Determination of the maximum value of u for Unterberger distribution
Y = umaxunte(u)
real vector
value of the function (H(u)+u/2)/(H(u)-u/2)-fmax/fmin.
umaxunte is the function Y(u)=(H(u)+u/2)/(H(u)-u/2)-fmax/fmin. Doing UMAX = fzero('umaxunte',0); gives the maximum value for U in the computation of the Unterberger distribution. For this distribution, H(u) = sqrt(1+(u/2)^2).