Determination of the maximum value of u for Bertrand distribution
Y = umaxbert(u)
real vector
value of the function (H(u)+u/2)/(H(u)-u/2)-fmax/fmin.
umaxbert is the function Y(u)=(H(u)+u/2)/(H(u)-u/2)-fmax/fmin. Doing UMAX = fzero('umaxbert',0); gives the maximum value for U in the computation of the Bertrand distribution. For this distribution, H(u) = (u/2)*coth(u/2).