This toolbox provides elementary tests for evaluation of measured data for small
sample sizes. It calculates the range of dispersion of the values and the mean
regarding a given statistical confidence level.
These functions are good to extend the built-in functions mean(), stdev(),
max(), min(), median().
The toolbox SampleSTAT provide the following functions details refer example
below).
Compatible to Scilab 5.5.x and 6.0.x
----------------------------------------------------
MACROS:
* ST_strayarea:
Calculates the stray area (range of dispersion of the
values) for a given vector and for a statistical
confidence level (95%, 99%, 99.9%) and level of
significance (0.5, 0.01, 0.001), resp.
* ST_trustarea:
Calculates the trust area (range of dispersion of the
mean) for a given vector and for a statistical
confidence level (95%, 99%, 99.9%)and level of
significance (0.5, 0.01, 0.001), resp.
* ST_studentfactor:
Determines the student factor for an amount of numbers
and for a statistical confidence level (95%, 99%,
99.9%) and level of significance (0.5, 0.01, 0.001),
resp. Service function for ST_staryarea and
ST_trustarea
* samplestat.dem.sce:
Demo for mean evaluation via "ST_strayarea()" and
"ST_trustarea()"
----------------------------------------------------
EXAMPLES:
v = [9.999 9.998 10.002 10. 10.001 10.];
stdev(v)
=> ans = 0.0014142
ST_strayarea(v, "95%") // confidence level in percent OR
ST_strayarea(v, 0.05) // confidence level of significance
=> ans = 0.0036345
ST_trustarea(v, "95%")
ST_trustarea(v, 0.05)
=> ans = 0.0014838
68 percent of the values will stray arount 10.000 +/- 0.001 (S.D.).
95% of the values will be expected around 10.000 +/- 0.004 (Range of
disp. of the values, stray area). With a propability of 95% the mean
of 10.000 will stray around 10.000 +/- 0.001 (Rage of dispersion of
the mean, trust area).
----------------------------------------------------
LITERATURE:
Based on the German book R. Kaiser, G. Gottschalk; "Elementare Tests
zur Beurteilung von Meßdaten", BI Hochschultaschenbücher, Bd. 774,
Mannheim 1972.