddv(*X, strideX, *Y, strideY, *Z, strideZ, Nelements)

Include file: DSPlib.h.

*X: pointer to the first input vector. Type: __vector__ float *

strideX: stride to be used for the X the data. Type: int

*Y: pointer to the second input vector. Type: __vector__ float *

strideY: stride to be used for the Y the data. Type: int

*Z: pointer to the output vector. Type: __vector__ float *

strideZ: stride to be used for the Z data. Type: int

Nelements: Number of element to be computed. Type: int

The function vaddv works on complex data arranged vectorially in memory; they can
represent pair of complex vectors or two vectorial streams of real vectors that will be
processed in parallel.

Restrictions:

Nelements must be multiple of 4

Number of cycles:

32 + 2.75 × Nelements

Number of VLIW:

27

File: vaddv.mas

3.79 varll Function: variance of a float array

Z k� � X k� � Y k� � k+ 0�Nelements 1–= =

var mean X mean X� �–	

2

� � mean X2
� � mean X� �� �

2
–= =
DSP Library User Manual (draft) 3-79

DRAFT–DPS–04/05

DSP Functions Description
Synopsis: __vector__ int varll(*X, strideX, *Z, M, Nelements, InvNelements)

Include file: DSPlib.h.

X: pointer to input vector X. Type: float

strideX: stride to be used for the X the data. Type: int

Z: pointer to the output .Type: float

M: mean value of the input. Type: float

Nelements: Number of element to be computed. Type: int

InvNelements: 1/Nelements. Type: float

The function varll computes the variance of a float array X. The mean of X can be calcu-
lated by the multiplication between InvNelements and the output of the function vsum
with input X, see “vsumv” on page 3-225.

Restrictions:

Nelements must be greater or equal to 8 and multiple of 4

X must be in left memory

Z must be in left memory

Number of cycles:

53 + 1.75 × Nelements

Number of VLIW:

33

File: varll.mas

3.80 vasinhll Function: inverse hyperbolic sine of a float input array and left to left move

Synopsis: __vector__ int vasinhll (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

Y k� � X k� �� �asinh= k 0�Nelements 1–=
3-80 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vasinhll computes the inverse hyperbolic sine of an input array stored in left
memory space and writes the output to an array in left memory space.

Precision:

see Table 3-3 on page 84

Restrictions:

Nelements must be multiple of 4

X must be in left memory

Y must be in left memory

Number of cycles:

� + 27.75 × Nelements

Number of VLIW:

249

File: vasinhll.mas, vlogll.mas, vsqrtll.mas, lnCoeff.mas

3.81 vasinhlr Function: inverse hyperbolic sine of a float input array and left to right move

Synopsis: __vector__ int vasinhlr (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: float*

strideY: stride to be used for the output array. Type: int

Y k� � X k� �� �asinh= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-81

DRAFT–DPS–04/05

DSP Functions Description
Nelements: number of elements to be computed.Type: int

The function vasinhlr computes the inverse hyperbolic sine of an input array stored in
left memory space and writes the output to an array in right memory space.

Precision:

see Table 3-3 on page 84

Restrictions:

Nelements must be multiple of 4

X must be in left memory

Y must be in right memory

Number of cycles:

389 + 27.75 × Nelements

Number of VLIW:

252

File: vasinhlr.mas, vlogrr.mas, vsqrtrr.mas, lnCoeff.mas

3.82 vasinhrl Function: inverse hyperbolic sine of a float input array and right to left move

Synopsis: __vector__ int vasinhrl (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vasinhrl computes the inverse hyperbolic sine of an input array stored in
right memory space and writes the output to an array in left memory space.

Precision:

Y k� � X k� �� �asinh= k 0�Nelements 1–=
3-82 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
See Table 3-3 on page 84

Restrictions:

Nelements must be multiple of 4

X must be in right memory

Y must be in left memory

Number of cycles:

400 + 27.75 × Nelements

Number of VLIW:

250

File: vasinhrl.mas, vlogll.mas, vsqrtll.mas, lnCoeff.mas

3.83 vasinhrr Function: inverse hyperbolic sine of a float input array and right to right move

Synopsis: __vector__ int vasinhrr (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vasinhrr computes the inverse hyperbolic sine of an input array stored in
right memory space and writes the output to an array in right memory space.

Precision:

see Table 3-3 on page 84

Restrictions:

Nelements must be multiple of 4

X must be in right memory

Y must be in right memory

Number of cycles:

Y k� � X k� �� �asinh= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-83

DRAFT–DPS–04/05

DSP Functions Description
390 + 27.75 × Nelements

Number of VLIW:

252

File: vasinhrr.mas, vlogrr.mas, vsqrtrr.mas, lnCoeff.mas

3.84 vasinhv Function: inverse hyperbolic sine of a vectorial input array

Synopsis: __vector__ int vasinhv (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: __vector__ float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: __vector__ float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vasinhv computes the inverse hyperbolic sine of a vectorial input array
stored in vector space and writes the output to an array in vector space. For computing
the Inverse hyperbolic sine, with the input stored in left/right memory space and to out-
put the values into left/right memory space, see the functions: “vasinhll” on page 3-80,
“vasinhlr” on page 3-81, “vasinhrl” on page 3-82 and “vasinhrr” on page 3-83.

Precision:

the following table provides the information about the precision for
this function

Table 3-3.

Range of input values Absolute error Relative error

1 to 1.414 3.35331e-009 Inf

1 to 1.19466e-009 1.74353e-009

 to 1.03627e-009 1.38434e-009

Y k� � X k� �� �asinh= k 0�Nelements 1–=

1018

1018 1038
3-84 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
Restrictions:

Nelements must be multiple of 2

Number of cycles:

354 + 50.5 × Nelements

Number of VLIW:

219

File: vasinhv.mas, vlogv.mas, vsqrtv.mas, lnCoeff.mas

3.85 vasinll Function: inverse sine of a float input array and left to left move

Synopsis: __vector__ int vasinll (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array . Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array which the computed value is written.Type:
float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vasinll computes the arc sine of an input array stored in left memory space
and writes the output to an array in left memory space.

Note: to use this function correctly, some numerical exceptions must be
masked. This can be done including the following instruction:
MaarGSR_BASE->GSR_mask=0x7, in the ARM source C before

0 to 1 1.96387e-009 Inf

-1 to- 3.01231e-009 1.72469e-010

 to 163.56 60.8094

Table 3-3.

Range of input values Absolute error Relative error

108

10–
8 10–

38

Y k� � X k� �� �asin= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-85

DRAFT–DPS–04/05

DSP Functions Description
RUNMAGIC. For more details on the Exception Mask Registers
(GSR_mask) refer to the DIOPSIS 740 Data Sheet (doc7001.pdf).

Precision:

see Table 3-4 on page 90

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in left memory

Y must be in left memory

Number of cycles:

310 + 26.25 × Nelements

Number of VLIW:

233

File: vasinll.mas, vsqrtll.mas, asinCoeff.mas

3.86 vasinlr Function: inverse sine of a float input array and left to right move

Synopsis: __vector__ int vasinlr (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array . Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is writ-
ten.Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vasinlr computes the arc sine of an input array stored in left memory space
and writes the output to an array in right memory space.

Note: to use this function correctly, some numerical exceptions must be
masked. This can be done including the following instruction:
MaarGSR_BASE->GSR_mask=0x7, in the ARM source C before
RUNMAGIC. For more details on the Exception Mask Registers
(GSR_mask) refer to the DIOPSIS 740 Data Sheet (doc7001.pdf).

Y k� � X k� �� �asin= k 0�Nelements 1–=
3-86 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
Precision:

see Table 3-4 on page 90

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in left memory

Y must be in right memory

Number of cycles:

299 + 26.75 × Nelements

Number of VLIW:

231

File: vasinlr.mas, vsqrtrr.mas, asinCoeff.mas

3.87 vasinrl Function: inverse sine of a float input array and right to left move

Synopsis: __vector__ int vasinrl (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is writ-
ten.Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vasinrl computes the arc sine of an input array stored in right memory
space and writes the output to an array in left memory space.

Note: to use this function correctly, some numerical exceptions must be
masked. This can be done including the following instruction:
MaarGSR_BASE->GSR_mask=0x7, in the ARM source C before
RUNMAGIC. For more details on the Exception Mask Registers
(GSR_mask) refer to the DIOPSIS 740 Data Sheet (doc7001.pdf).

Precision:

see Table 3-4 on page 90

Y k� � X k� �� �asin= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-87

DRAFT–DPS–04/05

DSP Functions Description
Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in right memory

Y must be in left memory

Number of cycles:

290 + 26 × Nelements

Number of VLIW:

232

File: vasinrl.mas, vsqrtll.mas, asinCoeff.mas

3.88 vasinrr Function: inverse sine of a float input array and right to right move

Synopsis: __vector__ int vasinrr (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is writ-
ten.Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vasinrr computes the arc sine of an input array stored in right memory
space and writes the output to an array in right memory space.

Note: to use this function correctly, some numerical exceptions must be
masked. This can be done including the following instruction:
MaarGSR_BASE->GSR_mask=0x7, in the ARM source C before
RUNMAGIC. For more details on the Exception Mask Registers
(GSR_mask) refer to the DIOPSIS 740 Data Sheet (doc7001.pdf).

Precision:

see Table 3-4 on page 90

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

Y k� � X k� �� �asin= k 0�Nelements 1–=
3-88 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
X must be in right memory

Y must be in right memory

Number of cycles:

297 + 26.5 × Nelements

Number of VLIW:

236

File: vasinrr.mas, vsqrtrr.mas, asinCoeff.mas

3.89 vasinv Function: inverse sine of a vectorial input array

Synopsis: __vector__ int vasinv (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: __vector__ float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: __vector__ float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vasinv computes the arc sine of an input array stored in vector space and
writes the output to an array in vector space. For computing the arc sine, with the input
stored in left/right memory space and to output the values into left/right memory space,
see the functions: “vasinll” on page 3-85, “vasinlr” on page 3-86, “vasinrl” on page 3-87
and “vasinrr” on page 3-88.

Note: to use this function correctly, some numerical exceptions must be
masked. This can be done including the following instruction:
MaarGSR_BASE->GSR_mask=0x7, in the ARM source C before
RUNMAGIC. For more details on the Exception Mask Registers
(GSR_mask) refer to the DIOPSIS 740 Data Sheet (doc7001.pdf).

Precision:

Y k� � X k� �� �asin= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-89

DRAFT–DPS–04/05

DSP Functions Description
the following table provides the information about the precision for
this function

Restrictions:

Nelements must be greater or equal to 2 and multiple of 2

Number of cycles:

290 + 51 × Nelements

Number of VLIW:

210

File: vasinv.mas, vsqrtv.mas, asinCoeff.mas

3.90 vatan2 Function: argument (arctan2) of a complex input array and result in a float
array in left memory

Synopsis: __vector__ int vatan2 (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type __complex__float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vatan2 computes the arc tan2 of a complex array and writes the output to
an array in left memory space.

Table 3-4.

Description of input values Absolute error Relative error

0.01 to 0.5 5.64143e-009 5.27317e-008

0.5 to 0.9999 5.45383e-009 5.27317e-008

-0.9999 to -0.0001 5.64143e-009 5.27317e-008

Y k� � 2 Re X k� �� � Im X k� �� ��� �atan= k 0�Nelements 1–=
3-90 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
Note: the function vatan2 uses 23 locations of the stack

Precision: the following table provides the information about the precision for
this function.

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

Y must be in left memory

Real Part of X < = 10^38, to avoid overflow / underflow of the com-
puted result

Imaginary Part of X < = 10^38, to avoid overflow / underflow of the
computed result

Real Part of X not = 0 , to avoid invalid result

Number of cycles:

339 + 26.5 × Nelements

Number of VLIW:

224

File: vatan2.mas, atanCoeff.mas

3.91 vatanhll Function: inverse hyperbolic tangent of a float input array and left to left move

Table 3-5.

Description of input values
Absolute error Relative error

4.87426e-010 1.15685e-009

0.570796 0.36338

8.12197e-010 3.52541e-010

8.97931e-011 2.8582e-011

8.12197e-010 3.52541e-010

2.5708 1.63662

4.87426e-010 1.15685e-009

0 0

X �cos j �sin+=

0 � � 2�

� 2�

� 2� � �

�

� � 3�� � 2�

3 � 2�� �

3 � 2�� � � 2�

2�

Y k� � X k� �� �atanh= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-91

DRAFT–DPS–04/05

DSP Functions Description
Synopsis: __vector__ int vatanhll (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vatanhll computes the inverse hyperbolic tan of an input array stored in left
memory space and writes the output to an array in left memory space.

Note: the function vatanhll uses 3 locations of the stack

Precision:

see Table 3-6

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in left memory

Y must be in left memory

Number of cycles:

323 +19.25 × Nelements

Number of VLIW:

184

File: vatanhll.mas, vlogll.mas, lnCoeff.mas

3.92 vatanhlr Function: inverse hyperbolic tangent of a float input array and left to right move

Synopsis: __vector__ int vatanhlr (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

Y k� � X k� �� �atanh= k 0�Nelements 1–=
3-92 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vatanhlr computes the inverse hyperbolic tan of an input array stored in left
memory space and writes the output to an array in right memory space.

Note: the function vatanhlr uses 3 locations of the stack

Precision:

see Table 3-6 on page 96

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in left memory

Y must be in right memory

Number of cycles:

320 +19.25 × Nelements

Number of VLIW:

186

File: vatanhlr.mas, vlogrr.mas, lnCoeff.mas

3.93 vatanhrl Function: inverse hyperbolic tangent of a float input array and right to left move

Synopsis: __vector__ int vatanhrl (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: float*

Y k� � X k� �� �atanh= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-93

DRAFT–DPS–04/05

DSP Functions Description
strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vatanhrl computes the inverse hyperbolic tan of an input array stored in
right memory space and writes the output to an array in left memory space.

Note: the function vatanhlr uses 3 locations of the stack

Precision:

see Table 3-6 on page 96

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in right memory

Y must be in left memory

Number of cycles:

321 +19.25 × Nelements

Number of VLIW:

182

File: vatanhrl.mas, vlogll.mas, lnCoeff.mas

3.94 vatanhrr Function: inverse hyperbolic tangent of a float input array and right to right
move

Synopsis: __vector__ int vatanhrr (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

Y k� � X k� �� �atanh= k 0�Nelements 1–=
3-94 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
The function vatanhrr computes the inverse hyperbolic tan of an input array stored in
right memory space and writes the output to an array in right memory space.

Note: the function vatanhrr uses 3 locations of the stack

Precision:

see Table 3-6 on page 96

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in right memory

Y must be in right memory

Number of cycles:

318 +19.25 × Nelements

Number of VLIW:

184

File: vatanhrr.mas, vlogrr.mas, lnCoeff.mas

3.95 vatanhv Function: inverse hyperbolic tangent of a vectorial input array

Synopsis: __vector__ int vatanhv (*X, strideX, *Y, strideY, Nelements)

Include File: Dsplib.h

X: pointer to the input array. Type: __vector__ Float

strideX: stride to be used for the input array. Type: Int

*Y: pointer to the output array into which the computed calue is written.
Type: __vector__ Float*

strideY: stride to be used for the output array. Type: Int

Nelements: number of elements to be computed.type: Int

The function vatanhv computes the inverse hyperbolic tan of an input array stored in
vector space and writes the output to an array in vector space. For computing the
inverse hyperbolic tan, with the input stored in left/right memory space and to output the

Y k� � X k� �� �atanh=
DSP Library User Manual (draft) 3-95

DRAFT–DPS–04/05

DSP Functions Description
values into left/right memory mpace, see the functions: “vatanhll” on page 3-91,
“vatanhlr” on page 3-92, “vatanhrl” on page 3-93 and “vatanhrr” on page 3-94.

Note: the function vatanhv uses 3 locations of the stack

Precision:

the following table provides the information about the precision for
this function

Restrictions:

Nelements must be greater or equal to 2 and multiple of 2

Number of cycles:

300 + 35 × Nelements

Number of VLIW:

161

File: vatanhv.mas, vlogv.mas, lncoeff.mas

3.96 vbyvmulv Function: vectorial element by element multiplication

Synopsis: __vector__ int vbyvmulv(*X, strideX, *Y, strideY, *Z, strideZ,
Nelements)

Include file: DSPlib.h.

X: pointer to the first input vector. Type: __vector__ float

strideX: stride to be used for the X data. Type: int

Y: pointer to the second input vector. Type: __vector__ float

Table 3-6.

Range of input values Absolute error Relative error

1 to 1.414 9.78877e-010 9.8742e-010

1 to 9.04127e-009 3.22854e-010

 to 42.6711 0.912852

-1 to 7.22321e-005 9.50309e-006

1018

1018 1038

10–
8

Z k� � X k� � Y k� ��= k 0�Nelements=
3-96 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
strideY: stride to be used for the Y data.Type: int

Z: pointer to the output vector. Type: __vector__ float

strideZ: stride to be used for the Z data. Type: int

Nelements: Number of elements to be computed.Type: int

The function vbyvmulv performs vectorial element-by-element multiplication.

Restrictions:

Nelements must be multiple of 4

Number of cycles:

25 + 2 × Nelements

Number of VLIW:

19

File: vbyvmulv.mas

3.97 vclipll Function: clipping of a float array in left memory between two float values
ClipUp and ClipDown and left to left move

Synopsis: __vector__ int vclipll (*X, strideX, *Y, strideY, ClipUp, ClipDown,
Nelements)

Include file: DSPlib.h.

*X: pointer to the input vector. Type: float *

StrideX: stride to be used for the X data. Type: int

*Y: pointer to the output vector. Type: float *

StrideY: stride to be used for the Y data. Type: int

ClipUp: value to be used as upper limit for the data. Type: float

ClipDown: value to be used as lower limit for the data. Type: float

Nelements: Number of elements to be computed. Type: int

Y k� � ClipUp=

Y k� � ClipDown=

Y k� � X k� �=�
�
�
�
	 X k� � ClipUp�

X k� � ClipDown�

ClipDown X k� � ClipUp� �

k 0�Nelements 1–=
DSP Library User Manual (draft) 3-97

DRAFT–DPS–04/05

DSP Functions Description
The function vclipll clips the float array X stored in left memory, between the float values:
ClipUp and ClipDown, and writes the result in the float output Y stored in left memory.

Restrictions:

Nelements must be greater than 12 and multiple of 4

X must be in left memory

Y must be in left memory

Number of cycles:

25 + 2 × Nelements

Number of VLIW:

26

File: vclipll.mas

3.98 vcliprr Function: clipping of a float array in right memory between two float values
ClipUp and ClipDown and right to right move

Synopsis: __vector__ int vcliprr (*X, strideX, *Y, strideY, ClipUp, ClipDown,
Nelements)

Include file: DSPlib.h.

*X: pointer to the input vector. Type: float *

StrideX: stride to be used for the X data. Type: int

*Y: pointer to the output vector. Type: float *

StrideY: stride to be used for the Y data. Type: int

ClipUp: value to be used as upper limit for the data. Type: float

ClipDown: value to be used as lower limit for the data. Type: float

Nelements: Number of elements to be computed. Type: int

Y k� � ClipUp=

Y k� � ClipDown=

Y k� � X k� �=�
�
�
�
	 X k� � ClipUp�

X k� � ClipDown�

ClipDown X k� � ClipUp� �

k 0�Nelements 1–=
3-98 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
The function vcliprr clips the float array X stored in right memory, between the float val-
ues: ClipUp and ClipDown, and writes the result in the float output Y stored in right
memory.

Restrictions:

Nelements must be greater than 12 and multiple of 4

X must be in right memory

Y must be in right memory

Number of cycles:

31 + 2 × Nelements

Number of VLIW:

27

File: vcliprr.mas

3.99 vclipv Function: vectorial clipping between the two values ClipUp and ClipDown

Synopsis: __vector__ int vclipv (*X, strideX, *Y, strideY, ClipUp, ClipDown,
Nelements)

Include file: DSPlib.h.

*X: pointer to the input vector. Type: __vector__ float *

StrideX: stride to be used for the X data. Type: int

*Y: pointer to the output vector. Type: __vector__ float *

StrideY: stride to be used for the Y data. Type: int

ClipUp: value to be used as upper limit for the data. Type: __vector__ float

ClipDown: value to be used as lower limit for the data. Type: __vector__ float

Nelements: Number of elements to be computed. Type: int

The function vclipv clips the vectorial float array X , between the vectorial values: ClipUp
and ClipDown and writes the result in the vectorial output Y.

Y k� � ClipUp=

Y k� � ClipDown=

Y k� � X k� �=�
�
�
�
	 X k� � ClipUp�

X k� � ClipDown�

ClipDown X k� � ClipUp� �

k 0�Nelements 1–=
DSP Library User Manual (draft) 3-99

DRAFT–DPS–04/05

DSP Functions Description
Restrictions:

Nelements must be greater than 8 and multiple of 4

Number of cycles:

36 + 2 × Nelements

Number of VLIW:

30

File: vclipv.mas

3.100 vcoshll Function: hyperbolic cosine of a float input array and left to left move

Synopsis: __vector__ int vcoshll (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vcoshll computes the hyperbolic cosine of an input array stored in left
memory space and writes the output to an array in left memory space.

Note: the function vcoshll uses 3 locations of the stack

Precision:

see Table 3-7 on page 104

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in left memory

Y must be in left memory
| x | <= 87, to avoid overflow / underflow of the computed result

Number of cycles:

Y k� � X k� �� �cosh= k 0�Nelements 1–=
3-100 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
307 + 19 × Nelements

Number of VLIW:

165

File: vcoshll.mas, vexpll.mas, expCoeff.mas

3.101 vcoshlr Function: hyperbolic cosine of a float input array and left to right move

Synopsis: __vector__ int vcoshlr (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vcoshlr computes the hyperbolic cosine of an input array stored in left
memory space and writes the output to an array in right memory space.

Note: the function vcoshlr uses 3 locations of the stack

Precision:

see Table 3-7 on page 104

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in left memory

Y must be in right memory
| x | <= 87, to avoid overflow / underflow of the computed result

Number of cycles:

306 +18.5 × Nelements

Number of VLIW:

159

Y k� � X k� �� �cosh= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-101

DRAFT–DPS–04/05

DSP Functions Description
File: vcoshlr.mas, vexplr.mas, expCoeff.mas

3.102 vcoshrl Function: hyperbolic cosine of a float input array and right to left move

Synopsis: __vector__ int vcoshrl (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output into which the computed value is written. Type:
float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vcoshrl computes the hyperbolic cosine of an input array stored in right
memory space and writes the output to an array in left memory space.

Note: the function vcoshrl uses 3 locations of the stack

Precision:

see Table 3-7 on page 104

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in right memory

Y must be in left memory
| x | <= 87, to avoid overflow / underflow of the computed result

Number of cycles:

304 +19 × Nelements

Number of VLIW:

166

File: vcoshrl.mas, vexprl.mas, expCoeff.mas

Y k� � X k� �� �cosh= k 0�Nelements 1–=
3-102 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
3.103 vcoshrr Function: hyperbolic cosine of a float input array and right to right move

Synopsis: __vector__ int vcoshrr (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vcoshrr computes the hyperbolic cosine of an input array stored in right
memory space and writes the output to an array in right memory space.

Note: the function vcoshrr uses 3 locations of the stack

Precision:

see Table 3-7 on page 104

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in right memory

Y must be in right memory
| x | <= 87, to avoid overflow / underflow of the computed result

Number of cycles:

306 + 18.5 × Nelements

Number of VLIW:

161

File: vcoshrr.mas, vexprr.mas, expCoeff.mas

Y k� � X k� �� �cosh= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-103

DRAFT–DPS–04/05

DSP Functions Description
3.104 vcoshv Function: hyperbolic cosine of a vectorial input array

Synopsis: __vector__ int vcoshv (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: __vector__ float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: __vector__ float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vcoshv computes the hyperbolic cosine of an input array stored in vector
space and writes the output to an array in vector space. For computing the hyperbolic
cosine, with the input stored in left/right memory space and to output the values into
left/right memory space, see the functions: “vcoshll” on page 3-100, “vcoshlr” on page 3-
101, “vcoshrl” on page 3-102 and “vcoshrr” on page 3-103.

Note: the function vcoshv uses 3 locations of the stack

Precision:

the following table provides the information about the precision for
this function

Restrictions:

Nelements must be greater or equal to 2 and multiple of 2
| x | <= 87, to avoid overflow / underflow of the computed result

Number of cycles:

320 + 31× Nelements

Table 3-7.

Range of input values Absolute error Relative error

-0.1505 to 0.1505 1.05541e-009 1.05043e-009

0 to 10 8.42592e-006 8.28671e-010

10 to 86 1.32643e+027 5.28016e-010

-10 to 0 2.15741e-005 8.34309e-010

-86 to -10 1.32643e+027 5.28016e-010

Y k� � X k� �� �cosh= k 0�Nelements 1–=
3-104 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
Number of VLIW:

156

File: vcoshv.mas, vexpv.mas, expCoeff.mas

3.105 vcosll Function: cosine of a float input array and left to left move

Synopsis: __vector__ int vcosll (*X, strideX, *Y, strideY, Nelements)

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is writ-
ten.Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vcosll computes the cosine of an input array stored in left memory space
and writes the output to an array in left memory space.

Precision:

see Table 3-8 on page 109

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in right memory

Y must be in left memory
| x | <= 10^10, to avoid overflow / underflow of the computed result

Number of cycles:

125 + 13.25 × Nelements

Number of VLIW:

65

File: vcosll.mas, cosCoeff.mas

Y k� � X k� �� �cos= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-105

DRAFT–DPS–04/05

DSP Functions Description
3.106 vcoslr Function: cosine of a float input array and left to right move

Synopsis: __vector__ int vcoslr (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is writ-
ten.Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vcoslr computes the cosine of an input array stored in left memory space
and writes the output to an array in right memory space.

Precision:

see Table 3-8 on page 109

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in left memory

Y must be in right memory
| x | <= 10^10, to avoid overflow / underflow of the computed result

Number of cycles:

124 + 13 × Nelements

Number of VLIW:

66

File: vcoslr.mas, cosCoeff.mas

Y k� � X k� �� �cos= k 0�Nelements 1–=
3-106 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
3.107 vcosrl Function: cosine of a float input array and right to left move

Synopsis: __vector__ int vcosrl (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is writ-
ten.Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vcosrl computes the cosine of an input array stored in right memory space
and writes the output to an array in left memory space.

Precision:

see Table 3-8 on page 109

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in right memory

Y must be in left memory
| x | <= 10^10, to avoid overflow / underflow of the computed result

Number of cycles:

125 + 13 × Nelements

Number of VLIW:

67

File: vcosrl.mas, cosCoeff.mas

Y k� � X k� �� �cos= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-107

DRAFT–DPS–04/05

DSP Functions Description
3.108 vcosrr Function: cosine of a float input array and right to right move

Synopsis: __vector__ int vcosrr (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is writ-
ten.Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vcosrr computes the cosine of an input array stored in right memory space
and writes the output to an array in right memory space.

Precision:

see Table 3-8 on page 109

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in right memory

Y must be in left memory
| x | <= 10^10, to avoid overflow / underflow of the computed result

Number of cycles:

123 + 13 × Nelements

Number of VLIW:

66

File: vcosrr.mas, cosCoeff.mas

Y k� � X k� �� �cos= k 0�Nelements 1–=
3-108 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
3.109 vcosv Function: cosine of a vectorial input array

Synopsis: __vector__ int vcosv (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: __vector__ float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: __vector__ float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vcosv computes the cosine of an input array stored in vector space and
writes the output to an array in vector space. For computing the cosine, with the input
stored in left/right memory space and to output the values into left/right memory space,
see functions vcosll105,vcoslr106,vcosrl107,vcosrr108

Precision:

the following table provides the information about the precision for
this function.

restrictions:

Nelements must be greater or equal to 2 and multiple of 2

| x | <= 10^10, to avoid overflow / underflow of the computed result

Number of cycles:

107 + 20.5 × Nelements

Number of VLIW:

58

Table 3-8.

Description of input values Absolute error Relative error

0 to 3.25466e-009 4.39848e-009

3.25466e-009 2.41711e-008

3.25466e-009 2.41711e-008

3.25466e-009 2.41711e-008

Y k� � X k� �� �cos= k 0�Nelements 1–=

� 3�

� to �–

2� 6��

2�– 6�–�
DSP Library User Manual (draft) 3-109

DRAFT–DPS–04/05

DSP Functions Description
File: vcosv.mas, cosCoeff.mas

3.110 vdist Function: euclidean distance between two input complex arrays

Synopsis: __vector__ int vdist (*X, strideX, *Y, strideY, * Z, Nelements)

Include file: DSPlib.h

*X: pointer to the input array . Type: __complex__ float *

strideX: stride to be used for input array A. Type: int

*Y: pointer to the input array . Type: __complex__ float *

strideY: stride to be used for input array B. Type: int

*Z: pointer to the output array . Type: __complex__ float *

Nelements: number of elements to be computed. Type: int

The function vdist computes the euclidean distance between two complex arrays.

Note: to use this function correctly, some numerical exceptions must be
masked. This can be done including the following instruction:
MaarGSR_BASE->GSR_mask=0x7, in the ARM source C before
RUNMAGIC. For more details on the Exception Mask Registers
(GSR_mask) refer to the DIOPSIS 740 Data Sheet (doc7001.pdf).

Restrictions:

Nelements must be greater or equal to 8 and multiple of 4

Number of cycles:

173 + 10.5 × Nelements

Number of VLIW:

109

File: vdist.mas, vsqrtll.mas

Z k� � sqrt Re X k� �� � Re Y k� �� �–� �
2 Im X k� �� � Im Y k� �� �–� �

2
+� �= k 0�Nelements 1–=
3-110 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
3.111 vdiv0rll Function: float array division element by element (equivalent to Matlab: Y./X)

Synopsis: __vector__ int vdiv0rll(*Y, strideY, *X, strideX, *Z, strideZ, Nelements)

Include file: DSPlib.h.

*Y: pointer to the Y input vector. Type: float *

strideY: stride to be applied on Y vector. Type: int

*X: pointer to the X input vector. Type: float *

strideX: stride to be applied on X vector. Type: int

*Z: pointer to the output vector (Z) . Type: float *

strideZ: stride to be applied on Z vector. Type: int

Nelements: number elements to be computed. Type: int

The function vdiv0rll performs the division between inputs data vectors X and Y ordered
as specified in Restrictions. Y and X are float array. In order to divide Y by a scalar x,
simply set *X equal &x and strideX = 0. In order to compute k / X, simply set *Y equal to
&k, set k to the desired value and strideY = 0. For a pipelined version see the function
“vdivrll” on page 3-118.

Restrictions:

Nelements can be any number greater or equal to 1

Y must be on the right memory

X must be on the left memory

Z must be on the left memory

Result precision: 23 bits of mantissa

Number of cycles:

32 + 25 × Nelements

Number of VLIW:

27

File: vdiv0rll.mas

Z k� � Y k� �
X k� �
----------- k 0�Nelements 1–= =
DSP Library User Manual (draft) 3-111

DRAFT–DPS–04/05

DSP Functions Description
3.112 vdiv40lll Function: float array division element by element (equivalent to Matlab: Y./ X),
with Y and X il left memory and precision equal to 31 bit of mantissa

Synopsis: __vector__ int vdiv40lll(*Y, strideY, *X, strideX, *Z, strideZ,
Nelements)

Include file: DSPlib.h.

*Y: pointer to the Y input vector. Type: float *

strideY: stride to be applied on Y vector. Type: int

*X: pointer to the X input vector. Type: float *

strideX: stride to be applied on X vector. Type: int

*Z: pointer to the output vector Z . Type: float *

strideZ: stride to be applied on Z vector. Type: int

Nelements: number elements to be computed. Type: int

The vdiv40lll performs the division with unroll 4 and precision equal to 31 bit of mantissa,
between inputs data vectors X and Y ordered as specified in Restrictions. Y and X are
float array, but after their moving from the Data Memory to the Register File, data are
arranged in a vectorial way in order to perform vectorial operations. In order to divide Y
by a scalar x, simply set *X equal &x and strideX = 0. In order to compute k / X, simply
set *Y equal to &k, set k to the desired value and strideY = 0.

Restrictions:

Nelements must be greater or equal to 8 and multiple of 4

Y must be in the left memory

X must be in the left memory

Z must be in the left memory

Precision: 31 bit of mantissa

Number of cycles:

78 + 7.75 × Nelements

Number of VLIW:

64

File: vdiv40lll.mas

Z k� � Y k� �
X k� �
-----------= k 0�Nelements=
3-112 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
3.113 vdiv40lrl Function: float array division element by element (equivalent to Matlab: Y./ X),
with Y in left memory and X in right memory and precision equal to 31
bit of mantissa

Synopsis: __vector__ int vdiv40lrl(*Y, strideY, *X, strideX, *Z, strideZ,
Nelements)

Include file: DSPlib.h.

*Y: pointer to the Y input vector. Type: float *

strideY: stride to be applied on Y vector. Type: int

*X: pointer to the X input vector. Type: float *

strideX: stride to be applied on X vector. Type: int

*Z: pointer to the output vector Z . Type: float *

strideZ: stride to be applied on Z vector. Type: int

Nelements: number elements to be computed. Type: int

The vdiv40lrl performs the division with unroll 4 and precision equal to 31 bit of man-
tissa, between inputs data vectors X and Y ordered as specified in Restrictions. Y and X
are float array, but after their moving from the Data Memory to the Register File, data
are arranged in a vectorial way in order to perform vectorial operations. In order to divide
Y by a scalar x, simply set *X equal &x and strideX = 0. In order to compute k / X, simply
set *Y equal to &k, set k to the desired value and strideY = 0.

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

Y must be in the left memory

X must be in the right memory

Z must be in the left memory

Precision: 31 bit of mantissa

Number of cycles:

79 + 7.75 × Nelements

Number of VLIW:

Z k� � Y k� �
X k� �
-----------= k 0�Nelements=
DSP Library User Manual (draft) 3-113

DRAFT–DPS–04/05

DSP Functions Description
68

File: vdiv40lrl.mas

3.114 vdiv40rll Function: float array division element by element (equivalent to Matlab: Y./ X),
with Y in right memory and X in left memory and precision equal to 31
bit of mantissa

Synopsis: __vector__ int vdiv40rll(*Y, strideY, *X, strideX, *Z, strideZ,
Nelements)

Include file: DSPlib.h.

*Y: pointer to the Y input vector. Type: float *

strideY: stride to be applied on Y vector. Type: int

*X: pointer to the X input vector. Type: float *

strideX: stride to be applied on X vector. Type: int

*Z: pointer to the output vector Z . Type: float *

strideZ: stride to be applied on Z vector. Type: int

Nelements: number elements to be computed. Type: int

The vdiv40rll performs the division with unroll 4 and precision equal to 31 bit of man-
tissa, between inputs data vectors X and Y ordered as specified in Restrictions. Y and X
are float array, but after their moving from the Data Memory to the Register File, data
are arranged in a vectorial way in order to perform vectorial operations. In order to divide
Y by a scalar x, simply set *X equal &x and strideX = 0. In order to compute k / X, simply
set *Y equal to &k, set k to the desired value and strideY = 0.

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

Y must be in the right memory

X must be in the left memory

Z must be in the left memory

Precision: 31 bit of mantissa

Number of cycles:

Z k� � Y k� �
X k� �
-----------= k 0�Nelements=
3-114 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
78 + 7.75 × Nelements

Number of VLIW:

66

File: vdiv40rll.mas

3.115 vdiv40rrl Function: float array division element by element (equivalent to Matlab: Y./ X),
with Y and X in right memory and precision equal to 31 bit of mantissa

Synopsis: __vector__ int vdiv40rrl(*Y, strideY, *X, strideX, *Z, strideZ,
Nelements)

Include file: DSPlib.h.

*Y: pointer to the Y input vector. Type: float *

strideY: stride to be applied on Y vector. Type: int

*X: pointer to the X input vector. Type: float *

strideX: stride to be applied on X vector. Type: int

*Z: pointer to the output vector Z . Type: float *

strideZ: stride to be applied on Z vector. Type: int

Nelements: number elements to be computed. Type: int

The vdiv40rrl performs the division with unroll 4 and precision equal to 31 bit of man-
tissa, between inputs data vectors X and Y ordered as specified in Restrictions. Y and X
are float array, but after their moving from the Data Memory to the Register File, data
are arranged in a vectorial way in order to perform vectorial operations. In order to divide
Y by a scalar x, simply set *X equal &x and strideX = 0. In order to compute k / X, simply
set *Y equal to &k, set k to the desired value and strideY = 0.

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

Y must be in the right memory

X must be in the right memory

Z must be in the left memory

Z k� � Y k� �
X k� �
-----------= k 0�Nelements=
DSP Library User Manual (draft) 3-115

DRAFT–DPS–04/05

DSP Functions Description
Precision: 31 bit of mantissa

Number of cycles:

80 + 7.75 × Nelements

Number of VLIW:

65

File: vdiv40rrl.mas

3.116 vdivlll Function: float array division element by element (equivalent to Matlab: Y./ X)
with Y and X in left memory and precision equal to 23 bit of mantissa

Synopsis: __vector__ int vdivlll(*Y, strideY, *X, strideX, *Z, strideZ, Nelements)

Include file: DSPlib.h.

*Y: pointer to the Y input vector. Type: float *

strideY: stride to be applied on Y vector. Type: int

*X: pointer to the X input vector. Type: float *

strideX: stride to be applied on X vector. Type: int

*Z: pointer to the output vector Z . Type: float *

strideZ: stride to be applied on Z vector. Type: int

Nelements: number elements to be computed. Type: int

The function vdivlll performs the division with unroll 4, between inputs data vectors X
and Y ordered as specified in Restrictions. Y and X are float array, but after their moving
from the Data Memory to the Register File, data are arranged in a vectorial way in order
to perform vectorial operations. In order to divide Y by a scalar x, simply set *X equal &x
and strideX = 0. In order to compute k / X, simply set *Y equal to &k, set k to the desired
value and strideY = 0.

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

Y must be in the left memory

X must be in the left memory

Z k� � Y k� �
X k� �
-----------= k 0�Nelements=
3-116 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
Z must be in the left memory

Precision: 23 bit of mantissa

Number of cycles:

96 + 3.75 × Nelements

Number of VLIW:

59

File: vdivlll.mas

3.117 vdivlrl Function: float array division element by element (equivalent to Matlab: Y./ X),
with Y in left memory and X in right memory and precision equal to 23
bit of mantissa

Synopsis: __vector__ int vdivlrl(*Y, strideY, *X, strideX, *Z, strideZ, Nelements)

Include file: DSPlib.h.

*Y: pointer to the Y input vector. Type: float *

strideY: stride to be applied on Y vector. Type: int

*X: pointer to the X input vector. Type: float *

strideX: stride to be applied on X vector. Type: int

*Z: pointer to the output vector Z . Type: float *

strideZ: stride to be applied on Z vector. Type: int

Nelements: number elements to be computed. Type: int

The vdivlrl performs the division with unroll 4, between inputs data vectors X and Y
ordered as specified in Restrictions. Y and X are float array, but after their moving from
the Data Memory to the Register File, data are arranged in a vectorial way in order to
perform vectorial operations. In order to divide Y by a scalar x, simply set *X equal &x
and strideX = 0. In order to compute k / X, simply set *Y equal to &k, set k to the desired
value and strideY = 0.

Restrictions:

Z k� � Y k� �
X k� �
-----------= k 0�Nelements=
DSP Library User Manual (draft) 3-117

DRAFT–DPS–04/05

DSP Functions Description
Nelements must be greater or equal to 4 and multiple of 4

Y must be in the left memory

X must be in the right memory

Z must be in the left memory

Precision: 23 bit of mantissa

Number of cycles:

98 + 3.25 × Nelements

Number of VLIW:

61

File: vdivlrl.mas

3.118 vdivrll Function: float array division element by element (equivalent to Matlab: Y./ X),
with Y in right memory and X in left memory and precision equal to 23
bit of mantissa

Synopsis: __vector__ int vdivrll(*Y, strideY, *X, strideX, *Z, strideZ, Nelements)

Include file: DSPlib.h.

*Y: pointer to the Y input vector. Type: float *

strideY: stride to be applied on Y vector. Type: int

*X: pointer to the X input vector. Type: float *

strideX: stride to be applied on X vector. Type: int

*Z: pointer to the output vector Z . Type: float *

strideZ: stride to be applied on Z vector. Type: int

Nelements: number elements to be computed. Type: int

The vdivrll performs the division with unroll 4, between inputs data vectors X and Y
ordered as specified in Restrictions. Y and X are float array, but after their moving from
the Data Memory to the Register File, data are arranged in a vectorial way in order to
perform vectorial operations. In order to divide Y by a scalar x, simply set *X equal &x

Z k� � Y k� �
X k� �
-----------= k 0�Nelements=
3-118 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
and strideX = 0. In order to compute k / X, simply set *Y equal to &k, set k to the desired
value and strideY = 0.

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

Y must be in the right memory

X must be in the left memory

Z must be in the left memory

Precision: 23 bit of mantissa

Number of cycles:

98 + 3.5 × Nelements

Number of VLIW:

59

File: vdivrll.mas

3.119 vdivrrl Function: float array division element by element (equivalent to Matlab: Y./ X),
with X and Y in right memory and precision equal to 23 bit of mantissa

Synopsis: __vector__ int vdivrrl(*Y, strideY, *X, strideX, *Z, strideZ, Nelements)

Include file: DSPlib.h.

*Y: pointer to the Y input vector. Type: float *

strideY: stride to be applied on Y vector. Type: int

*X: pointer to the X input vector. Type: float *

strideX: stride to be applied on X vector. Type: int

*Z: pointer to the output vector Z . Type: float *

strideZ: stride to be applied on Z vector. Type: int

Nelements: number elements to be computed. Type: int

The vdivrrl performs the division with unroll 4, between inputs data vectors X and Y
ordered as specified in Restrictions. Y and X are float array, but after their moving from

Z k� � Y k� �
X k� �
-----------= k 0�Nelements=
DSP Library User Manual (draft) 3-119

DRAFT–DPS–04/05

DSP Functions Description
the Data Memory to the Register File, data are arranged in a vectorial way in order to
perform vectorial operations. In order to divide Y by a scalar x, simply set *X equal &x
and strideX = 0. In order to compute k / X, simply set *Y equal to &k, set k to the desired
value and strideY = 0.

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

Y must be in the right memory

X must be in the right memory

Z must be in the left memory

Precision: 23 bit of mantissa

Number of cycles:

93 + 3.75 × Nelements

Number of VLIW:

59

File: vdivrrl.mas

3.120 vdivv Function: vectorial float division element by element (equivalent to Matlab: Y./X)

Synopsis: __vector__ int vdivv(*Y, strideY, *X, strideX, *Z, strideZ, Nelements)

Include file: DSPlib.h.

*Y: pointer to the Y input vector. Type: __vector__ float *

strideY: stride to be applied on Y vector. Type: int

*X: pointer to the X input vector. Type: __vector__ float *

strideX: stride to be applied on X vector. Type: int

*Z: pointer to the output vector Z. Type: __vector__ float *

strideZ: stride to be applied on Z vector. Type: int

Nelements: number elements to be computed. Type: int

Z k� � Y k� �
X k� �
----------- k 0�Nelements 1–= =
3-120 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
The function vdivv performs the division between vectorial data inputs X and Y. The
operation YL / XL and YR / XR are computed simultaneously. In order to divide Y by a
vector float x, simply set *X equal &x and strideX = 0. In order to compute k / X, simply
set *Y equal to &k, set k to the desired value and strideY = 0.

Restrictions:

Nelements must be greater than 4 and multiple of 4

Result precision: 23 bits of mantissa

Number of cycles:

90 + 6.75 × Nelements

Number of VLIW:

51

File: vdivv.mas

3.121 vexp10ll Function: exponential to base 10 () of a float input array and left to left move

Synopsis: __vector__ int vexp10ll (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array which the computed value is written. Type:
float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vexp10ll computes the exponential to base 10 of an input array stored in
left memory space and writes the output to an array in left memory space.

Precision:

see Table 3-9 on page 125

Restrictions:

10x

Y k� � 10
X k� �

= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-121

DRAFT–DPS–04/05

DSP Functions Description
Nelements must be greater or equal to 4 and multiple of 4

X must be in left memory

Y must be in left memory

| x | <= 38, to avoid overflow / underflow of the computed result

Number of cycles:

124 + 10 × Nelements

Number of VLIW:

69

File: vexp10ll.mas, exp10Coeff.mas

3.122 vexp10lr Function: exponential to base 10 () of a float input array and left to left to
right move

Synopsis: __vector__ int vexp10lr (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vexp10lr computes the exponential to base 10 of an input array stored in
left memory space and writes the output to an array in right memory space.

Precision:

see Table 3-9 on page 125

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in left memory

Y must be in right memory

10x

Y k� � 10
X k� �

= k 0�Nelements 1–=
3-122 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
| x | <= 38, to avoid overflow / underflow of the computed result

Number of cycles:

126 + 10 × Nelements

Number of VLIW:

69

File: vexp10lr.mas, exp10Coeff.mas

3.123 vexp10rl Function: exponential to base 10 () of a float input array and right to left
move

Synopsis: __vector__ int vexp10rl (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vexp10rl computes the exponential to base 10 of an input array stored in
right memory space and writes the output to an array in left memory space.

Precision:

see Table 3-9 on page 125

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in right memory

Y must be in left memory

| x | <= 38, to avoid overflow / underflow of the computed result

Number of cycles:

10x

Y k� � 10
X k� �

= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-123

DRAFT–DPS–04/05

DSP Functions Description
123 + 10 × Nelements

Number of VLIW:

69

File: vexp10rl.mas, exp10Coeff.mas

3.124 vexp10rr Function: exponential to base 10 () of a float input array and right to right
move

Synopsis: __vector__ int vexp10rr (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vexp10rr computes the exponential to base 10 of an input array stored in
right memory space and writes the output to an array in right memory space.

Precision:

see Table 3-9 on page 125

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in right memory

Y must be in right memory

| x | <= 38, to avoid overflow / underflow of the computed result

Number of cycles:

123 + 10 × Nelements

Number of VLIW:

69

10x

Y k� � 10
X k� �

= k 0�Nelements 1–=
3-124 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
File: vexp10rr.mas, exp10Coeff.mas

3.125 vexp10v Function: exponential to base 10 () of a vectorial input array

Synopsis: __vector__ int vexp10v (*X, strideX, *Y, strideY, Nelements)

X: pointer to the input array. Type: __vector__ float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: __vector__ float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vexp10v computes the exponential to base 10 of an input array stored in
vector space and writes the output to an array in vector space. For computing the base
10 exponential, with the input stored in left/right memory space and to output the values
into left/right memory space, see the functions: See “vexp10ll” on page 3-121.,
“vexp10lr” on page 3-122, See “vexp10rl” on page 3-123. and See “vexp10rr” on page
3-124..

Precision:

the following table provides the information about the precision for
this function

Restrictions:

Nelements must be greater or equal to 2 and multiple of 2

| x | <= 38, to avoid overflow / underflow of the computed result

Number of cycles:

115 + 18.5 × Nelements

Number of VLIW:

Table 3-9.

Range of input values Absolute error Relative error

-0.1505 to 0.1505 3.84841e-008 5.43603e-008

--38 to -1 1e-010 1

0 to 38 1.108e+028 4.997e-008

10x

Y k� � 10
X k� �

= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-125

DRAFT–DPS–04/05

DSP Functions Description
60

File: vexp10v.mas, exp10Coeff.mas

3.126 vexpll Function: exponential to base e () of a float input array and left to left move

Synopsis: __vector__ int vexpll (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vexpll computes the exponential to base e of an input array stored in left
memory space and writes the output to an array in in left memory space.

Precision:

see Figure 3-10 on page 130

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in left memory

X must be in left memory

| x | <= 85, to avoid overflow / underflow of the computed result

Number of cycles:

125 + 10 × Nelements

Number of VLIW:

70

File: vexpll.mas, expCoeff.mas

ex

Y k� � eX k� �
= k 0�Nelements 1–=
3-126 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
3.127 vexplr Function: exponential to base e () of a float input array and left to right move

Synopsis: __vector__ int vexplr (*X, strideX, *Y, strideY, Nelements)

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vexplr computes the exponential to base e of an input array stored in left
memory space and writes the output to an array in in right memory space.

Precision:

see Table 3-10 on page 130

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in left memory

Y must be in right memory

| x | <= 85, to avoid overflow / underflow of the computed result

Number of cycles:

124 + 9.75 × Nelements

Number of VLIW:

66

File: vexplr.mas, expCoeff.mas

ex

Y k� � eX k� �
= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-127

DRAFT–DPS–04/05

DSP Functions Description
3.128 vexprl Function: exponential to base e () of a float input array and right to left move

Synopsis: __vector__ int vexprl (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vexprl computes the exponential to base e of an input array stored in right
memory space and writes the output to an array in left memory space.

Precision:

see Table 3-10 on page 130

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in right memory

Y must be in left memory

| x | <= 85, to avoid overflow / underflow of the computed result

Number of cycles:

124 + 10 × Nelements

Number of VLIW:

70

File: vexprl.mas, expCoeff.mas

ex

Y k� � eX k� �
= k 0�Nelements 1–=
3-128 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
3.129 vexprr Function: exponential to base e () of a float input array and right to right move

Synopsis: __vector__ int vexprr (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: float*

strideY: Stride to be used for the output array. Type: int

Nelements: Number of elements to be computed.Type: int

The function vexprr computes the exponential to base e of an input array stored in right
memory space and writes the output to an array in right memory space.

Precision:

see Table 3-10 on page 130

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in right memory

Y must be in right memory

| x | <= 85, to avoid overflow / underflow of the computed result

Number of cycles:

123 + 9.75 × Nelements

Number of VLIW:

66

File: vexprr.mas, expCoeff.mas

ex

Y k� � eX k� �
= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-129

DRAFT–DPS–04/05

DSP Functions Description
3.130 vexpv Function: exponential to base e () of a vectorial input array

Synopsis: __vector__ int vexpv (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: __vector__ float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: __vector__ float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vexpv computes the exponential to base e of an input array stored in vector
space and writes the output to an array in vector space. For computing the base e expo-
nential, with the input stored in left/right memory space and to output the values into
left/right memory space, see the functions: “vexpll” on page 3-126, “vexplr” on page 3-
127, “vexprl” on page 3-128, “vexprr” on page 3-129.

Precision:

the following table provides the information about the precision for
this function

Restrictions:

Nelements must be greater or equal to 2 and multiple of 2

| x | <= 85, to avoid overflow / underflow of the computed result

Number of cycles:

116 + 18.5 × Nelements

Number of VLIW:

61

Table 3-10.

Range of input values Absolute error Relative error

-0.1505 to 0.1505 3.68082e-010 3.35394e-010

--38 to -1 4.1744e-011 1

0 to 38 1.88624e+006 5.14375e-010

ex

Y k� � eX k� �
= k 0�Nelements 1–=
3-130 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
File: vexpv.mas, expCoeff.mas

3.131 vfillll Function: filling of an array in left memory with a constant stored in left memory

Synopsis: __vector__ int vfillll (*X, *Y, strideY, Nelements)

Include file: DSPlib.h.

X: pointer to the input scalar whose value has to be filled. Type: float

*Y: pointer to the output array into which the value has to be copied Type:
float*

strideY: stride to be used for the output vector. Type: int

Nelements: number of elements to be copied.Type: int

The function vfillll fills an array in left memory space with a value specified by the input
scalar value stored in left memory space.

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in left memory

Y must be in left memory

Number of cycles:

20 + 1.5 × Nelements

Number of VLIW:

18

File: vfillll.mas

Y k� � X= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-131

DRAFT–DPS–04/05

DSP Functions Description
3.132 vfilllr Function: filling of an array in right memory with a constant stored in left
memory

Synopsis: __vector__ int vfilllr (*X, *Y, strideY, Nelements)

Include file: DSPlib.h.

X: pointer to the input scalar whose value has to be filled. Type: float

*Y: pointer to the output array into which the value has to be copied Type:
float*

strideY: stride to be used for the output vector. Type: int

Nelements: number of elements to be copied.Type: int

The function vfilllr fills an array in right memory space with a value specified by the input
scalar value stored in left memory space.

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in left memory

Y must be in right memory

Number of cycles:

20 + 1.5 × Nelements

Number of VLIW:

18

File: vfilllr.mas

3.133 vfillrl Function: filling of an array in left memory with a constant stored in right
memory

Y k� � X= k 0�Nelements 1–=

Y k� � X= k 0�Nelements 1–=
3-132 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
Synopsis: __vector__ int vfillrl (*X, *Y, strideY, Nelements)

X: pointer to the input scalar whose value has to be filled. Type: float

*Y: pointer to the output array into which the value has to be copied Type:
float*

strideY: stride to be used for the output vector. Type: int

Nelements: number of elements to be copied.Type: int

The function vfillrl fills an array in left memory space with a value specified by the input
scalar value stored in right memory space.

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in right memory

Y must be in left memory

Number of cycles:

22 + 1.5 × Nelements

Number of VLIW:

19

File: vfillrl.mas

3.134 vfillrr Function: filling of an array in right memory with a constant stored in right
memory

Synopsis: __vector__ int vfillrr (*X, *Y, strideY, Nelements)

Include file: DSPlib.h.

X: pointer to the input scalar whose value has to be filled. Type: float

*Y: pointer to the output array into which the value has to be copied Type:
float*

Y k� � X= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-133

DRAFT–DPS–04/05

DSP Functions Description
strideY: stride to be used for the output vector. Type: int

Nelements: number of elements to be copied.Type: int

The function vfillrr fills an array in right memory space with a value specified by the input
scalar value stored in right memory space.

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in right memory

Y must be in right memory

Number of cycles:

22 + 1.5 × Nelements

Number of VLIW:

19

File: vfillrr.mas

3.135 vfillv Function: filling of a vectorial array with a vectorial constant

Synopsis: __vector__ int vfillv (*X, *Y, strideY, Nelements)

Include file: DSPlib.h.

*X: pointer to the input scalar whose value has to be filled. Type:
__vector__ float*

*Y: pointer to the output array into which the value has to be copied Type:
__vector__ float*

strideY: stride to be used for the output vector. Type: int

Nelements: number of elements to be copied.Type: int

The function vfillv fills the vector memory space of the output array with a value specified
by the input scalar value. For copying a scalar float value stored in left/right into memory

Y k� � X= k 0�Nelements 1–=
3-134 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
space in left/right, see the fucntions: “vfillll” on page 3-131, “vfilllr” on page 3-132, “vfillrl”
on page 3-132 and “vfillrr” on page 3-133.

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

Number of cycles:

22 + 1.5 × Nelements

Number of VLIW:

19

File: vfillv.mas

3.136 vfix1ll Function: addition of a float offset, float to integer conversion and left to left
move

Synopsis: __vector__ int vfix1ll(*X, strideX, *Y, strideY, Offset, Nelements)

Include file: DSPlib.h.

X: pointer to float input vector X. Type: float *

strideX: address stride for input vector X. Type int

*Y: pointer to integer output vector Y. Type: int *

strideY: address stride for output vector Y. Type int

Offset: offset to be applied. Type: float

Nelements: number of elements that will be moved. Type: int

The function vfix1ll adds a float offset (Offset) to a float vector input (X) stored in left
memory and converts it to integer. The output (Y) is written in left memory. For vectorial
data type see the function: “vfix1v” on page 3-139.

Restrictions:

Nelements must be greater or equal to 16 and multiple of 4

X must be in the left memory

Y k� � round X k� � Offset+� �= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-135

DRAFT–DPS–04/05

DSP Functions Description
Y must be in the left memory

Offset can be either in left or right memory

Number of cycles:

42 + 1 × Nelements

Number of VLIW:

29

File: vfix1ll.mas

3.137 vfix1lr Function: addition of a float offset, float to integer conversion and left to right
move

Synopsis: __vector__ int vfix1lr(*X, strideX, *Y, strideY, Offset, Nelements)

Include file: DSPlib.h.

*X: pointer to float input vector X. Type: float *

strideX: address stride for input vector X. Type: int

*Y: pointer to integer output vector Y. Type: int *

strideY: address stride for output vector Y. Type: int

Offset: offset to be applied. Type: float

Nelements: number of elements that will be moved. Type: int

The function vfix1lr adds a float offset (Offset) to a float vector input (X) stored in left
memory and converts it to integer. The output (Y) is written in right memory. For vecto-
rial data type see the function: “vfix1v” on page 3-139.

Restrictions:

Nelements must be greater or equal to 16 and multiple of 4

X must be in the left memory

Y must be in the right memory

Offset can be either in left or right memory

Y k� � round X k� � Offset+� �= k 0�Nelements 1–=
3-136 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
Number of cycles:

42 + 1 × Nelements

Number of VLIW:

29

File: vfix1lr.mas

3.138 vfix1rl Function: addition of a float offset, float to integer conversion and right to left
move

Synopsis: __vector__ int vfix1rl(*X, strideX, *Y, strideY, Offset, Nelements)

Include file: DSPlib.h.

*X: pointer to float input vector X. Type: float *

strideX: address stride for input vector X. Type: int

*Y: pointer to integer output vector Y. Type: int *

strideY: address stride for output vector Y. Type: int

Offset: offset to be applied. Type: float

Nelements: number of elements that will be moved. Type: int

The function vfix1rl adds a float offset (Offset) to a float vector input (X) stored in right
memory and converts it to integer. The output (Y) is written in left memory. For vectorial
data type see the function: “vfix1v” on page 3-139.

Restrictions:

Nelements must be greater or equal to 16 and multiple of 4

X must be in the right memory

Y must be in the left memory

Offset can be either in left or right memory

Number of cycles:

43 + 1 × Nelements

Number of VLIW:

Y k� � round X k� � Offset+� �= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-137

DRAFT–DPS–04/05

DSP Functions Description
29

File: vfix1rl.mas

3.139 vfix1rr Function: addition of a float offset, float to integer conversion and right to right
move

Synopsis: __vector__ int vfix1rr(*X, strideX, *Y, strideY, Offset, Nelements)

Include file: DSPlib.h.

*X: pointer to float input vector X. Type: float *

strideX: address stride for input vector X. Type: int

*Y: pointer to integer output vector Y. Type: int *

strideY: address stride for output vector Y. Type: int

Offset: offset to be applied. Type: float

Nelements: number of elements that will be moved. Type: int

The function vfix1rr adds a float offset (Offset) to a float vector input (X) stored in right
memory and converts it to integer. The output (Y) is written in right memory. For vecto-
rial data type see the function: “vfix1v” on page 3-139.

Restrictions:

Nelements must be greater or equal to 16 and multiple of 4

X must be in the left memory

Y must be in the left memory

Offset can be either in left or right memory

Number of cycles:

43 + 1 × Nelements

Number of VLIW:

29

Y k� � round X k� � Offset+� �= k 0�Nelements 1–=
3-138 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
File: vfix1rr.mas

3.140 vfix1v Function: addition of a vectorial float offset, float to integer conversion and vec-
torial move

Synopsis: __vector__ int vfix1v(*X, strideX, *Y, strideY, Offset, Nelements)

Include file: DSPlib.h.

*X: pointer to the input vector. Type: __vector__ float *

strideX: stride to be applied on input vector. Type: int

*Y: pointer to the output vector. Type: __vector__ int *

strideY: stride to be applied on output vector. Type: int

Offset: vectorial scalar offset (i.e. pair of scalar offset) to be added to the
input vector. Type: __vector__ float

Nelements: Number of elements to be computed. Type: int

The function vfix1v adds a vectorial float offset (Offset) to a vectorial float input array (X)
and converts it to integer. For non vectorial data types see the functions: “vfix1ll” on
page 3-135, “vfix1lr” on page 3-136, “vfix1rl” on page 3-137 and “vfix1rr” on page 3-138.

Restrictions:

Nelements must be greater or equal to 16 and multiple of 4

Number of cycles:

53 + 1× Nelements

Number of VLIW:

30

File: vfix1v.mas

Y k� � round X k� � Offset+� �= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-139

DRAFT–DPS–04/05

DSP Functions Description
3.141 vfix2ll Function: multiplication by a float value, addition of a float offset, float to integer
conversion and left to left move

Synopsis: __vector__ int vfix2ll(*X, strideX, *Y, strideY, Scale, Offset,
Nelements)

Include file: DSPlib.h.

*X: pointer to float input vector X. Type: float *

strideX: address stride for input vector X. Type: int

*Y: pointer to integer output vector Y. Type: int *

strideY: address stride for output vector Y. Type: int

Scale: scalar multiply factor to scale the input vector. Type: float

Offset: scalar offset to be added to the input vector. Type: float

Nelements: number of elements that will be moved. Type: int

The function vfix2ll scales a float input array (X) stored in left memory by a float value
(Scale), adds a float value (Offset) and converts the values computed into integer. The
result (Y) is written in left memory. For vectorial data type see the function: “vfix2v” on
page 3-144.

Restrictions:

Nelements must be greater or equal to 16 and multiple of 4

X must be in the left memory

Y must be in the left memory

Offset and Scale can be either in left or right memory

Number of cycles:

34 + 2 × Nelements

Number of VLIW:

36

File: vfix2ll.mas

Y k� � round X k� � Scale Offset+�� �= k 0�Nelements 1–=
3-140 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
3.142 vfix2lr Function: multiplication by a float value, addition of a float offset, float to integer
conversion and left to right move

Synopsis: __vector__ int vfix2lr (*X, strideX, *Y, strideY, Scale, Offset,
Nelements)

Include file: DSPlib.h.

*X: pointer to float input vector X. Type: float *

strideX: address stride for input vector X. Type: int

*Y: pointer to integer output vector Y. Type: int *

strideY: address stride for output vector Y. Type: int

Scale: scalar multiply factor to scale the input vector. Type: float

Offset: scalar offset to be added to the input vector. Type: float

Nelements: number of elements that will be moved. Type: int

The function vfix2lr scales a float input array (X) stored in left memory by a float value
(Scale), adds a float value (Offset) and converts the values computed into integer. The
result (Y) is written in right memory. For vectorial data type see the function: “vfix2v” on
page 3-144

Restrictions:

Nelements must be greater or equal to 16 and multiple of 4

X must be in the left memory

Y must be in the right memory

Offset and Scale can be either in left or right memory

Number of cycles:

34 + 2 × Nelements

Number of VLIW:

36

File: vfix2lr.mas

Y k� � round X k� � Scale Offset+�� �= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-141

DRAFT–DPS–04/05

DSP Functions Description
3.143 vfix2rl Function: multiplication by a float value, addition of a float offset, float to integer
conversion and right to left move

Synopsis: __vector__ int vfix2rl(*X, strideX, *Y, strideY, Scale, Offset,
Nelements)

Include file: DSPlib.h.

*X: pointer to float input vector X. Type: float *

strideX: address stride for input vector X. Type: int

*Y: pointer to integer output vector Y. Type: int *

strideY: address stride for output vector Y. Type: int

Scale: scalar multiply factor to scale the input vector. Type: float

Offset: scalar offset to be added to the input vector. Type: float

Nelements: number of elements that will be moved. Type: int

The function vfix2rl scales a float input array (X) stored in right memory by a float value
(Scale), adds a float value (Offset) and converts the values computed into integer. The
result (Y) is written in left memory. For vectorial data type see the function: “vfix2v” on
page 3-144

Restrictions:

Nelements must be greater or equal to 16 and multiple of 4

X must be in the right memory

Y must be in the left memory

Offset and Scale can be either in left or right memory

Number of cycles:

36 + 2 × Nelements

Number of VLIW:

35

File: vfix2rl.mas

Y k� � round X k� � Scale Offset+�� �= k 0�Nelements 1–=
3-142 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
3.144 vfix2rr Function: multiplication by a float value, addition of a float offset, float to integer
conversion and right to right move

Synopsis: __vector__ int vfix2rr(*X, strideX, *Y, strideY, Scale, Offset,
Nelements)

Include file: DSPlib.h.

*X: pointer to float input vector X. Type: float *

strideX: address stride for input vector X. Type: int

*Y: pointer to integer output vector Y. Type: int *

strideY: address stride for output vector Y. Type: int

Scale: scalar multiply factor to scale the input vector. Type: float

Offset: scalar offset to be added to the input vector. Type: float

Nelements: number of elements that will be moved. Type: int

The function vfix2rr scales a float input array (X) stored in right memory by a float value
(Scale), adds a float value (Offset) and converts the values computed into integer. The
result (Y) is written in right memory. For vectorial data type see the function: “vfix2v” on
page 3-144

Restrictions:

Nelements must be greater or equal to 16 and multiple of 4

X must be in the right memory

Y must be in the right memory

Offset and Scale can be either in left or right memory

Number of cycles:

36 + 2 × Nelements

Number of VLIW:

35

File: vfix2rr.mas

Y k� � round X k� � Scale Offset+�� �= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-143

DRAFT–DPS–04/05

DSP Functions Description
3.145 vfix2v Function: multiplication by a vectorial float value, addition of a vectorial float off-
set and float to integer conversion

Synopsis: __vector__ int vfix2v(*X, strideX, *Y, strideY, Scale, Offset,
Nelements)

Include file: DSPlib.h.

*X: pointer to the input vector. Type: __vector__ float *

strideX: stride to be applied on input vector. Type: int

*Y: pointer to the output vector. Type: __vector__ int *

strideY: stride to be applied on output vector. Type: int

Scale: vectorial scalar multiply factor (i.e. pair of scalar multiplier) to scale
the input vector. Type: __vector__ float

Offset: vectorial scalar offset (i.e. pair of scalar offset) to be added to the
input vector. Type: __vector__ float

Nelements: Number of elements to be computed. Type: int

The function vfix2v scales a vectorial float input array (X) by a vectorial float value
(Scale), adds a vectorial float value (Offset) and converts the values computed into inte-
ger. For non vectorial data type see the functions: “vfix2ll” on page 3-140, “vfix2lr” on
page 3-141, “vfix2rl” on page 3-142 and “vfix2rr” on page 3-143.

Restrictions:

Nelements must be greater or equal to 16 and multiple of 4

Number of cycles:

36 + 2 × Nelements

Number of VLIW:

35

File: vfix2v.mas

Y k� � round X k� � Scale Offset+�� �= k 0�Nelements 1–=
3-144 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
3.146 vfix3ll Function: multiplication by a float value, addition of a float offset, clipping in a
float range, float to integer conversion and left to left move

Synopsis: __vector__ int vfix3ll (*X, strideX, *Y, strideY, Scale, Offset, ClipUp,
ClipDown, Nelements)

Include file: DSPlib.h.

*X: pointer to float input vector X. Type: float *

strideX: address stride for input vector X. Type: int

*Y: pointer to integer output vector Y. Type: int *

strideY: address stride for output vector Y. Type: int

Scale: scalar multiply factor to scale the input vector. Type: float

Offset: scalar offset to be added to the input vector. Type: float

ClipUp: value to be used as upper limit for the data. Type: float

ClipDown: value to be used as lower limit for the data. Type: float

Nelements: number of elements that will be moved. Type: int

The function vfix3ll scales a float input array (X) stored in left memory by a float value
(Scale), adds a float value (Offset), clips the values computed in a float range (Clip-
Down, ClipUp) and converts them to integer. The result (Y) is written in left memory. For
vectorial data type see the function: “vfix3v” on page 3-149. To clipping the vector float X
in the range (ClipUp, ClipDown) means:

if(X > ClipUp) X = ClipUp;

if(X < ClipDown) X = ClipDown;

Restrictions:

Nelements must be greater or equal to 24 and multiple of 4

X must be in the left memory

Y must be in the left memory

Offset, Scale, ClipDown and ClipUp can be either in left or right
memory

Number of cycles:

24 + 3.75 × Nelements

Y k� � round clip X k� � Scale Offset+�� �� �= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-145

DRAFT–DPS–04/05

DSP Functions Description
Number of VLIW:

55

File: vfix3ll.mas

3.147 vfix3lr Function: multiplication by a float value, addition of a float offset, clipping in a
float range, float to integer conversion and left to right move

Synopsis: __vector__ int vfix3lr(*X, strideX, *Y, strideY, Scale, Offset, ClipUp,
ClipDown, Nelements)

Include file: DSPlib.h.

*X: pointer to float input vector X. Type: float *

strideX: address stride for input vector X. Type: int

*Y: pointer to integer output vector Y. Type: int *

strideY: address stride for output vector Y. Type: int

Scale: scalar multiply factor to scale the input vector. Type: float

Offset: scalar offset to be added to the input vector. Type: float

ClipUp: value to be used as upper limit for the data. Type: float

ClipDown: value to be used as lower limit for the data. Type: float

Nelements: number of elements that will be moved. Type: int

The function vfix3lr scales a float input array (X) stored in left memory by a float value
(Scale), adds a float value (Offset), clips the values computed in a float range (Clip-
Down, ClipUp) and converts them to integer. The result (Y) is written in right memory.
For vectorial data type see the function: “vfix3v” on page 3-149. To clipping the vector
float X in the range (ClipUp, ClipDown) means:

if(X > ClipUp) X = ClipUp;

if(X < ClipDown) X = ClipDown;

Restrictions:

Nelements must be greater or equal to 24 and multiple of 4

Y k� � round clip X k� � Scale Offset+�� �� �= k 0�Nelements 1–=
3-146 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
X must be in the left memory

Y must be in the right memory

Offset, Scale, ClipDown and ClipUp can be either in left or right
memory

Number of cycles:

24 + 3.75 × Nelements

Number of VLIW:

57

File: vfix3lr.mas

3.148 vfix3rl Function: multiplication by a float value, addition of a float offset, clipping in a
float range, float to integer conversion and right to left move

Synopsis: __vector__ int vfix3rl(*X, strideX, *Y, strideY, Scale, Offset, ClipUp,
ClipDown, Nelements)

Include file: DSPlib.h.

*X: pointer to float input vector X. Type: float *

strideX: address stride for input vector X. Type int

*Y: pointer to integer output vector Y. Type: int *

strideY: address stride for output vector Y. Type: int

Scale: scalar multiply factor to scale the input vector. Type: float

Offset: scalar offset to be added to the input vector. Type: float

ClipUp: value to be used as upper limit for the data. Type: float

ClipDown: value to be used as lower limit for the data. Type: float

Nelements: number of elements that will be moved. Type: int

The function vfix3rl scales a float input array (X) stored in right memory by a float value
(Scale), adds a float value (Offset), clips the values computed in a float range (Clip-
Down, ClipUp) and converts them to integer. The result (Y) is written in left memory. For

Y k� � round clip X k� � Scale Offset+�� �� �= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-147

DRAFT–DPS–04/05

DSP Functions Description
vectorial data type see the function: “vfix3v” on page 3-149. To clipping the vector float X
in the range (ClipUp, ClipDown) means:

if(X > ClipUp) X = ClipUp;

if(X < ClipDown) X = ClipDown;

Restrictions:

Nelements must be greater or equal to 24 and multiple of 4

X must be in the right memory

Y must be in the left memory

Offset, Scale, ClipDown and ClipUp can be either in left or right
memory

Number of cycles:

27 + 3.75 × Nelements

Number of VLIW:

55

File: vfix3rl.mas

3.149 vfix3rr Function: multiplication by a float value, addition of a float offset, clipping in a
float range, float to integer conversion and right to right move

Synopsis: __vector__ int vfix3rr(*X, strideX, *Y, strideY, Scale, Offset, ClipUp,
ClipDown, Nelements)

Include file: DSPlib.h.

*X: Pointer to float input vector X. Type: float *

strideX: Address stride for input vector X. Type: int

*Y: Pointer to integer output vector Y. Type: int *

strideY: Address stride for output vector Y. Type: int

Scale: scalar multiply factor to scale the input vector. Type: float

Offset: scalar offset to be added to the input vector. Type: float

ClipUp: value to be used as upper limit for the data. Type: float

ClipDown: value to be used as lower limit for the data. Type: float

Y k� � round clip X k� � Scale Offset+�� �� �= k 0�Nelements 1–=
3-148 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
Nelements: number of elements that will be moved. Type: int

The function vfix3rr scales a float input array (X) stored in right memory by a float value
(Scale), adds a float value (Offset), clips the values computed in a float range (Clip-
Down, ClipUp) and converts them to integer. The result (Y) is written in right memory.
For vectorial data type see the function: “vfix3v” on page 3-149. To clipping the vector
float X in the range (ClipUp, ClipDown) means:

if(X > ClipUp) X = ClipUp;

if(X < ClipDown) X = ClipDown;

Restrictions:

Nelements must be greater or equal to 24 and multiple of 4

X must be in the right memory

Y must be in the right memory

Offset, Scale, ClipDown and ClipUp can be either in left or right
memory

Number of cycles:

27 + 3.75 × Nelements

Number of VLIW:

57

File: vfix3rr.mas

3.150 vfix3v Function: multiplication by a vectorial float value, addition of a vectorial float off-
set, clipping in a vectorial float range and float to integer conversion

Synopsis: __vector__ int vfix3v(*X, strideX, *Y, strideY, Scale, Offset, ClipUp,
ClipDown, Nelements)

Include file: DSPlib.h.

Y k� � round clip X k� � Scale Offset+�� �� �= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-149

DRAFT–DPS–04/05

DSP Functions Description
*X: pointer to the input vector. Type: __vector__ float *

strideX: stride to be applied on input vector. Type: int

*Y: pointer to the output vector. Type: __vector__ int *

strideY: stride to be applied on output vector. Type: int

Scale: vectorial scalar multiply factor (i.e. pair of scalar multiplier) to scale
the input vector. Type: __vector__ float

Offset: vectorial scalar offset (i.e. pair of scalar offset) to be added to the
input vector.Type: __vector__ float

ClipUp: value to be used as upper limit for the data. Type: __vector__ float

ClipDown: value to be used as lower limit for the data. Type: __vector__ float

Nelements: number of elements to be computed. Type: int

The function vfix3v scales a vectorial float input array (X) by a vectorial float value
(Scale), adds a vectorial float value (Offset), clips the values computed in a vectorial
float range (ClipDown, ClipUp) and converts them to integer. For non vectorial data type
see the functions: “vfix3ll” on page 3-145, “vfix3lr” on page 3-146, “vfix3rl” on page 3-
147 and “vfix3rr” on page 3-148. To clipping the vector float X in the range (ClipUp, Clip-
Down) means:

if(Re(X) > Re(ClipUp)) Re(X) = Re(ClipUp);

if(Im(X) > Im(ClipUp)) Im(X) = Im(ClipUp);

if(Re(X) > Re(ClipDown)) Re(X) = Re(ClipDown);

if(Im(X) > Im(ClipDown)) Im(X) = Im(ClipDown);

Restrictions:

Nelements must be greater or equal to 24 and multiple of 4

Number of cycles:

44 + 3 × Nelements

Number of VLIW:

61

File: vfix3v.mas
3-150 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
3.151 vfloat1ll Function: integer to float conversion, addition of a float offset and left to left
move

Synopsis: __vector__ int vfloat1ll(*X, strideX, *Y, strideY, Offset, Nelements)

Include file: DSPlib.h.

*X: pointer to the input vector. Type: int *

strideX: stride to be applied on input vector. Type: int

*Y: pointer to the output vector. Type: float *

strideY: stride to be applied on output vector. Type: int

Offset: scalar offset to be added to the input vector. Type: float

Nelements: Number of elements to be computed. Type: int

The function vfloat1ll executes the float conversion of the integer data input (X) and
adds to it a float scalar offset (Offset). For function operating on vectorial types see the
function “vfloat1v” on page 3-155.

Restrictions:

Nelements must be greater or equal to 16 and multiple of 4

X must be in left memory

Y must be in left memory

Offset can be either in left or right memory

Number of cycles:

36 + 1 × Nelements

Number of VLIW:

28

File: vfloat1ll.mas

Y k� � float X k� �� � Offset+= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-151

DRAFT–DPS–04/05

DSP Functions Description
3.152 vfloat1lr Function: integer to float conversion, addition of a float offset and left to right
move

Synopsis: __vector__ int vfloat1lr(*X, strideX, *Y, strideY, Offset, Nelements)

Include file: DSPlib.h.

*X: pointer to the input vector. Type: int *

strideX: stride to be applied on input vector. Type: int

*Y: pointer to the output vector. Type: float *

strideY: stride to be applied on output vector. Type: int

Offset: scalar offset to be added to the input vector. Type: float

Nelements: Number of elements to be computed. Type: int

The function vfloat1lr executes the float conversion of the integer data input (X) and
adds to it a float scalar offset (Offset). For function operating on vectorial types see the
function “vfloat1v” on page 3-155.

Restrictions:

Nelements must be greater or equal to 16 and multiple of 4

X must be in left memory

Y must be in right memory

Offset can be either in left or right memory

Number of cycles:

36 + 1 × Nelements

Number of VLIW:

28

File: vfloat1lr.mas

Y k� � float X k� �� � Offset+= k 0�Nelements 1–=
3-152 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
3.153 vfloat1rl Function: integer to float conversion, addition of a float offset and right to left
move

Synopsis: __vector__ int vfloat1rl(*X, strideX, *Y, strideY, Offset, Nelements)

Include file: DSPlib.h.

*X: pointer to the input vector. Type: int *

strideX: stride to be applied on input vector. Type: int

*Y: pointer to the output vector. Type: float *

strideY: stride to be applied on output vector. Type: int

Offset: scalar offset to be added to the input vector. Type: float

Nelements: Number of elements to be computed. Type: int

The function vfloat1rl executes the float conversion of the integer data input (X) and
adds to it a float scalar offset (Offset). For function operating on vectorial types see the
function “vfloat1v” on page 3-155.

Restrictions:

Nelements must be greater or equal to 16 and multiple of 4

X must be in right memory

Y must be in left memory

Offset can be either in left or right memory

Number of cycles:

39 + 1 × Nelements

Number of VLIW:

29

File: vfloat1rl.mas

Y k� � float X k� �� � Offset+= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-153

DRAFT–DPS–04/05

DSP Functions Description
3.154 vfloat1rr Function: integer to float conversion, addition of a float offset and right to right
move

Synopsis: __vector__ int vfloat1rr(*X, strideX, *Y, strideY, Offset, Nelements)

Include file: DSPlib.h.

*X: pointer to the input vector. Type: int *

strideX: stride to be applied on input vector. Type: int

*Y: pointer to the output vector. Type: float *

strideY: stride to be applied on output vector. Type: int

Offset: scalar offset to be added to the input vector. Type: float

Nelements: Number of elements to be computed. Type: int

The function vfloat1rr executes the float conversion of the integer data input (X) and
adds to it a float scalar offset (Offset). For function operating on vectorial types see the
function “vfloat1v” on page 3-155.

Restrictions:

Nelements must be greater or equal to 16 and multiple of 4

X must be in right memory

Y must be in left memory

Offset can be either in left or right memory

Number of cycles:

39 + 1 × Nelements

Number of VLIW:

29

File: vfloat1rr.mas

Y k� � float X k� �� � Offset+= k 0�Nelements 1–=
3-154 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
3.155 vfloat1v Function: vectorial integer to float conversion and addition of a vectorial float
offset

Synopsis: __vector__ int vfloat1v(*X, strideX, *Y, strideY, Offset, Nelements)

Include file: DSPlib.h.

*X: pointer to the input vector. Type: __vector__ int *

strideX: stride to be applied on input vector. Type: int

*Y: pointer to the output vector. Type: __vector__ float *

strideY: stride to be applied on output vector. Type: int

Offset: vectorial scalar offset to be added to the input vector. Type:
__vector__ float

Nelements: Number of elements to be computed. Type: int

The function vfloat1v works on vectorial (or complex) data type. It returns the float con-
version of the input data vector and the addition of a vectorial float scalar offset to it. For
function operating on not vectorial types see the functions: “vfloat1ll” on page 3-151,
“vfloat1lr” on page 3-152, “vfloat1rl” on page 3-153, “vfloat1rr” on page 3-154.

Restrictions:

Nelements must be greater or equal to 16 and multiple of 4

Number of cycles:

39 + 1 × Nelements

Number of VLIW:

29

File: vfloat1v.mas

Re Y k� �� � float Re X k� �� �� � Re Offset� �+= k 0�Nelements 1–=

Im Y k� �� � float Im X k� �� �� � Im Offset� �+= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-155

DRAFT–DPS–04/05

DSP Functions Description
3.156 vfloat2ll Function: integer to float conversion, multiplication by a float scale factor, addi-
tion of a float offset and left to left move

Synopsis: __vector__ int vfloat2ll(*X, strideX, *Y, strideY, Scale, Offset,
Nelements)

Include file: DSPlib.h.

*X: pointer to the input vector. Type: int *

strideX: stride to be applied on input vector. Type: int

*Y: pointer to the output vector. Type: float *

strideY: stride to be applied on output vector. Type: int

Scale: scalar factor to multiply the input vector. Type: float

Offset: scalar offset to be added to the input vector. Type: float

Nelements: Number of elements to be computed. Type: int

The function vfloat2ll executes the float conversion of the integer data input (X), multi-
plies it by a float scale factor (Scale) and adds to it a float scalar offset (Offset). For
function operating on vectorial types see the function “vfloat2v” on page 3-160.

Restrictions:

Nelements must be greater or equal to 12 and multiple of 4

X must be in left memory

Y must be in left memory

Scale can be either in left or right memory

Offset can be either in left or right memory

Number of cycles:

37 + 2 × Nelements

Number of VLIW:

33

File: vfloat2ll.mas

Y k� � float X k� �� � Scale� Offset+= k 0�Nelements 1–=
3-156 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
3.157 vfloat2lr Function: integer to float conversion, multiplication by a float scale factor, addi-
tion of a float offset and left to right move

Synopsis: __vector__ int vfloat2lr(*X, strideX, *Y, strideY, Scale, Offset,
Nelements)

Include file: DSPlib.h.

*X: pointer to the input vector. Type: int *

strideX: stride to be applied on input vector. Type: int

*Y: pointer to the output vector. Type: float *

strideY: stride to be applied on output vector. Type: int

Scale: scalar factor to multiply the input vector. Type: float

Offset: scalar offset to be added to the input vector. Type: float

Nelements: Number of elements to be computed. Type: int

The function vfloat2lr executes the float conversion of the integer data input (X), multiply
it by a float scale factor (Scale) and adds to it a float scalar offset (Offset). For function
operating on vectorial types see the function “vfloat2v” on page 3-160.

Restrictions:

Nelements must be greater or equal to 12 and multiple of 4

X must be in left memory

Y must be in right memory

Scale can be either in left or right memory

Offset can be either in left or right memory

Number of cycles:

37 + 2 × Nelements

Number of VLIW:

33

File: vfloat2lr.mas

Y k� � float X k� �� � Scale� Offset+= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-157

DRAFT–DPS–04/05

DSP Functions Description
3.158 vfloat2rl Function: integer to float conversion, multiplication by a float scale factor, addi-
tion of a float offset and right to left move

Synopsis: __vector__ int vfloat2rl(*X, strideX, *Y, strideY, Scale, Offset,
Nelements)

Include file: DSPlib.h.

*X: pointer to the input vector. Type: int *

strideX: stride to be applied on input vector. Type: int

*Y: pointer to the output vector. Type: float *

strideY: stride to be applied on output vector. Type: int

Scale: scalar factor to multiply the input vector. Type: float

Offset: scalar offset to be added to the input vector. Type: float

Nelements: Number of elements to be computed. Type: int

The function vfloat2rl executes the float conversion of the integer data input (X), multiply
it by a float scale factor (Scale) and adds to it a float scalar offset (Offset). For function
operating on vectorial types see the function “vfloat2v” on page 3-160.

Restrictions:

Nelements must be greater or equal to 12 and multiple of 4

X must be in right memory

Y must be in left memory

Scale can be either in left or right memory

Offset can be either in left or right memory

Number of cycles:

39 + 2 × Nelements

Number of VLIW:

34

File: vfloat2rl.mas

Y k� � float X k� �� � Scale� Offset+= k 0�Nelements 1–=
3-158 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
3.159 vfloat2rr Function: integer to float conversion, multiplication by a float scale factor, addi-
tion of a float offset and right to right move

Synopsis: __vector__ int vfloat2rr(*X, strideX, *Y, strideY, Scale, Offset,
Nelements)

Include file: DSPlib.h.

*X: pointer to the input vector. Type: int *

strideX: stride to be applied on input vector. Type: int

*Y: pointer to the output vector. Type: float *

strideY: stride to be applied on output vector. Type: int

Scale: scalar factor to multiply the input vector. Type: float

Offset: scalar offset to be added to the input vector. Type: float

Nelements: Number of elements to be computed. Type: int

The function vfloat2rr executes the float conversion of the integer data input (X), multiply
it by a float scale factor (Scale) and adds to it a float scalar offset (Offset). For function
operating on vectorial types see the function “vfloat2v” on page 3-160.

Restrictions:

Nelements must be greater or equal to 12 and multiple of 4

X must be in right memory

Y must be in right memory

Scale can be either in left or right memory

Offset can be either in left or right memory

Number of cycles:

39 + 2 × Nelements

Number of VLIW:

34

File: vfloat2rr.mas

Y k� � float X k� �� � Scale� Offset+= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-159

DRAFT–DPS–04/05

DSP Functions Description
3.160 vfloat2v Function: vectorial integer to vectorial float conversion, multiplication by a vec-
torial float scale factor and addition of a vectorial float offset

Synopsis: __vector__ int vfloat2v(*X, strideX, *Y, strideY, Offset, Nelements)

Include file: DSPlib.h.

*X: pointer to the input vector. Type: __vector__ int *

strideX: stride to be applied on input vector. Type: int

*Y: pointer to the output vector. Type: __vector__ float *

strideY: stride to be applied on output vector. Type: int

Scale: vectorial scale factor to multiply the input vector. Type: __vector__
float

Offset: vectorial scalar offset to be added to the input vector. Type:
__vector__ float

Nelements: Number of elements to be computed. Type: int

The function vfloat2v works on vectorial (or complex) data type. It returns the float con-
version of the input data vector, multiplies it by a vectorial scale factor (Scale) and addits
to it a vectorial float scalar offset. For function operating on not vectorial types see the
functions: “vfloat2ll” on page 3-156, “vfloat2lr” on page 3-157, “vfloat2rl” on page 3-158,
“vfloat2rr” on page 3-159.

Restrictions:

Nelements must be greater or equal to 12 and multiple of 4

Number of cycles:

39 + 2 × Nelements

Number of VLIW:

34

File: vfloat2v.mas

Re Y k� �� � float Re X k� �� �� � Re Offset� �+= k 0�Nelements 1–=

Im Y k� �� � float Im X k� �� �� � Im Offset� �+= k 0�Nelements 1–=
3-160 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
3.161 vlog10ll Function: logarithm to base 10 of a float input array and left to left move

Synopsis: __vector__ int vlog10ll (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vlog10ll computes the logarithm to base 10 of an input array stored in left
memory space and writes the output to an array in left memory space.

Precision:

see Table 3-11 on page 165

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in left memory

Y must be in left memory

Number of cycles:

156 + 13 × Nelements

Number of VLIW:

85

File: vlog10ll.mas

Y k� � 10 X k� �� �log= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-161

DRAFT–DPS–04/05

DSP Functions Description
3.162 vlog10lr Function: logarithm to base 10 of a float input array and left to right move

Synopsis: __vector__ int File: vlog10ll.mas (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is writ-
ten.Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function File: vlog10ll.mas computes the logarithm to base 10 of an input array
stored in left memory space and writes the output to an array in RIGHT memory space.

Precision:

see Table 3-11 on page 165

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in left memory

Y must be in right memory

Number of cycles:

156 + 13 × Nelements

Number of VLIW:

85

File: vlog10lr.mas, log10Coeff.mas

Y k� � 10 X k� �� �log= k 0�Nelements 1–=
3-162 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
3.163 vlog10rl Function: logarithm to base 10 of a float input array and right to left move

Synopsis: __vector__ int vlog10rl (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is writ-
ten.Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vlog10rl computes the logarithm to base 10 of an input array stored in right
memory space and writes the output to an array in left memory space.

Precision:

see Table 3-11 on page 165

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in right memory

Y must be in left memory

Number of cycles:

156 + 13 × Nelements

Number of VLIW:

85

File: vlog10rl.mas, log10Coeff.mas

Y k� � 10 X k� �� �log= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-163

DRAFT–DPS–04/05

DSP Functions Description
3.164 vlog10rr Function: logarithm to base 10 of a float input array and right to right move

Synopsis: __vector__ int vlog10rr (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is writ-
ten.Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vlog10rr computes the logarithm to base 10 of an input array stored in right
memory space and writes the output to an array in right memory space.

Precision:

see Table 3-11 on page 165

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in right memory

Y must be in right memory

Number of cycles:

154 + 13 × Nelements

Number of VLIW:

86

File: vlog10rr.mas, log10Coeff.mas

Y k� � 10 X k� �� �log= k 0�Nelements 1–=
3-164 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
3.165 vlog10v Function: logarithm to base 10 of a vectorial input array

Synopsis: __vector__ int vlog10v (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: __vector__ float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: __vector__ float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vlog10v computes the natural logarithm of an input array stored in vector
space and writes the output to an array in vector memory space. For computing the nat-
ural logarithm, with the input stored in left/right memory space and to output the values
into left/right memory space, see the functions: “vlog10ll” on page 3-161, “File:
vlog10ll.mas” on page 3-161, “vlog10rl” on page 3-163 and “vlog10rr” on page 3-164.

Precision:

the following table provides the information about the precision for
this function

Restrictions:

Nelements must be greater or equal to 2 and multiple of 2

Number of cycles:

143 + 24.5 × Nelements

Number of VLIW:

74

Table 3-11.

Range of input values Absolute error Relative error

1 to 1.414 3.78428e-010 NA

10 to 2e-010 2e-010

 to NA 2.22045e-016

Y k� � 10 X k� �� �log= k 0�Nelements 1–=

1038

10 1– 10 38–
DSP Library User Manual (draft) 3-165

DRAFT–DPS–04/05

DSP Functions Description
File: vlog10v.mas, log10Coeff.mas

3.166 vlogll Function: natural logarithm of a float input array and left to left move

Synopsis: __vector__ int vlogll (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vlogll computes the natural logarithm of an input array stored in left mem-
ory space and writes the output to an array in left memory space.

Precision:

see Table 3-12 on page 170

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in left memory

Y must be in left memory

Number of cycles:

157 + 13 × Nelements

Number of VLIW:

85

File: vlogll.mas, lnCoeff.mas

Y k� � X k� �� �log= k 0�Nelements 1–=
3-166 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
3.167 vloglr Function: natural logarithm of a float input array and left to right move

Synopsis: __vector__ int vloglr (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is writ-
ten.Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vloglr computes the natural logarithm of an input array stored in left mem-
ory space and writes the output to an array in right memory space.

Precision:

see Table 3-12 on page 170

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in left memory

Y must be in right memory

Number of cycles:

156 + 13 × Nelements

Number of VLIW:

82

File: vloglr.mas, lnCoeff.mas

Y k� � X k� �� �log= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-167

DRAFT–DPS–04/05

DSP Functions Description
3.168 vlogrl Function: natural logarithm of a float input array and right to left move

Synopsis: __vector__ int vlogrl (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is writ-
ten.Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vlogrl computes the natural logarithm of an input array stored in right mem-
ory space and writes the output to an array in left memory space.

Precision:

see Table 3-12 on page 170

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in right memory

Y must be in left memory

Number of cycles:

157 + 13 × Nelements

Number of VLIW:

86

File: vlogrl.mas, lnCoeff.mas

Y k� � X k� �� �log= k 0�Nelements 1–=
3-168 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
3.169 vlogrr Function: natural logarithm of a float input array and right to right move

Synopsis: __vector__ int vlogrr (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is writ-
ten.Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vlogrr computes the natural logarithm of an input array stored in right mem-
ory space and writes the output to an array in right memory space.

Precision:

see Table 3-12 on page 170

Restrictions:

Nelements must be multiple of 4

X must be in right memory

Y must be in right memory

Number of cycles:

154 + 13 × Nelements

Number of VLIW:

86

File: vlogrr.mas, lnCoeff.mas

Y k� � X k� �� �log= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-169

DRAFT–DPS–04/05

DSP Functions Description
3.170 vlogv Function: natural logarithm of a vectorial input array

Synopsis: __vector__ int vlogv (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: __vector__ float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: __vector__ float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vlogv computes the natural logarithm of an input array stored in vector
space and writes the output to an array in vector memory space. For computing the nat-
ural logarithm, with the input stored in left/right memory space and to output the values
into left/right memory space, see the functions: “vlogll” on page 3-166, See “vloglr” on
page 3-167., “vlogrl” on page 3-168 and “vlogrr” on page 3-169.

Precision:

the following table provides the information about the precision for
this function

Restrictions:

Nelements must be greater or equal to 2 and multiple of 2

Number of cycles:

143 + 24.5 × Nelements

Number of VLIW:

74

Table 3-12.

Range of input values Absolute error Relative error

1 to 1.414 7.43022e-010 NA

10 to 2.20154e-008 3.08425e-010

 to NA 2.97906e-010

Y k� � X k� �� �log= k 0�Nelements 1–=

1038

10 1– 10 38–
3-170 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
File: vlogv.mas, lnCoeff.mas

3.171 vmagnlrl Function: vector magnitude

Synopsis: __vector__ int vmagnlrl(*X, strideX, *Y, strideY, *Z, strideZ,
Nelements)

Include file: DSPlib.h.

*X: pointer to the float input vector X. Type: float *

StrideX: stride to be applied on X input vector. Type: int

*Y: pointer to the float input vector X. Type: float *

StrideY: stride to be applied on Y input vector. Type: int

*Z: pointer to the result vector Z. Type: float *

strideZ: stride to be applied on Z output vector. Type: int

Nelements: number elements to be computed. Type: int

The function vmagnlrl computes the magnitude of a pair of float array: X and Y. The first
must be stored in left memory, the second in right memory. The result is written in left
memory.

Restrictions:

Nelements can be any number greater or equal to 1

X must be in left data memory

Y must be in right data memory

Z must be in left data memory

Precision: 23 bit of mantissa. If higher precision is required it is possi-
ble to perform on more Newton iteration by modifying the source code
(simply uncomment the last iteration).

Number of cycles:

30 + 41 × Nelements

Number of VLIW:

31

Z k� � X k� � Y k� �+= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-171

DRAFT–DPS–04/05

DSP Functions Description
File: vmagnlrl.mas

3.172 vmagnv Function: complex magnitude

Synopsis: __vector__ int vmagnv(*X, strideX, *Z, strideZ, Nelements)

Include file: DSPlib.h.

*X: pointer to the input vector. Type: __complex__ float *

strideX: stride to be applied on input vector. Type: int

*Z: pointer to the result vector Z. Type: float *

strideZ: stride to be applied on Z vector. Type: int

Nelements: number elements to be computed. Type: int

The function vmagnv ia a fully pipelined vectorial version of vmagnlrl.

Restrictions:

Nelements must be grater or equal to 4 and multiple of 4

Z must be in left data memory

Result precision: 23 bits of mantissa. If higher precision is required it
is possible to perform on more Newton iteration by modifying the
source code (simply uncomment the last iteration)

Number of cycles:

115 + 8.75 × Nelements

Number of VLIW:

84

File: vmagnv.mas

Z k� � ReX k� �� �2 ImX k� �� �2+= k 0�Nelements 1–=
3-172 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
3.173 vmaxv Function: vectorial maximum

Synopsis: __vector__ int vmaxv(*X, strideX, *Max, Nelements)

Include file: DSPlib.h.

*X: pointer to the input vector. Type: __vector__ float *

strideX: stride to be applied on input vector. Type: int

*Max: pointer to the vectorial float locations containing left and right maxims.

Type: __vector__ float *

Nelements: number elements to be compared. Note: since the parameters aren't
checked by the function the user has to properly set this parameter to
avoid incorrect results and out of vector accesses. Type: int

The function vmaxv performs a vectorial maxims search.

Restrictions:

Nelements can be any number greater or equal to 8 and multiple of 4

Number of cycles:

43 + 1 × Nelements

Number of VLIW:

29

File: vmaxv.mas

3.174 vmax1v Function: pipelined vectorial maximum with indexes extraction

Synopsis: __vector__ int vmax1v(*X, strideX, *Max, *Idx_Max, Nelements)

Include file: DSPlib.h.

max X k � � k�� 0�Nelements 1–=

Max max X k� �� �=

Idx Max index X k� �� �=�
�
�

k 0�Nelements 1–=
DSP Library User Manual (draft) 3-173

DRAFT–DPS–04/05

DSP Functions Description
*X: pointer to the input vector. Type: __vector__ float *

strideX: stride to be applied on input vector. Type: int

*Max: pointer to the vectorial float location containing left and right maxims.

Type: __vector__ float *

*Idx_Max: pointer to the vectorial int location containing left and right indexes of
maxims. Type: __vector__ int *

Nelements: number of elements to be compared. Set this parameter to the length
of the vector divided by the stride. Note: since the parameters aren't
checked by the function the user has to properly set this parameter to
avoid incorrect results and out of vector accesses. Type: int

The function vmax1v performs the vectorial maxims and index of maxims search. For a
non pipelined version see the function: “vmax2v” on page 3-174.

Restrictions:

Nelements must be greater or equal to 8 and multiple of 4.

Number of cycles:

54 + 7.25 × Nelements

Number of VLIW:

63

File: vmax1v.mas

3.175 vmax2v Function: vectorial maximum with indexes extraction

Synopsis: __vector__ int vmax2v(*X, stride, *Max, *Idx_Max, Vsize)

Include file: DSPlib.h.

*X: pointer to the input vector. Type: __vector__ float *

strideX: stride to be applied on input vector. Type: int

*Max: pointer to the vectorial float location containing left and right maxims.

Type: __vector__ float *

Max max X k� �� �=

Idx– Max index X k� �� �=�
�
�

k 0�Nelements 1–=
3-174 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
*Idx_Max: pointer to the vectorial int location containing left and right indexes of
maxims. Type: __vector__ int *

Nelements: number elements to be compared. Set this parameter to the length of
the vector divided by the stride. Note: since the parameters aren't
checked by the function the user has to properly set this parameter to
avoid incorrect results and out of vector accesses. Type: int

The function vmax2v performs the vectorial maxims and index of maxims search. For a
pipelined version see the function: “vmax1v” on page 3-173.

Restrictions:

Nelements can be any number greater or equal to 3

Number of cycles:

33 + 8 × Nelements

Number of VLIW:

35

File: vmax2v.mas

3.176 vmmul Function: product of a complex vector with a complex matrix

Synopsis: __vector__ int vmmul (*A, *B, M, N, *C)

Include file: DSPlib.h

*A: pointer to the input vector . Type: __complex__ float *

*B: pointer to the input matrix . Type: __complex__ float *

M: number of coloumns of matrix A and rows of matrix B. Type: int

N: number of coloumns of matrix B. Type: int

*C: pointer to the output matrix . Type: __complex__ float *

The function vmmul computes the product of a complex vector of length M (order
) with a complex matrix of order .

C k� � A i� � B i k�� ��

i 0=

M 1–

�= k 0�N 1–=

1 M� M N�
DSP Library User Manual (draft) 3-175

DRAFT–DPS–04/05

DSP Functions Description
Restrictions:

M should be > 1.

Number of cycles:

50 + ((6 × (M - 1)) + 18) × N

umber of VLIW:

42

File: vmmul.mas

3.177 vmove2cx Function: complex conjugate vector move with scale factor and offset

Synopsis: __vector__ int vmove2cx(*X, strideX, *Y, strideY, Scale, Offset,
Nelements);

Include file: DSPlib.h.

*X: pointer to the input vector. Type: __complex__ float *

strideX: stride to be applied on input vector. Type: int

*Y: pointer to the output vector. Type: __complex__ float *

strideY: stride to be applied on input vector. Type: int

Scale: is the scale factor. Type: __complex__ float

Offset: is the offset to be added . Type: __complex__ float

Nelements: number elements to be moved. Set this parameter to the length of the
vector divided by the stride. Note: since the parameters aren't
checked by the function the user has to properly set this parameter to
avoid incorrect results and out of vector accesses.

The function vmove2cx moves complex conjugate data with scale and offset. Note that
simple move is obtained by multiply with the complex unity (1.0 + 0.0i) and addition with
complex zero (0.0 + 0.0i).

Restrictions:

Nelements must be greater or equal to 12 and multiple of 4

Y k� � conj X k� �� � Scale Offset+�= k 0�Nelements 1–=
3-176 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
Number of cycles:

30 + 1× Nelements

Number of VLIW:

26

File: vmove2cx.mas

3.178 vmove2cxint Function: complex conjugate vector integer move with scale factor and offset

Synopsis: __vector__ int vmove2cxint(*X, strideX, *Y, strideY, Scale, Offset,
Nelements);

Include file: DSPlib.h.

X: pointer to the input vector. Type: __complex__ int

strideX: stride to be applied on input vector. Type: int

Y: pointer to the output vector. Type: __complex__ int

strideY: stride to be applied on input vector. Type: int

Scale: is the scale factor. Type: __complex__ int

Offset: is the offset to be added . Type: __complex__ int

Nelements: number elements to be moved. Set this parameter to the length of the
vector divided by the stride. Note: since the parameters aren't
checked by the function the user has to properly set this parameter to
avoid incorrect results and out of vector accesses. Type: int

The function vmove2cxint moves complex conjugate integer data with scale and offset.
Note that simple move is obtained by multiply with the complex unity (1 + 0i) and addi-
tion with complex zero (0 + 0i).

Restrictions:

Nelements must be greater or equal to 12 and multiple of 4

Number of cycles:

32 + 2.25 × Nelements

Y k� � conj X k� �� � Scale Offset+�= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-177

DRAFT–DPS–04/05

DSP Functions Description
Number of VLIW:

31

File: vmove2cxint.mas

3.179 vmove2v Function: vectorial move with scale factor and offset

Synopsis: __vector__ int vmove2v(*X, strideX, *Y, strideY, Scale, Offset,
Nelements);

Include file: DSPlib.h.

*X: pointer to the input vector. Type: __vector__ float *

strideX: stride to be applied on input vector. Type: int

*Y: pointer to the output vector. Type: __vector__ float *

strideY: stride to be applied on input vector. Type: int

Scale: is the scale factor. Type: __vector__ float

Offset: is the offset to be added . Type: __vector__ float

Nelements: number elements to be moved. Set this parameter to the length of the
vector divided by the stride. Note: since the parameters aren't
checked by the function the user has to properly set this parameter to
avoid incorrect results and out of vector accesses.

The function vmove2v moves vectorial data with scale and offset. Note that simple move
is obtained by multiply with the complex unity (1.0 + 1.0i) and addition with complex zero
(0.0 + 0.0i).

Restrictions:

Nelements must be greater or equal to 12 and multiple of 4

Number of cycles:

28 + 1× Nelements

Number of VLIW:

25

ReY k� � ReX k� � Re Scale� � Re Offset� �+�=

ImY k� � ReX k� � Im Scale� � Im Offset� �+ +=�
�
	

k 0�Nelements 1–=
3-178 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
File: vmove2v.mas

3.180 vmove2vint Function: vectorial integer move with scale factor and offset

Synopsis: __vector__ int vmove2vint(*X, strideX, *Y, strideY, Scale, Offset,
Nelements);

Include file: DSPlib.h.

X: pointer to the input vector. Type: __vector__ int

strideX: stride to be applied on input vector. Type: int

Y: pointer to the output vector. Type: __vector__ int

strideY: stride to be applied on input vector. Type: int

Scale: is the scale factor. Type: __vector__ int

Offset: is the offset to be added . Type: __vector__ int

Nelements: number elements to be moved. Set this parameter to the length of the
vector divided by the stride. Note: since the parameters aren't
checked by the function the user has to properly set this parameter to
avoid incorrect results and out of vector accesses. Type: int

The function vmove2vint moves vector integer data with scale and offset. Note that sim-
ple move is obtained by multiply with the complex unity (1.0 + 1.0i) and addition with
complex zero (0.0 + 0.0i).

Restrictions:

Nelements must be greater or equal to 12 and multiple of 4

Number of cycles:

30 + 2 × Nelements

Number of VLIW:

30

File: vmove2vint.mas

ReY k� � ReX k� � Re Scale� � Re Offset� �+�=

ImY k� � ImX k� � Im Scale� � Im Offset� �+ +=�
�
	

k 0�Nelements 1–=
DSP Library User Manual (draft) 3-179

DRAFT–DPS–04/05

DSP Functions Description
3.181 vmove2x Function: complex vector move with scale factor and offset

Synopsis: __vector__ int vmove2x(*X, strideX, *Y, strideY, Scale, Offset,
Nelements);

Include file: DSPlib.h.

*X: pointer to the input vector. Type: __complex__ float *

strideX: stride to be applied on input vector. Type: int

*Y: pointer to the output vector. Type: __complex__ float *

strideY: stride to be applied on input vector. Type: int

Scale: is the scale factor. Type: __complex__ float

Offset: is the offset to be added . Type: __complex__ float

Nelements: number elements to be moved. Set this parameter to the length of the
vector divided by the stride. Note: since the parameters aren't
checked by the function the user has to properly set this parameter to
avoid incorrect results and out of vector accesses.

The function vmove2x moves complex data with scale and offset. Note that simple move
is obtained by multiply with the complex unity (1.0 + 0.0i) and addition with complex zero
(0.0 + 0.0i).

Restrictions:

Nelements must be greater or equal to 12 and multiple of 4

Number of cycles:

30 + 1× Nelements

Number of VLIW:

27

File: vmove2x.mas

Y k� � X k� � Scale Offset+�= k 0�Nelements 1–=
3-180 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
3.182 vmove2xint Function: complex integer vector move with scale factor and offset

Synopsis: __vector__ int vmove2xint(*X, strideX, *Y, strideY, Scale, Offset,
Nelements);

Include file: DSPlib.h.

X: pointer to the input vector. Type: __complex__ int

strideX: stride to be applied on input vector. Type: int

Y: pointer to the output vector. Type: __complex__ int

strideY: stride to be applied on input vector. Type: int

Scale: is the scale factor. Type: __complex__ int

Offset: is the offset to be added . Type: __complex__ int

Nelements: number elements to be moved. Set this parameter to the length of the
vector divided by the stride. Note: since the parameters aren't
checked by the function the user has to properly set this parameter to
avoid incorrect results and out of vector accesses. Type: int

The function vmove2xint moves complex integer data with scale and offset. Note that
simple move is obtained by multiply with the complex unity (1 + 0i) and addition with
complex zero (0 + 0i).

Restrictions:

Nelements must be greater or equal to 12 and multiple of 4

Number of cycles:

32 + 2.25 × Nelements

Number of VLIW:

31

File: vmove2xint.mas

Y k� � X k� � Scale Offset+�= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-181

DRAFT–DPS–04/05

DSP Functions Description
3.183 vmovell Function: left to left float array move

Synopsis: __vector__ int vmovell(*X, StrideX, *Y, StrideY, Nelements)

Include file: DSPlib.h.

X: pointer to the input vector. The type can be: float * or int*

strideX: stride to be applied on input vector. Type: int

*Y: pointer to the output vector. The type can be: float * or int*

strideY: stride to be applied on input vector. Type: int

Nelements: number of elements to be moved

The function vmovell moves data from left to left memory banks .

Restrictions:

Nelements must be greater or equal to 8 and multiple of 4

X must be in left memory

Y must be in left memory

Number of cycles:

20 + 1× Nelements

Number of VLIW:

18

File: vmovell.mas

3.184 vmovelr Function: left to right float array move

Synopsis: __vector__ int vmovelr(*X, StrideX, *Y, StrideY, Nelements)

Include file: DSPlib.h.

Y k� � X k� �= k 0�Nelements=

Y k� � X k� �= k 0�Nelements=
3-182 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
X: pointer to the input vector. The type can be: float * or int*

strideX: stride to be applied on input vector. Type: int

*Y: pointer to the output vector. The type can be: float * or int*

strideY: stride to be applied on input vector. Type: int

Nelements: number of elements to be moved

The function vmovelr moves data from left to right memory banks .

Restrictions:

Nelements must be greater or equal to 8 and multiple of 4

X must be in left memory

Y must be in right memory

Number of cycles:

20 + 1 × Nelements

Number of VLIW:

18

File: vmovelr.mas

3.185 vmoverl Function: right to left float array move

Synopsis: __vector__ int vmoverl(*X, StrideX, *Y, StrideY, Nelements)

Include file: DSPlib.h.

X: pointer to the input vector. The type can be: float * or int*

strideX: stride to be applied on input vector. Type: int

*Y: pointer to the output vector. The type can be: float * or int*

strideY: stride to be applied on input vector. Type: int

Nelements: number of elements to be moved

The function vmoverl moves data from right to left memory banks .

Y k� � X k� �= k 0�Nelements=
DSP Library User Manual (draft) 3-183

DRAFT–DPS–04/05

DSP Functions Description
Restrictions:

Nelements must be multiple of 4

X must be in right memory

Y must be in left memory

Number of cycles:

24 + 1 × Nelements

Number of VLIW:

18

File: vmoverl.mas

3.186 vmoverr Function: right to right float array move

Synopsis: __vector__ int vmoverr(*X, StrideX, *Y, StrideY, Nelements)

Include file: DSPlib.h.

X: pointer to the input vector. The type can be: float * or int*

strideX: stride to be applied on input vector. Type: int

*Y: pointer to the output vector. The type can be: float * or int*

strideY: stride to be applied on input vector. Type: int

Nelements: number of elements to be moved

The function vmoverr moves data from right to right memory banks .

Restrictions:

Nelements must be multiple of 4

X must be in right memory

Y must be in right memory

Number of cycles:

Y k� � X k� �= k 0�Nelements=
3-184 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
23 + 1× Nelements

Number of VLIW:

19

File: vmoverr.mas

3.187 vmovev Function: vector move

Synopsis: __vector__ int vmovev(*X, strideX, *Y, strideY, Nelements);

Include file: DSPlib.h.

*X: pointer to the input vector. The type can be: __vector__ float * or
__vector__ int*

strideX: stride to be applied on input vector. Type: int

*Y: pointer to the output vector. The type can be: __vector__ float * or
__vector__ int*

strideY: stride to be applied on input vector. Type: int

Nelements: number elements to be moved. Set this parameter to the length of the
vector divided by the stride. Note: since the parameters aren't
checked by the function the user has to properly set this parameter to
avoid incorrect results and out of vector accesses.

The function vmovev moves vectorial data.

Restrictions:

Nelements must be greater or equal to 8 and multiple of 4

Number of cycles:

19 + 1× Nelements

Number of VLIW:

18

File: vmovev.mas

Y k� � X k� �= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-185

DRAFT–DPS–04/05

DSP Functions Description
3.188 vmvell Function: mean stored in left memory of a float input array stored in left memory

Synopsis: __vector__ int vmvell (*X, strideX, *Y, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output scalar into which the computed value is written.
Type: float*

Nelements: number of elements to be computed.Type: int

The function vmvell computes the mean of a float input array stored in left memory
space and writes the computed value to an output location in left memory space. To
computing the mean on a vectorail float array see the function: “vmvev” on page 3-189.

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4,

X must be in left memory

Y must be in left memory

Number of cycles:

54 + 1 × Nelements

Number of VLIW:

29

File: vmvell.mas

Y 1
Nelements
--------------------------- X k� �

k 0=

Nelements 1–

�= k 0�Nelements 1–=
3-186 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
3.189 vmvelr Function: mean stored in right memory of a float input array stored in left memory

Synopsis: __vector__ int vmvelr (*X, strideX, *Y, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output scalar into which the computed value is writ-
ten.Type: float*

Nelements: number of elements to be computed.Type: int

The function vmvelr computes the mean of an input array stored in left memory space
and writes the computed value to an output location in right memory space. To comput-
ing the mean on a vectorail float array see the function: “vmvev” on page 3-189.

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in left memory

Y must be in right memory

Number of cycles:

54 + 1 × Nelements

Number of VLIW:

29

File: vmvelr.mas

3.190 vmverl Function: mean stored in left memory of a float input array stored in right memory

Synopsis: __vector__ int vmverl (*X, strideX, *Y, Nelements)

Y 1
Nelements
--------------------------- X k� �

k 0=

Nelements 1–

�= k 0�Nelements 1–=

Y 1
Nelements
--------------------------- X k� �

k 0=

Nelements 1–

�= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-187

DRAFT–DPS–04/05

DSP Functions Description
Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output scalar into which the computed value is written
Type: float*

Nelements: number of elements to be computed.Type: int

The function vmverl computes the mean of an input array stored in right memory space
and writes the computed value to an output location in left memory space. To computing
the mean on a vectorail float array see the function: “vmvev” on page 3-189.

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in right memory

Y must be in left memory

Number of cycles:

54 + 1 × Nelements

Number of VLIW:

30

File: vmverl.mas

3.191 vmverr Function: mean stored in right memory of a float input array stored in right mem-
ory

Synopsis: __vector__ int vmverr (*X, strideX, *Y, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output scalar into which the computed value is written.
Type: float*

Nelements: number of elements to be computed.Type: int

Y 1
Nelements
--------------------------- X k� �

k 0=

Nelements 1–

�= k 0�Nelements 1–=
3-188 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
The function vmverr computes the mean of an input array stored in right memory space
and writes the computed value to an output location in right memory space. To comput-
ing the mean on a vectorail float array see the function: “vmvev” on page 3-189.

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in right memory

Y must be in right memory

Number of cycles:

55 + 1 × Nelements

Number of VLIW:

30

File: vmverr.mas

3.192 vmvev Function: mean of a vectorial input array

Synopsis: __vector__ int vmvev (*X, strideX, *Y, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: __vector__ float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output scalar in the vector space into which the com-
puted value is written. Type: __vector__ float*

Nelements: number of elements to be computed.Type: int

The function vmvev computes the mean of a vectorial input arrays (X). To computing
mean on non vectorial data see the functions: “vmvell” on page 3-186, “vmvelr” on page
3-187, “vmverl” on page 3-187 and “vmverr” on page 3-188.

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

Number of cycles:

Y 1
Nelements
--------------------------- X k� �

k 0=

Nelements 1–

�= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-189

DRAFT–DPS–04/05

DSP Functions Description
55 + 1 × Nelements

Number of VLIW:

31

File: vmvev.mas

3.193 vq2vq Function: copy of vectorial (left - right) data from the vector q1 to the vector q2

Synopsis: int vq2vq(*q1, *q2, Nelements);

*q1: pointer to a vector queue structure defined using the vqdef macro.
Type: void *

*q2: pointer to a vector queue structure defined using the vqdef macro.
Type: void *

Nelements: number of elements copied. Type: int

The function vq2vq copies data from the vector queue q1 to vector queue q2. If the num-
ber of elements available in the vector queue1 is lower than Nelements a -1 is returned
(q1 underrun), but the copy is anyway done. If the number of elements available in the
vector q2 is lower than Nelements a -2 is returned (q2 overrun), but the copy is anyway
done.This allows using the vq2vq also in a non-strictly queued structure, but in struc-
tures where circular addressing is used over a vector. If the number of elements
available in the vector q1 and in the vector q2 are both lower than Nelements a -3 is
returned (q1 underrun and q2 overrun), but the copy is anyway done. A vector queue is
a structure defined using the macro “vqdef” and explicitly declared using that macro see
the function: “initvq” on page 3-40. If the return code is not checked the structure is sim-
ply a circular buffer and consistency must be guaranteed by the user.

Return code:

 0 no error

-1 queue1 underrun

-2 queue2 overrun

-3 queue1 underrun and queue2 overrun

Recall:

Nelements can be 2047 elements max

Restrictions:

Number of element must be greater than 12 and multiple of 4.

Number of cycles:
3-190 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
132 + 1 × Nelements

Number of VLIW:

56

File: vq2vq.mas

3.194 vrandl Function: random numbers generator in left memory

Synopsis: vrandl(*Y, strideY, Norm, Offset, Nelements)

Include file: DSPlib.h.

Y: pointer to the output vector. Type: float

strideY: stride to be applied on output vector. Type: int

Norm: normalization factor. Norm must be equal to 2^(-32) if a random num-
ber with module in the range [0, 1) is needed. Type: float

Offset: is the offset to be added. Type: float

Nelements: number of elements to be computed. Type:int

The function vrandl generates a float array in left memory, of random numbers using a
linear congruential method, described above, multiplies for a float normalization factor
and adds a float offset. For the float version with output in right memory, see the function
“vrandr” on page 3-192. For the vectorial version see the function “vrandv” on page 3-
193. All the 3 functions uses the same 2 vectorials SEED variables. This variables are
updated by the 3 functions coherently in order to generate random non-correlated sub-
sequences independently from the order of usage of the different functions. The initial 2
values of the SEED variables: SEED1 and SEED2, have been choosen in order to com-
pute 4 independent pseudorandom values at each algorithm execution and to maintain
the maximum repetition period (must be 2^32):

Y k� � SEEDk Norm Offset+�= k 0�Nelements=

SEEDk A SEEDk 1– C+�� �Mod232= A 69069= C 1=�
�
�

SEED1 SEED0 SEED232 4�
�� �

SEED2 SEED
232 2�

SEED
3 232
� 4�

�� �

with SEED0 0=
�
�
�
�
�
�
�

DSP Library User Manual (draft) 3-191

DRAFT–DPS–04/05

DSP Functions Description
They are stored in Internal Memory at the address of the LABEL ___ATMlib__SEED.
The call to the randl or the randr function can be mixed with the call to the vrand function
still generating a maximum length pseudorandom sequence. For this reason the vrandl
and vrandr functions are built with unroll 4 while the vrand functios is built with unroll 2.
The real and the imaginary part of two pseudorandom vectorials numbers generated at
each iteration of the algorithm, are arranged in left memory in a float array.

Note: to use this function correctly, some numerical exceptions must be
masked. This can be done including the following instruction:
MaarGSR_BASE->GSR_mask=0x7, in the ARM source C before
RUNMAGIC. For more details on the Exception Mask Registers
(GSR_mask) refer to the DIOPSIS 740 Data Sheet (doc7001.pdf).

Restrictions:

Nelements must be greater or equal to 12 and multiple of 4

Y must be in left memory

Number of cycles:

37 + 2.5 × Nelements

Number of VLIW:

41

File: vrandl.mas

3.195 vrandr Function: random numbers generator in right memory

Synopsis: vrandr(*Y, strideY, Norm, Offset, Nelements)

Include file: DSPlib.h.

Y: pointer to the output vector. Type: float

strideY: stride to be applied on output vector. Type: int

Norm: normalization factor. Norm must be equal to 2^(-32) if a random num-
ber with module in the range [0, 1) is needed. Type: float

Offset: is the offset to be added. Type: float

Y k� � SEEDk Norm Offset+�= k 0�Nelements=

SEEDk A SEEDk 1– C+�� �Mod232= A 69069= C 1=�
�
�

3-192 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
Nelements: number of elements to be computed. Type:int

The function vrandr generates a float array in left memory, of random numbers using a
linear congruential method, described above, multiplies for a float normalization factor
and adds a float offset. For the float version with output in left memory, see the function
“vrandl” on page 3-191. For the vectorial version see the function “vrandv” on page 3-
193. All the 3 functions uses the same 2 vectorials SEED variables. This variables are
updated by the 3 functions coherently in order to generate random non-correlated sub-
sequences independently from the order of usage of the different functions. The initial 2
values of the SEED variables: SEED1 and SEED2, have been choosen in order to com-
pute 4 independent pseudorandom values at each algorithm execution and to maintain
the maximum repetition period (must be 2^32):

They are stored in Internal Memory at the address of the LABEL ___ATMlib__SEED.
The call to the randl or the randr function can be mixed with the call to the vrand function
still generating a maximum length pseudorandom sequence. For this reason the vrandl
and vrandr functions are built with unroll 4 while the vrand functios is built with unroll 2.
The real and the imaginary part of two pseudorandom vectorials numbers generated at
each iteration of the algorithm, are arranged in right memory in a float array.

Note: to use this function correctly, some numerical exceptions must be
masked. This can be done including the following instruction:
MaarGSR_BASE->GSR_mask=0x7, in the ARM source C before
RUNMAGIC. For more details on the Exception Mask Registers
(GSR_mask) refer to the DIOPSIS 740 Data Sheet (doc7001.pdf).

Restrictions:

Nelements must be greater or equal to 12 and multiple of 4

Y must be in right memory

Number of cycles:

41 + 2.25 × Nelements

Number of VLIW:

41

File: vrandr.mas

3.196 vrandv Function: vectorial float array random numbers generator

SEED1 SEED0 SEED232 4�
�� �

SEED2 SEED
232 2�

SEED
3 232
� 4�

�� �

with SEED0 0=
�
�
�
�
�
�
�

DSP Library User Manual (draft) 3-193

DRAFT–DPS–04/05

DSP Functions Description
Synopsis: vrandv(*Y, strideY, Norm, Offset, Nelements)

Include file: DSPlib.h.

Y: pointer to the output vector. Type: __vector__ float

strideY: stride to be applied on output vector. Type: int

Norm: normalization factor. Norm must be equal to 2^(-32) if a random num-
ber with module in the range [0, 1) is needed. Type: __vector__ float

Offset: is the offset to be added. Type: __vector__ float

Nelements: number of elements to be computed. Type:int

The function vrandv generates a vectorial float array of random numbers using a linear
congruential method, described above, multiplies for a vectorial float normalization fac-
tor and adds a vectorial float offset. For the float version , see the functions: “vrandl” on
page 3-191 and “vrandr” on page 3-192. All the 3 functions uses the same 2 vectorials
SEED variables. This variables are updated by the 3 functions coherently in order to
generate random non-correlated subsequences independently from the order of usage
of the different functions. The initial 2 values of the SEED variables: SEED1 and
SEED2, have been choosen in order to compute 4 independent pseudorandom values
at each algorithm execution and to maintain the maximum repetition period (must be
2^32):

They are stored in Internal Memory at the address of the LABEL ___ATMlib__SEED.
The call to the randl or the randr function can be mixed with the call to the vrand function
still generating a maximum length pseudorandom sequence. For this reason the vrandl
and vrandr functions are built with unroll 4 while the vrand functios is built with unroll 2.

Note: to use this function correctly, some numerical exceptions must be
masked. This can be done including the following instruction:
MaarGSR_BASE->GSR_mask=0x7, in the ARM source C before
RUNMAGIC. For more details on the Exception Mask Registers
(GSR_mask) refer to the DIOPSIS 740 Data Sheet (doc7001.pdf).

Restrictions:

Nelements must be greater or equal to 6 and multiple of 2

Y k� � SEEDk Norm Offset+�= k 0�Nelements=

SEEDk A SEEDk 1– C+�� �Mod232= A 69069= C 1=�
�
�

SEED1 SEED0 SEED232 4�
�� �

SEED2 SEED
232 2�

SEED
3 232
� 4�

�� �

with SEED0 0=
�
�
�
�
�
�
�

3-194 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
Number of cycles:

35 + 4.5 × Nelements

Number of VLIW:

37

File: vrandv.mas

3.197 vrmvesqll Function: root mean square stored in left memory of an input array stored in left
memory

Synopsis: __vector__ int vrmvesqll (*X, strideX, *Y, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output scalar into which the computed value is writ-
ten.Type: float*

Nelements: number of elements to be computed.Type: int

The function vrmvesqll computes the root mean square of an input array stored in left
memory space and writes the computed value to an output location in left memory
space.

Restrictions:

Nelements must be greater or equal to 8 and multiple of 4

X must be in left memory

Y must be in left memory

Number of cycles:

104 + 1 × Nelements

Number of VLIW:

46

Y

X k� �� �
2

k 0=

Nelements 1–

�

Nelements
--=
DSP Library User Manual (draft) 3-195

DRAFT–DPS–04/05

DSP Functions Description
File: vrmvesqll.mas

3.198 vrmvesqlr Function: root mean square stored in right memory of an input array stored in
left memory

Synopsis: __vector__ int vrmvesqlr (*X, strideX, *Y, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output scalar into which the computed value is written.
Type: float*

Nelements: number of elements to be computed.Type: int

The function vrmvesqlr computes the root mean square of an input array stored in left
memory space and writes the computed value to an output location in right memory
space.

Restrictions:

Nelements must be greater or equal to 8 and multiple of 4

X must be in left memory

Y must be in right memory

Number of cycles:

104 + 1 × Nelements

Number of VLIW:

46

File: vrmvesqlr.mas

Y

X k� �� �
2

k 0=

Nelements 1–

�

Nelements
--=
3-196 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
3.199 vrmvesqrl Function: root mean square stored in left memory of an input array stored in
right memory

Synopsis: __vector__ int vrmvesqrl (*X, strideX, *Y, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output scalar which the computed value is written.
Type: float*

Nelements: number of elements to be computed.Type: int

The function vrmvesqrl computes the root mean square of an input array stored in right
memory space and writes the computed value to an output location in left memory
space.

Restrictions:

Nelements must be greater or equal to 8 and multiple of 4

X must be in right memory

Y must be in left memory

Number of cycles:

104 + 1 × Nelements

Number of VLIW:

47

File: vrmvesqrl.mas

Y

X k� �� �
2

k 0=

Nelements 1–

�

Nelements
--=
DSP Library User Manual (draft) 3-197

DRAFT–DPS–04/05

DSP Functions Description
3.200 vrmvesqrr Function: root mean square stored in left memory of an input array stored in
right memory

Synopsis: __vector__ int vrmvesqrr (*X, strideX, *Y, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output scalar into which the computed value is written.
Type: float*

Nelements: number of elements to be computed.Type: int

The function vrmvesqrr computes the root mean square of an input array stored in right
memory space and writes the computed value to an output location in right memory
space.

Restrictions:

Nelements must be greater or equal to 8 and multiple of 4

X must be in right memory

Y must be in right memory

Number of cycles:

105 + 1 × Nelements

Number of VLIW:

47

File: vrmvesqrr.mas

Y

X k� �� �
2

k 0=

Nelements 1–

�

Nelements
--=
3-198 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
3.201 vrmvesqv Function: root mean square of a vectorial input array

Synopsis: __vector__ int vrmvesqv (*X, strideX, *Y, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: __vector__ float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output scalar in the vector space into which the com-
puted value is written. Type: __vector__ float*

Nelements: Number of elements to be computed.Type: int

The function vrmvesqv computes the root mean square of the input arrays stored in vec-
tors space and writes the computed value to the output locations in vector space. For
computing the root mean square, with the input stored in left/right memory space and to
output the values into left/right memory space, see functions: “vrmvesqll” on page 3-
195, “vrmvesqlr” on page 3-196, “vrmvesqrl” on page 3-197 and “vrmvesqrr” on page 3-
198.

Restrictions:

Nelements must be greater or equal to 8 and multiple of 4

Number of cycles:

109 + 1× Nelements

Number of VLIW:

47

File: vrmvesqv.mas

3.202 vrotate32v Function: vectorial integer left or right shift mod.32 with number of shifts (0 to
31)

Synopsis: __vector__ int vrotate32v(*X, strideX, *Y, strideY, LShift, RShif,
Nelements)

Y

X k� �� �
2

k 0=

Nelements 1–

�

Nelements
--=
DSP Library User Manual (draft) 3-199

DRAFT–DPS–04/05

DSP Functions Description
Include file: DSPlib.h.

X: pointer to the input vector. Type: __vector__ int

strideX: stride to be applied on input vector. Type: int

Y: pointer to the output vector. Type: __vector__ int

strideY: stride to be applied on output vector. Type: int

LShift: number of the shifts for the real part of the vector. Type: int

RShift: number of the shifts for the imaginary part of the vector. Type: int

Nelements: number of elements to be computed. Type:int

The function vrotate32v performs a left or right shift mod.32 of the integer vector X. The
number of shifts is respectively equal to LShift for the real part and RShift for the imagi-
nary part of X. LShift and RShift can be positive o negative. If they are positive the
function performs a left shift otherwise a right shift.

Restrictions:

Nelements must be greater or equal to 12 and multiple of 4

Number of cycles:

47 + 1 × Nelements

Number of VLIW:

31

File: vrotate32v.mas

3.203 vshandv Function: vectorial integer left or right shift with number of shifts (0 to 31) and
logical AND

Y k� � vshift X k� �� �= k 0�Nelements 1–=

Y k� � vshand X k� �� �= k 0�Nelements 1–=
3-200 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
Synopsis: __vector__ int vshandv(*X, strideX, *Y, strideY, LShift, RShift,
LMask, RMask, Nelements)

Include file: DSPlib.h.

X: pointer to the input vector. Type: __vector__ int

strideX: stride to be applied on input vector. Type: int

Y: pointer to the output vector. Type: __vector__ int

strideY: stride to be applied on output vector. Type: int

LShift: number of the shifts for the real part of the vector. Type: int

RShift: number of the shifts for the imaginary part of the vector. Type: int

LMask: mask for the logical AND of the real part of the vector. Type: int

RMask: mask for the logical AND of the imaginary part of the vector. Type:int

Nelements: number of elements to be computed. Type:int

The function vshandv performs a left or right shift and a logical AND of the integer vector
X. The number of shifts and the mask for the logical AND are respectively equal to
LShift and LMask for the real part and RShift and RMask for the imaginary part of X.
LShift and RShift can be positive o negative. If they are positive the function performs a
left shift otherwise a right shift.

Restrictions:

Nelements must be greater or equal to 12 and multiple of 4

Number of cycles:

57 + 1 × Nelements

Number of VLIW:

33

File: vshandv.mas

3.204 vshiftv Function: vectorial integer left or right shift with number of shifts (0 to 31)

Synopsis: __vector__ int vshiftv(*X, strideX, *Y, strideY, LShift, RShift,LMask,
Nelements)

Y k� � vshift X k� �� �= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-201

DRAFT–DPS–04/05

DSP Functions Description
Include file: DSPlib.h.

X: pointer to the input vector. Type: __vector__ int

strideX: stride to be applied on input vector. Type: int

Y: pointer to the output vector. Type: __vector__ int

strideY: stride to be applied on output vector. Type: int

LShift: number of the shifts for the real part of the vector. Type: int

RShift: number of the shifts for the imaginary part of the vector. Type: int

Nelements: number of elements to be computed. Type:int

The function vshiftv performs a left or right shift of the integer vector X. The number of
shifts is respectively equal to LShift for the real part and RShift for the imaginary part of
X. LShift and RShift can be positive o negative. If they are positive the function performs
a left shift otherwise a right shift.

Restrictions:

Nelements must be greater or equal to 12 and multiple of 4

Number of cycles:

44 + 1 × Nelements

Number of VLIW:

30

File: vshiftv.mas

3.205 vsinhll Function: hyperbolic sine of a float input array and left to left move

Synopsis: __vector__ int vsinhll (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: float*

Y k� � X k� �� �sinh= k 0�Nelements 1–=
3-202 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vsinhll computes the hyperbolic sine of an input array stored in left mem-
ory space and writes the output to an array in left memory space.

Note: the function vsinhll uses 3 locations of the stack

Precision:

see Table 3-13 on page 207

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

| x | <= 87, to avoid overflow / underflow of the computed result

X must be in left memory

Y must be in left memory

Number of cycles:

307 + 19 × Nelements

Number of VLIW:

164

File: vsinhll.mas, vexpll.mas, expCoeff.mas

3.206 vsinhlr Function: hyperbolic sine of a float input array and left to right move

Synopsis: __vector__ int vsinhlr (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

Y k� � X k� �� �sinh= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-203

DRAFT–DPS–04/05

DSP Functions Description
The function vsinhlr computes the hyperbolic sine of an input array stored in left mem-
ory space and writes the output to an array in right memory space.

Note: the function vsinhlr uses 3 locations of the stack

Precision:

see Table 3-13 on page 207

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

| x | <= 87, to avoid overflow / underflow of the computed result

X must be in left memory

Y must be in right memory

Number of cycles:

303 + 18.5 × Nelements

Number of VLIW:

161

File: vsinhlr.mas, vexplr.mas. expCoeff.mas

3.207 vsinhrl Function: hyperbolic sine of a float input array and right memory to left move

Synopsis: __vector__ int vsinhrl (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vsinhrl computes the hyperbolic sine of an input array stored in right mem-
ory space and writes the output to an array in left memory space.

Note: the function vsinhrl uses 3 locations of the stack

Y k� � X k� �� �sinh= k 0�Nelements 1–=
3-204 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
Precision:

see Table 3-13 on page 207

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

| x | <= 87, to avoid overflow / underflow of the computed result

X must be in right memory

Y must be in left memory

Number of cycles:

304 + 19 × Nelements

Number of VLIW:

165

File: vsinhrl.mas, vexprl.mas, expCoeff.mas

3.208 vsinhrr Function: hyperbolic sine of a float input array and right to right move

Synopsis: __vector__ int vsinhrr (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vsinhrr computes the hyperbolic sine of an input array stored in right mem-
ory space and writes the output to an array in right memory space.

Note: the function vsinhrr uses 3 locations of the stack

Precision:

see Table 3-13 on page 207

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

Y k� � X k� �� �sinh= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-205

DRAFT–DPS–04/05

DSP Functions Description
| x | <= 87, to avoid overflow / underflow of the computed result

X must be in right memory

Y must be in right memory

Number of cycles:

306 + 18.5 × Nelements

Number of VLIW:

161

File: vsinhrr.mas, vexprr.mas, expCoeff.mas

3.209 vsinhv Function: hyperbolic sine of a vectorial input array

Synopsis: __vector__ int vsinhv (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: __vector__ float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: __vector__ float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vsinhv computes the hyperbolic sine of an input array stored in vector
space and writes the output to an array in vector space. For computing the hyperbolic
sine, with the input stored in left/right memory space and to output the values into
left/right memory space, see the functions: Table 3.205 on page 202, Table 3.206 on
page 203, Table 3.207 on page 204 and Table 3.208 on page 205.

Note: the function vsinhv uses 3 locations of the stack

Precision:

Y k� � X k� �� �sinh= k 0�Nelements 1–=
3-206 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
the following table provides the information about the precision for
this function

Restrictions:

Nelements must be greater or equal to 2 and multiple of 2

| x | <= 87, to avoid overflow / underflow of the computed result

Number of cycles:

313 + 31 × Nelements

Number of VLIW:

167

File: vsinhv.mas, vexpv.mas, expCoeff.mas

3.210 vsinll Function: sine of a float input array and left to left move

Synopsis: __vector__ int vsinll (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is writ-
ten.Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

Table 3-13.

Range of input values Absolute error Relative error

-0.1505 to 0.1505 4.58297e-010 7.06714e-008

0 to 10 1.45701e-005 9.58188e-010

10 to 86 1.32643e+027 5.28016e-010

-10 to 0 1.54298e-005 4.09391e-010

-86 to -10 1.32643e+027 5.28016e-010

Y k� � X k� �� �sin= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-207

DRAFT–DPS–04/05

DSP Functions Description
The function vsinll computes the sine of an input array stored in left memory space and
writes the output to an array in left memory space.

Precision:

see Table 3-14 on page 211

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

| x | <= 10^10, to avoid overflow / underflow of the computed result

X must be in left memory

Y must be in left memory

Number of cycles:

117 + 11.25 × Nelements

Number of VLIW:

63

File: vsinll.mas, sinCoeff.mas

3.211 vsinlr Function: sine of a float input array and left to right move

Synopsis: __vector__ int vsinlr (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vsinlr computes the sine of an input array stored in left memory space and
writes the output to an array in right memory space.

Precision:

Y k� � X k� �� �sin= k 0�Nelements 1–=
3-208 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
see Table 3-14 on page 211

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

| x | <= 10^10, to avoid overflow / underflow of the computed result

X must be in left memory

Y must be in right memory

Number of cycles:

117 + 11.25 × Nelements

Number of VLIW:

63

File: vsinlr.mas, sinCoeff.mas

3.212 vsinrl Function: sine of a float input array and right to left move

Synopsis: __vector__ int vsinrl (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vsinrl computes the sine of an input array stored in right memory space and
writes the output to an array in left memory space.

Precision:

see Table 3-14 on page 211

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

Y k� � X k� �� �sin= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-209

DRAFT–DPS–04/05

DSP Functions Description
| x | <= 10^10, to avoid overflow / underflow of the computed result

X must be in left memory

Y must be in right memory

Number of cycles:

119 + 11.25 × Nelements

Number of VLIW:

64

File: vsinrl.mas, sinCoeff.mas

3.213 vsinrr Function: sine of a float input array and right to right move

Synopsis: __vector__ int vsinrr (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vsinrr computes the sine of an input array stored in right memory space
and writes the output to an array in right memory space.

Precision:

see Table 3-14 on page 211

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

| x | <= 10^10, to avoid overflow / underflow of the computed result

X must be in right memory

Y must be in right memory

Number of cycles:

118 + 11.25 × Nelements

Y k� � X k� �� �sin= k 0�Nelements 1–=
3-210 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
Number of VLIW:

64

File: vsinrr.mas, sinCoeff.mas

3.214 vsinv Function: sine of a vectorial input array

Synopsis: __vector__ int vsinv (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: __vector__ float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: __vector__ float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vsinv computes the sine of an input array stored in vector space and writes
the output to an array in vector space. For computing the sine, with the input stored in
left/right memory space and to output the values into left/right memory space, see the
functions: Table 3.210 on page 207, Table 3.211 on page 208, Table 3.212 on page 209
and Table 3.213 on page 210.

Precision:

the following table provides the information about the precision for
this function

Table 3-14.

Description of input values Absolute error Relative error

0 to 6.16753e-010 1.84526e-009

5.45383e-009 0.559979

5.45383e-009 1.92443

5.45383e-009 1.92443

Y k� � X k� �� �sin= k 0�Nelements 1–=

� 3�

� to �–

2� 6��

2�– 6�–�
DSP Library User Manual (draft) 3-211

DRAFT–DPS–04/05

DSP Functions Description
Restrictions:

Nelements must be greater or equal to 2 and multiple of 2

| x | <= 10^10, to avoid overflow / underflow of the computed result

Number of cycles:

109 + 21.5 × Nelements

Number of VLIW:

58

File: vsinv.mas, sinCoeff.mas

3.215 vsqrt0ll Function: single vector square root computation and left to left move

Synopsis: __vector__ int vsqrt0ll(*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h.

*X: pointer to the X input vector. Type: float *

strideX: stride to be applied on X vector. Type: int

*Y: pointer to the Y output vector. Type: float *

strideY: stride to be applied on Y vector. Type: int

Nelements: number elements to be computed. Type: int

The function vsqrt0ll performs the square root of the input data vector X ordered as
specified in Restrictions. X is a float array.

Note: to use this function correctly, some numerical exceptions must be
masked. This can be done including the following instruction:
MaarGSR_BASE->GSR_mask=0x7, in the ARM source C before
RUNMAGIC. For more details on the Exception Mask Registers
(GSR_mask) refer to the DIOPSIS 740 Data Sheet (doc7001.pdf).

Restrictions:

Nelements must be any number greater or equal to 1

Y k� � X k� �= k 0�Nelements=
3-212 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
X must be in the left memory

Y must be in the left memory

Precision: 31 bit of mantissa

Number of cycles:

118 + 22 × Nelements

Number of VLIW:

55

File: vsqrt0ll.mas

3.216 vsqrt0lr Function: single vector square root computation and left to right move

Synopsis: __vector__ int vsqrt0lr(*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h.

*X: pointer to the X input vector. Type: float *

strideX: stride to be applied on X vector. Type: int

*Y: pointer to the Y output vector. Type: float *

strideY: stride to be applied on Y vector. Type: int

Nelements: number elements to be computed. Type: int

The function vsqrt0lr performs the square root of the input data vector X ordered as
specified in Restrictions. X is a float array.

Note: to use this function correctly, some numerical exceptions must be
masked. This can be done including the following instruction:
MaarGSR_BASE->GSR_mask=0x7, in the ARM source C before
RUNMAGIC. For more details on the Exception Mask Registers
(GSR_mask) refer to the DIOPSIS 740 Data Sheet (doc7001.pdf).

Restrictions:

Nelements must be any number greater or equal to 1

Y k� � X k� �= k 0�Nelements=
DSP Library User Manual (draft) 3-213

DRAFT–DPS–04/05

DSP Functions Description
X must be in the left memory

Y must be in the right memory

Precision: 31 bit of mantissa

Number of cycles:

118 + 22 × Nelements

Number of VLIW:

55

File: vsqrt0lr.mas

3.217 vsqrt0rl Function: single vector square root computation and right to left move

Synopsis: __vector__ int vsqrt0rl(*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h.

*X: pointer to the X input vector. Type: float *

strideX: stride to be applied on X vector. Type: int

*Y: pointer to the Y output vector. Type: float *

strideY: stride to be applied on Y vector. Type: int

Nelements: number elements to be computed. Type: int

The function vsqrt0rl performs the square root of the input data vector X ordered as
specified in Restrictions. X is a float array.

Note: to use this function correctly, some numerical exceptions must be
masked. This can be done including the following instruction:
MaarGSR_BASE->GSR_mask=0x7, in the ARM source C before
RUNMAGIC. For more details on the Exception Mask Registers
(GSR_mask) refer to the DIOPSIS 740 Data Sheet (doc7001.pdf).

Restrictions:

Nelements must be any number greater or equal to 1

X must be in the right memory

Y k� � X k� �= k 0�Nelements=
3-214 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
Y must be in the left memory

Precision: 31 bit of mantissa

Number of cycles:

118 + 22 × Nelements

Number of VLIW:

55

File: vsqrt0rl.mas

3.218 vsqrt0rr Function: single vector square root computation and right to right move

Synopsis: __vector__ int vsqrt0rr(*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h.

*X: pointer to the X input vector. Type: float *

strideX: stride to be applied on X vector. Type: int

*Y: pointer to the Y output vector. Type: float *

strideY: stride to be applied on Y vector. Type: int

Nelements: number elements to be computed. Type: int

The function vsqrt0rr performs the square root of the input data vector X ordered as
specified in Restrictions. X is a float array.

Note: to use this function correctly, some numerical exceptions must be
masked. This can be done including the following instruction:
MaarGSR_BASE->GSR_mask=0x7, in the ARM source C before
RUNMAGIC. For more details on the Exception Mask Registers
(GSR_mask) refer to the DIOPSIS 740 Data Sheet (doc7001.pdf).

Restrictions:

Nelements must be any number greater or equal to 1

X must be in the right memory

Y k� � X k� �= k 0�Nelements=
DSP Library User Manual (draft) 3-215

DRAFT–DPS–04/05

DSP Functions Description
Y must be in the right memory

Precision: 31 bit of mantissa

Number of cycles:

118 + 22 × Nelements

Number of VLIW:

55

File: vsqrt0rr.mas

3.219 vsqrt0v Function: vectorial square root computation

Synopsis: __vector__ int vsqrt0v(*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h.

*X: pointer to the input vector. Type: __vector__ float *

strideX: stride to be used for the X data. Type: int

*Y: pointer to the output vector. Type: __vector__ float *

strideY: stride to be used for the Y data. Type: int

Nelements: Number of elements to be computed. Type: int

The function vsqrt0v performs the square root of the input data vector X . X is a vectorial
data type. The operation are performed in vectorial mode i.e. pair of results are com-
puted simultaneously:

YLeft = sqrt (XLeft)

YRight = sqrt (XRight)

Note: to use this function correctly, some numerical exceptions must be
masked. This can be done including the following instruction:
MaarGSR_BASE->GSR_mask=0x7, in the ARM source C before
RUNMAGIC. For more details on the Exception Mask Registers
(GSR_mask) refer to the DIOPSIS 740 Data Sheet (doc7001.pdf).

Restrictions:

Y k� � X k� � K 0�Nelements 1–= =
3-216 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
Nelements can be any number greater than 0

Result precision: 31 bits of mantissa

Number of cycles:

118 + 22 × Nelements

Number of VLIW:

55

File: vsqrt0v.mas

3.220 vsqrtll Function: pipelined single vector square root computation and left to left move

Synopsis: __vector__ int vsqrtll(*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h.

*X: pointer to the X input vector. Type: float *

strideX: stride to be applied on X vector. Type: int

*Y: pointer to the Y output vector. Type: float *

strideY: stride to be applied on Y vector. Type: int

Nelements: number elements to be computed. Type: int

The function vsqrtll performs the single square root of the input data vector X ordered as
specified in Restrictions. X is a float array, but after its moving from the Data Memory to
the Register File, data are arranged in a vectorial way in order to perform vectorial oper-
ations. For a not pipelined version see the function “vsqrt0ll” on page 3-212. For a
vectorial version see the function “vsqrtv” on page 3-221.

Note: to use this function correctly, some numerical exceptions must be
masked. This can be done including the following instruction:
MaarGSR_BASE->GSR_mask=0x7, in the ARM source C before
RUNMAGIC. For more details on the Exception Mask Registers
(GSR_mask) refer to the DIOPSIS 740 Data Sheet (doc7001.pdf).

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

Y k� � X k� �= k 0�Nelements=
DSP Library User Manual (draft) 3-217

DRAFT–DPS–04/05

DSP Functions Description
X must be in the left memory

Y must be in the left memory

Precision: 31 bit of mantissa

Number of cycles:

130 + 7.75 × Nelements

Number of VLIW:

74

File: vsqrtll.mas

3.221 vsqrtlr Function: pipelined single vector square root computation and left to right move

Synopsis: __vector__ int vsqrtlr(*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h.

*X: pointer to the X input vector. Type: float *

strideX: stride to be applied on X vector. Type: int

*Y: pointer to the Y output vector. Type: float *

strideY: stride to be applied on Y vector. Type: int

Nelements: number elements to be computed. Type: int

The function vsqrtlr performs the square root of the input data vector X ordered as spec-
ified in Restrictions. X is a float array, but after its moving from the Data Memory to the
Register File, data are arranged in a vectorial way in order to perform vectorial opera-
tions. For a not pipelined version see the function “vsqrt0lr” on page 3-213. For a
vectorial version see the function “vsqrtv” on page 3-221.

Note: to use this function correctly, some numerical exceptions must be
masked. This can be done including the following instruction:
MaarGSR_BASE->GSR_mask=0x7, in the ARM source C before
RUNMAGIC. For more details on the Exception Mask Registers
(GSR_mask) refer to the DIOPSIS 740 Data Sheet (doc7001.pdf).

Y k� � X k� �= k 0�Nelements=
3-218 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in the left memory

Y must be in the right memory

Precision: 31 bit of mantissa

Number of cycles:

130 + 7.75 × Nelements

Number of VLIW:

74

File: vsqrtlr.mas

3.222 vsqrtrl Function: pipelined single vector square root computation and right to left move

Synopsis: __vector__ int vsqrtrl(*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h.

*X: pointer to the X input vector. Type: float *

strideX: stride to be applied on X vector. Type: int

*Y: pointer to the Y output vector. Type: float *

strideY: stride to be applied on Y vector. Type: int

Nelements: number elements to be computed. Type: int

The function vsqrtrl performs the square root of the input data vector X ordered as spec-
ified in Restrictions. X is a float array, but after its moving from the Data Memory to the
Register File, data are arranged in a vectorial way in order to perform vectorial opera-
tions. For a not pipelined version see the function “vsqrt0rl” on page 3-214. For a
vectorial version see the “vsqrtv” on page 3-221.

Note: to use this function correctly, some numerical exceptions must be
masked. This can be done including the following instruction:
MaarGSR_BASE->GSR_mask=0x7, in the ARM source C before

Y k� � X k� �= k 0�Nelements=
DSP Library User Manual (draft) 3-219

DRAFT–DPS–04/05

DSP Functions Description
RUNMAGIC. For more details on the Exception Mask Registers
(GSR_mask) refer to the DIOPSIS 740 Data Sheet (doc7001.pdf).

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in the right memory

Y must be in the left memory

Precision: 31 bit of mantissa

Number of cycles:

122 + 7.75 × Nelements

Number of VLIW:

74

File: vsqrtrl.mas

3.223 vsqrtrr Function: pipelined single vector square root computation and right to right
move

Synopsis: __vector__ int vsqrtrr(*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h.

*X: pointer to the X input vector. Type: float *

strideX: stride to be applied on X vector. Type: int

*Y: pointer to the Y output vector. Type: float *

strideY: stride to be applied on Y vector. Type: int

Nelements: number elements to be computed. Type: int

The function vsqrtrr performs the square root of the input data vector X ordered as spec-
ified in Restrictions. X is a float array, but after its moving from the Data Memory to the
Register File, data are arranged in a vectorial way in order to perform vectorial opera-
tions. For a not pipelined version see the function “vsqrt0rr” on page 3-215. For a
vectorial version see the function “vsqrtv” on page 3-221.

Y k� � X k� �= k 0�Nelements=
3-220 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
Note: to use this function correctly, some numerical exceptions must be
masked. This can be done including the following instruction:
MaarGSR_BASE->GSR_mask=0x7, in the ARM source C before
RUNMAGIC. For more details on the Exception Mask Registers
(GSR_mask) refer to the DIOPSIS 740 Data Sheet (doc7001.pdf).

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

X must be in the right memory

Y must be in the right memory

Precision: 31 bit of mantissa

Number of cycles:

122 + 7.75 × Nelements

Number of VLIW:

74

File: vsqrtrr.mas

3.224 vsqrtv Function: pipelined vectorial square root computation

Synopsis: __vector__ int vsqrtv(*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h.

*X: pointer to input vector. Type: __vector__ float *

strideX: stride to be used for the X data. Type: int

*Y: pointer to the output vector. Type: __vector__ float *

strideY: stride to be used for the X the data. Type: int

Nelements: Number of elements to be computed . Type: int

The function vsqrtv works on vectorial data. It performs the operations in vectorial mode
i.e. pair of results are computed simultaneously in a code unrolled 4 times:

Y1Left = sqrt (X1Left) and Y1Right = sqrt (X1Right)

Y k� � X k� �= k 0�Nelements=
DSP Library User Manual (draft) 3-221

DRAFT–DPS–04/05

DSP Functions Description
Y2Left = sqrt (X2Left) and Y2Right = sqrt (X2Right)

Y3Left = sqrt (X3Left) and Y3Right = sqrt (X3Right)

Y4Left = sqrt (X4Left) and Y4Right = sqrt (X4Right)

Note: to use this function correctly, some numerical exceptions must be
masked. This can be done including the following instruction:
MaarGSR_BASE->GSR_mask=0x7, in the ARM source C before
RUNMAGIC. For more details on the Exception Mask Registers
(GSR_mask) refer to the DIOPSIS 740 Data Sheet (doc7001.pdf).

Restrictions:

Nelements must be greater or equal to 2 and multiple of 2

Result precision: 31 bits of mantissa

Number of cycles:

115 + 15.5 × Nelements

Number of VLIW:

66

File: vsqrtv.mas

3.225 vsubll Function: subtraction of 2 float array in left memory

Synopsis: __vector__ int vsubll(*X, strideX, *Y, strideY, *Z, strideZ, Nelements)

Include file: DSPlib.h.

*X: pointer to the first input vector. Type: __vector__ float *

strideX: stride to be used for the X data. Type: int

*Y: pointer to the second input vector. Type: __vector__ float *

strideY: stride to be used for the Y the data. Type: int

*Z: pointer to the output vector. Type: __vector__ float *

strideZ: stride to be used for the Y the data. Type: int

Nelements: Number of element to be computed. Type: int

Z k� � X k� � Y k� �–= k 0�Nelements 1–=
3-222 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
The function vsubll executes the difference between 2 float array in left memory: X and
Y and writes the result in the float array Z stored in left memory.

Restrictions:

Nelements must be greater than 4 and multiple of 4

Number of cycles:

27 + 2 × Nelements

Number of VLIW:

22

File: vsubll.mas

3.226 vsubrr Function: subtraction of 2 float array in right memory

Synopsis: __vector__ int vsubrr(*X, strideX, *Y, strideY, *Z, strideZ, Nelements)

Include file: DSPlib.h.

*X: pointer to the first input vector. Type: __vector__ float *

strideX: stride to be used for the X data. Type: int

*Y: pointer to the second input vector. Type: __vector__ float *

strideY: stride to be used for the Y the data. Type: int

*Z: pointer to the output vector. Type: __vector__ float *

strideZ: stride to be used for the Y the data. Type: int

Nelements: Number of element to be computed. Type: int

The function vsubrr executes the difference between 2 float array in right memory: X
and Y and writes the result in the float array Z stored in right memory.

Restrictions:

Nelements must be greater than 4 and multiple of 4

Z k� � X k� � Y k� �–= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-223

DRAFT–DPS–04/05

DSP Functions Description
Number of cycles:

32 + 2 × Nelements

Number of VLIW:

20

File: vsubrr.mas

3.227 vsubv Function: subtraction of 2 vectorial float array

Synopsis: __vector__ int vsubv(*X, strideX, *Y, strideY, *Z, strideZ, Nelements)

Include file: DSPlib.h.

*X: pointer to the first input vector. Type: __vector__ float *

strideX: stride to be used for the X data. Type: int

*Y: pointer to the second input vector. Type: __vector__ float *

strideY: stride to be used for the Y the data. Type: int

*Z: pointer to the output vector. Type: __vector__ float *

strideZ: stride to be used for the Y the data. Type: int

Nelements: Number of element to be computed. Type: int

The function vsubv works on complex data arranged vectorially in memory; they can
represent pair of complex vectors or two vectorial streams of real vectors that will be
processed in parallel.

Restrictions:

Nelements must be greater or equal to 4 and multiple of 4

Number of cycles:

29 + 2.75 × Nelements

Number of VLIW:

24

Z k� � X k� � Y k� �–= k 0�Nelements 1–=
3-224 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
File: vsubv.mas

3.228 vsumv Function: sum of vector elements

Synopsis: __vector__ int vsumv(*X, strideX, *Y, Nelements)

Include file: DSPlib.h.

*X: pointer to the input vector. Type: __complex__ float *

strideX: stride to be used for the X data. Type: int

*Y: pointer to the sum memory location. Type: __ complex __ float *

Nelements: Number of element to be added. Type: int

The function vsumv works on complex (or vectorial) data type returning the sum of the
real (left) parts in the real (left) output location and the sum of the imaginary (right) parts
in the imaginary (right) output location.

Restrictions:

Nelements must be greater than 8 and multiple of 4

Number of cycles:

44 + 1 × Nelements

Number of VLIW:

27

File: vsumv.mas

Y k� � X k� �
k 0=

Nelements 1–

�= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-225

DRAFT–DPS–04/05

DSP Functions Description
3.229 vtanhll Function: hyperbolic tan of a float input array and left to left move

Synopsis: __vector__ int vtanhll (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vtanhll computes the hyperbolic tan of an input array stored in left memory
space and writes the output to an array in left memory space.

Note: the function vtanhll uses 3 locations of the stack

Precision:

see Table 3-15 on page 230

Restrictions:

Nelements must be greater than 4 and multiple of 4.

X must be in left memory

Y must be in left memory

| x | <= 87, to avoid overflow / underflow of the computed result

Number of cycles:

309 +19.75 × Nelements

Number of VLIW:

165

File: vtanhll.mas, vexpll.mas, expCoeff.mas

Y k� � X k� �� �tanh= k 0�Nelements 1–=
3-226 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
3.230 vtanhlr Function: hyperbolic tan of a float input array and left to right move

Synopsis: __vector__ int vtanhlr (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vtanhlr computes the hyperbolic tan of an input array stored in left memory
space and writes the output to an array in right memory space.

Precision:

see Table 3-15 on page 230

Restrictions:

Nelements must be greater than 4 and multiple of 4.

X must be in left memory

Y must be in right memory

| x | <= 87, to avoid overflow / underflow of the computed result

Number of cycles:

304 + 18.75 × Nelements

Number of VLIW:

161

File: vtanhlr.mas, vexplr.mas, expCoeff.mas

Y k� � X k� �� �tanh= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-227

DRAFT–DPS–04/05

DSP Functions Description
3.231 vtanhrl Function: hyperbolic tan of a float input array and right to left move

Synopsis: __vector__ int vtanhrl (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array which the computed value is written. Type:
float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vtanhrl computes the hyperbolic tan of an input array stored in right mem-
ory space and writes the output to an array in left memory space.

Note: the function vtanhrl uses 3 locations of the stack

Precision:

see Table 3-15 on page 230

Restrictions:

Nelements must be greater than 4 and multiple of 4.

X must be in right memory

Y must be in left memory

| x | <= 87, to avoid overflow / underflow of the computed result

Number of cycles:

302 + 18.75 × Nelements

Number of VLIW:

165

File: vtanhrl.mas, vexprl.mas, expCoeff.mas

Y k� � X k� �� �tanh= k 0�Nelements 1–=
3-228 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
3.232 vtanhrr Function: hyperbolic tan of a float input array and right to right move

Synopsis: __vector__ int vtanhrr (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vtanhrr computes the hyperbolic tan of an input array stored in right mem-
ory space and writes the output to an array in right memory space.

Note: the function vtanhrr uses 3 locations of the stack

Precision:

see Table 3-15 on page 230

Restrictions:

Nelements must be greater than 4 and multiple of 4

X must be in right memory

Y must be in right memory

| x | <= 87, to avoid overflow / underflow of the computed result

Number of cycles:

308 + 19 × Nelements

Number of VLIW:

162

File: vtanhrr.mas, vexprr.mas, expCoeff.mas

Y k� � X k� �� �tanh= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-229

DRAFT–DPS–04/05

DSP Functions Description
3.233 vtanhv Function: hyperbolic tan of a vectorial input array

Synopsis: __vector__ int vtanhv (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: __vector__ float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: __vector__ float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vtanhv computes the hyperbolic tan of an input array stored in vector space
and writes the output to an array in vector space. For computing the hyperbolic tan, with
the input stored in left/right memory space and to output the values into left/right mem-
ory space, see the functions: Table 3.229 on page 226, Table 3.230 on page 227, Table
3.231 on page 228 and Table 3.232 on page 229.

Note: the function vtanhv uses 3 locations of the stack

Precision:

the following table provides the information about the precision for this
function

Restrictions:

Nelements must be greater than 2 and multiple of 2

| x | <= 87, to avoid overflow / underflow of the computed result

Number of cycles:

325 + 30 × Nelements

Number of VLIW:

Table 3-15.

Range of input values Absolute error Relative error

-0.1505 to 0.1505 5.13845e-010 8.45721e-008

0 to 10 5.29676e-010 5.29676e-010

10 to 90 1.38289e-012 1.38289e-012

-10 to 0 2.50796e-010 2.50799e-010

Y k� � X k� �� �tanh= k 0�Nelements 1–=
3-230 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
178

File: vtanhv.mas, vexpv.mas, expCoeff.mas

3.234 vtanll Function: tan of a float input array and left to left move

Synopsis: __vector__ int vtanll (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vtanll computes the tan of an input array stored in left memory space and
writes the output to an array in left memory space.

Precision:

see Table 3-16 on page 235

Restrictions:

Nelements must be greater than 4 and multiple of 4.

X must be in left memory

Y must be in left memory

| x | <= 10^10, to avoid overflow / underflow of the computed result

Number of cycles:

142 + 18 × Nelements

Number of VLIW:

79

File: vtanll.mas, tanCoeff.mas

Y k� � X k� �� �tan= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-231

DRAFT–DPS–04/05

DSP Functions Description
3.235 vtanlr Function: tan of a float input array and left to right move

Synopsis: __vector__ int vtanlr (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vtanlr computes the tan of an input array stored in left memory space and
writes the output to an array in right memory space.

Precision:

see Table 3-16 on page 235

Restrictions:

Nelements must be greater than 4 and multiple of 4.

X must be in left memory

Y must be in right memory

| x | <= 10^10, to avoid overflow / underflow of the computed result

Number of cycles:

140 + 17.5 × Nelements

Number of VLIW:

79

File: vtanlr.mas, tanCoeff.mas

Y k� � X k� �� �tan= k 0�Nelements 1–=
3-232 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
3.236 vtanrl Function: tan of a float input array and right to left move

Synopsis: __vector__ int vtanrl (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vtanrl computes the tan of an input array stored in right memory space and
writes the output to an array in left memory space.

Precision:

see Table 3-16 on page 235

Restrictions:

Nelements must be greater than 4 and multiple of 4.

X must be in right memory

Y must be in left memory

| x | <= 10^10, to avoid overflow / underflow of the computed result

Number of cycles:

141+ 17.5 × Nelements

Number of VLIW:

79

File: vtanrl.mas, tanCoeff.mas

Y k� � X k� �� �tan= k 0�Nelements 1–=
DSP Library User Manual (draft) 3-233

DRAFT–DPS–04/05

DSP Functions Description
3.237 vtanrr Function: tan of a float input array and right to right memory

Synopsis: __vector__ int vtanrr (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vtanrr computes the tan of an input array stored in right memory space
and writes the output to an array in right memory space.

Precision:

see Table 3-16 on page 235

Restrictions:

Nelements must be greater than 4 and multiple of 4.

X must be in right memory

Y must be in right memory

| x | <= 10^10, to avoid overflow / underflow of the computed result

Number of cycles:

143 + 18 × Nelements

Number of VLIW:

74

File: vtanrr.mas, tanCoeff.mas

3.238 vtanv Function: tan of a vectorial input array

Y k� � X k� �� �tan= k 0�Nelements 1–=

Y k� � X k� �� �tan= k 0�Nelements 1–=
3-234 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
Synopsis: __vector__ int vtanv (*X, strideX, *Y, strideY, Nelements)

Include file: DSPlib.h

X: pointer to the input array. Type: __vector__ float

strideX: stride to be used for the input array. Type: int

*Y: pointer to the output array into which the computed value is written.
Type: __vector__ float*

strideY: stride to be used for the output array. Type: int

Nelements: number of elements to be computed.Type: int

The function vtanv computes the tan of an input array stored in vector space and writes
the output to an array in vector space. For computing the tan, with the input stored in
left/right memory space and to output the values into left/right memory space, see the
functions: Table 3.234 on page 231, Table 3.235 on page 232, Table 3.236 on page 233
and Table 3.237 on page 234.

Precision:

the following table provides the information about the precision for
this function

Restrictions:

Nelements must be greater than 2 and multiple of 2

| x | <= 10^10, to avoid overflow / underflow of the computed result

Number of cycles:

134 + 34.5 × Nelements

Number of VLIW:

74

File: vtanv.mas, tanCoeff.mas

Table 3-16.

Description of input values Absolute error Relative error

0 to 2.7567e-009 1.64263e-009

- to except
 , 2.79771e-007 0.504265

-1.5708 1.01281e+008 0.324616

1.5708 1.01281e+008 0.324616

� 3�

�– �

� 2�– � 2�
DSP Library User Manual (draft) 3-235

DRAFT–DPS–04/05

DSP Functions Description
3.239 xcorrc Function: cross-correlation between 2 complex float array or auto-correlation of
a complex float array

Synopsis: __vector__ int xcorrc (*X, strideX, *Y, strideY, *Z, strideZ, N, NCorr)

Include file: DSPlib.h.

*X: pointer to the first input vector. Type: __complex__ float *

StrideX: stride to be used for the X data. Type: int

*Y: pointer to the second input vector. Type: __complex__ float *

StrideY: stride to be used for the Y data. Type: int

*Z: pointer to the output vector. Type: __complex__ float *

StrideZ: stride to be used for the Z data. Type: int

N: lenght of the input vectors. If X and Y aren’t of the same length, N
must be set to the length of the shorter vector. Type: int

NCorr: number of coefficients to be computed. Type: int

The function xcorrc can perform the cross-correlation of 2 complex float array : X and Y
or the autocorrelation of the complex float array X. In the second case the third parame-
ter passed to the function must be equal to the first.

Restrictions:

NCorr must be greater than 4 and multiple of 4

Number of cycles:

80 + (26 + 20) × NCorr / 4 + 11 / 8 × sum(N ... (N-NCorr))

Number of VLIW:

94

File: xcorrc.mas

RXY i� �
X k i–� � Y� k� ��

k 0=

N i– 1–

�

R�YX i–� ��
�
�
�
	

=
i 0�Ncorr

2
---------------=

i Ncorr
2

---------------�– 1–=

Z i� � RXY i
Ncorr

2
---------------–� �

� �= i 1�Ncorr=
3-236 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
3.240 xcorrlll Function: cross-correlation between 2 float array stored in left memory or auto-
correlation of a float array stored in left memory. The result is stored
in left memory

Synopsis: __vector__ int xcorrlll (*X, strideX, *Y, strideY, *Z, strideZ, N, NCorr)

Include file: DSPlib.h.

*X: pointer to the first input vector. Type: float *

StrideX: stride to be used for the X data. Type: int

*Y: pointer to the second input vector. Type: float *

StrideY: stride to be used for the Y data. Type: int

*Z: pointer to the output vector. Type: float *

StrideZ: stride to be used for the Z data. Type: int

N: lenght of the input vectors. If X and Y aren’t of the same length, N
must be set to the length of the shorter vector. Type: int

NCorr: number of coefficients to be computed. Type: int

The function xcorrlll can perform the cross-correlation of 2 real float array : X and Y or
the autocorrelation of the float array X. In the second case the third parameter passed to
the function must be equal to the first. The input and output vectors must be stored in left
memory.

Restrictions:

NCorr must be greater than 4 and multiple of 4

X must be in left memory

Y must be in left memory

Z must be in left memory

Number of cycles:

80 + (26 + 20) × NCorr / 4 + 11 / 8 × sum(N ... (N-NCorr))

Number of VLIW:

94

File: xcorrlll.mas

RXY i� �
X k i–� � Y k� ��

k 0=

N i– 1–

�

RYX i–� ��
�
�
�
	

=
i 0�Ncorr

2
---------------=

i Ncorr
2

---------------�– 1–=

Z i� � RXY i
Ncorr

2
---------------–� �

� �= i 1�Ncorr=
DSP Library User Manual (draft) 3-237

DRAFT–DPS–04/05

DSP Functions Description
3.241 xcorrllr Function: cross-correlation between 2 float array stored in left memory or auto-
correlation of a float array stored in left memory. The result is stored
in right memory

Synopsis: __vector__ int xcorrllr (*X, strideX, *Y, strideY, *Z, strideZ, N, NCorr)

Include file: DSPlib.h.

*X: pointer to the first input vector. Type: float *

StrideX: stride to be used for the X data. Type: int

*Y: pointer to the second input vector. Type: float *

StrideY: stride to be used for the Y data. Type: int

*Z: pointer to the output vector. Type: float *

StrideZ: stride to be used for the Z data. Type: int

N: lenght of the input vectors. If X and Y aren’t of the same length, N
must be set to the length of the shorter vector. Type: int

NCorr: number of coefficients to be computed. Type: int

The function xcorrllr can perform the cross-correlation of 2 real float array : X and Y or
the autocorrelation of the float array X. In the second case the third parameter passed to
the function must be equal to the first. The input vectors must be stored in left memory
while the output in right memory.

Restrictions:

NCorr must be greater than 4 and multiple of 4

X must be in left memory

Y must be in left memory

Z must be in right memory

Number of cycles:

80 + (26 + 20) × NCorr / 4 + 11 / 8 × sum(N ... (N-NCorr))

Number of VLIW:

RXY i� �
X k i–� � Y k� ��

k 0=

N i– 1–

�

RYX i–� ��
�
�
�
	

=
i 0�Ncorr

2
---------------=

i Ncorr
2

---------------�– 1–=

Z i� � RXY i
Ncorr

2
---------------–� �

� �= i 1�Ncorr=
3-238 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
94

File: xcorrllr.mas

3.242 xcorrlrl Function: cross-correlation between 2 float array: the first stored in left memory
and the second in right memory . The result is stored in left memory

Synopsis: __vector__ int xcorrlrl (*X, strideX, *Y, strideY, *Z, strideZ, N, NCorr)

Include file: DSPlib.h.

*X: pointer to the first input vector. Type: float *

StrideX: stride to be used for the X data. Type: int

*Y: pointer to the second input vector. Type: float *

StrideY: stride to be used for the Y data. Type: int

*Z: pointer to the output vector. Type: float *

StrideZ: stride to be used for the Z data. Type: int

N: lenght of the input vectors. If X and Y aren’t of the same length, N
must be set to the length of the shorter vector. Type: int

NCorr: number of coefficients to be computed. Type: int

The function xcorrlrl can perform the cross-correlation of 2 real float array : X and Y. X
must be stored in left memory while Y in right memory. The output must be stored in left
memory.

Restrictions:

NCorr must be greater than 4 and multiple of 4

X must be in left memory

Y must be in right memory

Z must be in left memory

Number of cycles:

80 + (26 + 20) × NCorr / 4 + 11 / 8 × sum(N ... (N-NCorr))

Number of VLIW:

94

RXY i� �
X k i–� � Y k� ��

k 0=

N i– 1–

�

RYX i–� ��
�
�
�
	

=
i 0�Ncorr

2
---------------=

i Ncorr
2

---------------�– 1–=

Z i� � RXY i
Ncorr

2
---------------–� �

� �= i 1�Ncorr=
DSP Library User Manual (draft) 3-239

DRAFT–DPS–04/05

DSP Functions Description
File: xcorrlrl.mas

3.243 xcorrlrr Function: cross-correlation between 2 float array: the first stored in left memory
and the second in right memory . The result is stored in right memory

Synopsis: __vector__ int xcorrlrr (*X, strideX, *Y, strideY, *Z, strideZ, N, NCorr)

Include file: DSPlib.h.

*X: pointer to the first input vector. Type: float *

StrideX: stride to be used for the X data. Type: int

*Y: pointer to the second input vector. Type: float *

StrideY: stride to be used for the Y data. Type: int

*Z: pointer to the output vector. Type: float *

StrideZ: stride to be used for the Z data. Type: int

N: lenght of the input vectors. If X and Y aren’t of the same length, N
must be set to the length of the shorter vector. Type: int

NCorr: number of coefficients to be computed. Type: int

The function xcorrlrr can perform the cross-correlation of 2 real float array : X and Y. X
must be stored in left memory while Y in right memory. The output must be stored in
right memory.

Restrictions:

NCorr must be greater than 4 and multiple of 4

X must be in left memory

Y must be in right memory

Z must be in right memory

Number of cycles:

80 + (26 + 20) × NCorr / 4 + 11 / 8 × sum(N ... (N-NCorr))

RXY i� �
X k i–� � Y k� ��

k 0=

N i– 1–

�

RYX i–� ��
�
�
�
	

=
i 0�Ncorr

2
---------------=

i Ncorr
2

---------------�– 1–=

Z i� � RXY i
Ncorr

2
---------------–� �

� �= i 1�Ncorr=
3-240 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
Number of VLIW:

94

File: xcorrlrr.mas

3.244 xcorrrrl Function: cross-correlation between 2 float array stored in right memory or
auto-correlation of a float array stored in right memory. The result is
stored in left memory

Synopsis: __vector__ int xcorrrrl (*X, strideX, *Y, strideY, *Z, strideZ, N, NCorr)

Include file: DSPlib.h.

*X: pointer to the first input vector. Type: float *

StrideX: stride to be used for the X data. Type: int

*Y: pointer to the second input vector. Type: float *

StrideY: stride to be used for the Y data. Type: int

*Z: pointer to the output vector. Type: float *

StrideZ: stride to be used for the Z data. Type: int

N: lenght of the input vectors. If X and Y aren’t of the same length, N
must be set to the length of the shorter vector. Type: int

NCorr: number of coefficients to be computed. Type: int

The function xcorrrrl can perform the cross-correlation of 2 real float array : X and Y or
the autocorrelation of the float array X. In the second case the third parameter passed to
the function must be equal to the first. The input vectors must be stored in right memory
while the output in left memory.

Restrictions:

NCorr must be greater than 4 and multiple of 4

RXY i� �
X k i–� � Y k� ��

k 0=

N i– 1–

�

RYX i–� ��
�
�
�
	

=
i 0�Ncorr

2
---------------=

i Ncorr
2

---------------�– 1–=

Z i� � RXY i
Ncorr

2
---------------–� �

� �= i 1�Ncorr=
DSP Library User Manual (draft) 3-241

DRAFT–DPS–04/05

DSP Functions Description
X must be in right memory

Y must be in right memory

Z must be in left memory

Number of cycles:

80 + (26 + 20) × NCorr / 4 + 11 / 8 × sum(N ... (N-NCorr))

Number of VLIW:

94

File: xcorrrrl.mas

3.245 xcorrrrr Function: cross-correlation between 2 float array stored in right memory or
auto-correlation of a float array stored in right memory. The result is
stored in right memory

Synopsis: __vector__ int xcorrrrr (*X, strideX, *Y, strideY, *Z, strideZ, N, NCorr)

Include file: DSPlib.h.

*X: pointer to the first input vector. Type: float *

StrideX: stride to be used for the X data. Type: int

*Y: pointer to the second input vector. Type: float *

StrideY: stride to be used for the Y data. Type: int

*Z: pointer to the output vector. Type: float *

StrideZ: stride to be used for the Z data. Type: int

N: lenght of the input vectors. If X and Y aren’t of the same length, N
must be set to the length of the shorter vector. Type: int

NCorr: number of coefficients to be computed. Type: int

The function xcorrrrr can perform the cross-correlation of 2 real float array : X and Y or
the autocorrelation of the float array X. In the second case the third parameter passed to
the function must be equal to the first. The input and output vectors must be stored in
right memory.

RXY i� �
X k i–� � Y k� ��

k 0=

N i– 1–

�

RYX i–� ��
�
�
�
	

=
i 0�Ncorr

2
---------------=

i Ncorr
2

---------------�– 1–=

Z i� � RXY i
Ncorr

2
---------------–� �

� �= i 1�Ncorr=
3-242 DSP Library User Manual (draft)

DRAFT–DPS–04/05

DSP Functions Description
Restrictions:

NCorr must be greater than 4 and multiple of 4

X must be in right memory

Y must be in right memory

Z must be in right memory

Number of cycles:

80 + (26 + 20) × NCorr / 4 + 11 / 8 × sum(N ... (N-NCorr))

Number of VLIW:

94

File: xcorrrrr.mas

3.246 xcorrv Function: cross-correlation between 2 vectorial float array or auto-correlation of
a vectorial float array

Synopsis: __vector__ int xcorrv (*X, strideX, *Y, strideY, *Z, strideZ, N, NCorr)

Include file: DSPlib.h.

*X: pointer to the first input vector. Type: __vector__ float *

StrideX: stride to be used for the X data. Type: int

*Y: pointer to the second input vector. Type: __vector__ float *

StrideY: stride to be used for the Y data. Type: int

*Z: pointer to the output vector. Type: __vector__ float *

StrideZ: stride to be used for the Z data. Type: int

N: lenght of the input vectors. If X and Y aren’t of the same length, N
must be set to the length of the shorter vector. Type: int

NCorr: number of coefficients to be computed. Type: int

The function xcorrv can perform the cross-correlation of 2 vectorial float array : X and Y
or the autocorrelation of the vectorial float array X. In the second case the third parame-
ter passed to the function must be equal to the first.

RXY i� �
X k i–� � Y� k� ��

k 0=

N i– 1–

�

R�YX i–� ��
�
�
�
	

=
i 0�Ncorr

2
---------------=

i Ncorr
2

---------------�– 1–=

Z i� � RXY i
Ncorr

2
---------------–� �

� �= i 1�Ncorr=
DSP Library User Manual (draft) 3-243

DRAFT–DPS–04/05

DSP Functions Description
Restrictions:

NCorr must be greater than 4 and multiple of 4

Number of cycles:

80 + (26+20) × NCorr / 4 + 11 / 8 × sum(N ... (N-NCorr))

Number of VLIW:

94

File: xcorrv.mas
3-244 DSP Library User Manual (draft)

DRAFT–DPS–04/05

Section 4

Related Documents

1. ATMEL: mAgic DSP Reference Manual - Rev. 7002A (04/04)

2. ATMEL: DIOPSIS 740 Data Sheet - Rev. 7001A (05/04)

3. ATMEL: MADE User Guide - Rev. DRAFT (05/04)

4. ATMEL: MCC User Manual - Rev. DRAFT (05/04)
DSP Library User Manual (draft) 4-1

 DRAFT–DPS–04/05

Related Documents
4-2 DSP Library User Manual (draft)

DRAFT–DPS–04/05

 Printed on recycled paper.

DRAFT–DPS–04/05 0M

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Atmel’s products are not
intended, authorized, or warranted for use as components in applications intended to support or sustain life.

Atmel Corporation Atmel Operations

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Literature Requests
www.atmel.com/literature

© Atmel Corporation 2004. All rights reserved. Atmel®, logo and combinations thereof, and Diopsis are registered trademarks, and Every-
where You AreSM are the trademarks of Atmel Corporation or its subsidiaries. ARM® and Thumb® are the registered trademarks of ARM Ltd.;
ARM7TDMI™is the trademark of ARM Ltd.. Other terms and product names may be trademarks of others.

	Section 1
	Introduction
	1.1 mAgic DSP Processor
	1.1.1 Core processor
	1.1.2 Internal Memories, External Memories and DMA
	1.1.3 ARM Interface
	1.1.4 VLIW Program Word
	1.1.5 Instruction Set

	Section 2
	List of the DSP Library Function
	2.1 General Restrictions
	2.2 Alphabetical DSP Function List

	Section 3
	DSP Functions Description
	3.1 cmulcxcy
	3.2 cmulcxy
	3.3 cmulxy
	3.4 conv
	3.5 conv2d
	3.6 cvexp
	3.7 cvma
	3.8 cvrdiv
	3.9 FD_RealFIR_Pair
	3.9.1 C initialization for realFIR function.

	3.10 fft1024
	3.11 fft128
	3.12 fft256
	3.13 fft288
	3.14 fft512
	3.15 fft64
	3.16 FIR
	3.17 FirNlmsll
	3.18 FirNlmsv
	3.19 getvq
	3.20 getvq_f2i
	3.21 getvq_i2f
	3.22 getvqelem
	3.23 getvqfree
	3.24 hilbert
	3.24.1 C initialization for hilbert function.

	3.25 ifft1024
	3.26 ifft128
	3.27 ifft256
	3.28 ifft288
	3.29 ifft512
	3.30 ifft64
	3.31 IIR1
	3.32 IIR2
	3.33 Init_IIR1_struct
	3.34 Init_IIR2_struct
	3.35 initFIR
	3.36 initvq
	3.37 LastStage
	3.38 levinson
	3.39 lpc2cep
	3.40 madd
	3.41 mchol
	3.42 mdeterm
	3.43 mdeterm2
	3.44 mdeterm3
	3.45 minvert
	3.46 mmul
	3.47 mtrace
	3.48 mvmul
	3.49 mvmul3x3
	3.50 mvmul4x4
	3.51 mvmul8x8
	3.52 pack40to16ll
	3.53 pack40to16lr
	3.54 pack40to16rl
	3.55 pack40to16rr
	3.56 putvq
	3.57 putvq_f2i
	3.58 putvq_i2f
	3.59 v2magnlrl
	3.60 v2magnv
	3.61 vacoshll
	3.62 vacoshlr
	3.63 vacoshrl
	3.64 vacoshrr
	3.65 vacoshv
	3.66 vacosll
	3.67 vacoslr
	3.68 vacosrl
	3.69 vacosrr
	3.70 vacosv
	3.71 vaddintv
	3.72 vaddlll
	3.73 vaddllr
	3.74 vaddlrl
	3.75 vaddlrr
	3.76 vaddrrl
	3.77 vaddrrr
	3.78 vaddv
	3.79 varll
	3.80 vasinhll
	3.81 vasinhlr
	3.82 vasinhrl
	3.83 vasinhrr
	3.84 vasinhv
	3.85 vasinll
	3.86 vasinlr
	3.87 vasinrl
	3.88 vasinrr
	3.89 vasinv
	3.90 vatan2
	3.91 vatanhll
	3.92 vatanhlr
	3.93 vatanhrl
	3.94 vatanhrr
	3.95 vatanhv
	3.96 vbyvmulv
	3.97 vclipll
	3.98 vcliprr
	3.99 vclipv
	3.100 vcoshll
	3.101 vcoshlr
	3.102 vcoshrl
	3.103 vcoshrr
	3.104 vcoshv
	3.105 vcosll
	3.106 vcoslr
	3.107 vcosrl
	3.108 vcosrr
	3.109 vcosv
	3.110 vdist
	3.111 vdiv0rll
	3.112 vdiv40lll
	3.113 vdiv40lrl
	3.114 vdiv40rll
	3.115 vdiv40rrl
	3.116 vdivlll
	3.117 vdivlrl
	3.118 vdivrll
	3.119 vdivrrl
	3.120 vdivv
	3.121 vexp10ll
	3.122 vexp10lr
	3.123 vexp10rl
	3.124 vexp10rr
	3.125 vexp10v
	3.126 vexpll
	3.127 vexplr
	3.128 vexprl
	3.129 vexprr
	3.130 vexpv
	3.131 vfillll
	3.132 vfilllr
	3.133 vfillrl
	3.134 vfillrr
	3.135 vfillv
	3.136 vfix1ll
	3.137 vfix1lr
	3.138 vfix1rl
	3.139 vfix1rr
	3.140 vfix1v
	3.141 vfix2ll
	3.142 vfix2lr
	3.143 vfix2rl
	3.144 vfix2rr
	3.145 vfix2v
	3.146 vfix3ll
	3.147 vfix3lr
	3.148 vfix3rl
	3.149 vfix3rr
	3.150 vfix3v
	3.151 vfloat1ll
	3.152 vfloat1lr
	3.153 vfloat1rl
	3.154 vfloat1rr
	3.155 vfloat1v
	3.156 vfloat2ll
	3.157 vfloat2lr
	3.158 vfloat2rl
	3.159 vfloat2rr
	3.160 vfloat2v
	3.161 vlog10ll
	3.162 vlog10lr
	3.163 vlog10rl
	3.164 vlog10rr
	3.165 vlog10v
	3.166 vlogll
	3.167 vloglr
	3.168 vlogrl
	3.169 vlogrr
	3.170 vlogv
	3.171 vmagnlrl
	3.172 vmagnv
	3.173 vmaxv
	3.174 vmax1v
	3.175 vmax2v
	3.176 vmmul
	3.177 vmove2cx
	3.178 vmove2cxint
	3.179 vmove2v
	3.180 vmove2vint
	3.181 vmove2x
	3.182 vmove2xint
	3.183 vmovell
	3.184 vmovelr
	3.185 vmoverl
	3.186 vmoverr
	3.187 vmovev
	3.188 vmvell
	3.189 vmvelr
	3.190 vmverl
	3.191 vmverr
	3.192 vmvev
	3.193 vq2vq
	3.194 vrandl
	3.195 vrandr
	3.196 vrandv
	3.197 vrmvesqll
	3.198 vrmvesqlr
	3.199 vrmvesqrl
	3.200 vrmvesqrr
	3.201 vrmvesqv
	3.202 vrotate32v
	3.203 vshandv
	3.204 vshiftv
	3.205 vsinhll
	3.206 vsinhlr
	3.207 vsinhrl
	3.208 vsinhrr
	3.209 vsinhv
	3.210 vsinll
	3.211 vsinlr
	3.212 vsinrl
	3.213 vsinrr
	3.214 vsinv
	3.215 vsqrt0ll
	3.216 vsqrt0lr
	3.217 vsqrt0rl
	3.218 vsqrt0rr
	3.219 vsqrt0v
	3.220 vsqrtll
	3.221 vsqrtlr
	3.222 vsqrtrl
	3.223 vsqrtrr
	3.224 vsqrtv
	3.225 vsubll
	3.226 vsubrr
	3.227 vsubv
	3.228 vsumv
	3.229 vtanhll
	3.230 vtanhlr
	3.231 vtanhrl
	3.232 vtanhrr
	3.233 vtanhv
	3.234 vtanll
	3.235 vtanlr
	3.236 vtanrl
	3.237 vtanrr
	3.238 vtanv
	3.239 xcorrc
	3.240 xcorrlll
	3.241 xcorrllr
	3.242 xcorrlrl
	3.243 xcorrlrr
	3.244 xcorrrrl
	3.245 xcorrrrr
	3.246 xcorrv

	Section 4
	Related Documents

