Scilab Home Page | Wiki | Bug Tracker | Forge | Mailing List Archives | Scilab Online Help | File Exchange
ATOMS : Distfun details
Login with GitLab

Distfun

Distribution functions
(63 downloads for this version - 128372 downloads for all versions)
Details
Version
1.1.3
Authors
Michael Baudin
Prateek Papriwal
Pierre Lecuyer
Luc Devroye
Jean-Philippe Chancelier
Michael A. Malcolm
Cleve B. Moler
George Marsaglia
Arif Zaman
Barry W. Brown
Owner Organization
Dassault Systèmes S.E.
Maintainers
Stéphane MOTTELET
Michael BAUDIN
prateek papriwal
Vincent COUVERT
S G
Adeline CARNIS
License
Dependencies
Creation Date
May 26, 2025
Source created on
Scilab 2025.1.x
Binaries available on
Scilab 2025.1.x:
Windows 64-bit
Install command
--> atomsInstall("distfun")
Description
            The goal of this toolbox is to provide accurate distribution functions. 
The provided functions are designed to be compatible with Matlab.

The goals of this toolbox are the following.
 * All functions are tested with tables (actually, csv datasets).
   The tests includes accuracy tests, so that the accuracy 
   should by from 13 to 15 significant digits in most cases.
 * For each distribution, we have 
   * the probability distribution function (PDF)
   * the cumulated distribution function (CDF)
   * the inverse CDF
   * the random number generator
   * the statistics (mean and variance)
 * The CDF provides the upper and the lower tail of the 
   distribution, for accuracy reasons. 
 * The uniform random numbers are of high quality.
   The default is to use the Mersenne-Twister generator.   
 * Each function has a consistent help page.
   This removes confusions in the meaning 
   of the parameters and clarifies the differences 
   with other computing languages (e.g. R).
   
The design is similar to Matlab's distribution functions. 
A significant difference with Matlab's function is that both 
the upper and lower tails are available in "distfun", while 
Matlab only provides the lower tail. 
Hence, "distfun" should provide a better accuracy when 
probabilities close to 1 are computed (e.g. p=0.9999). 

There are many interesting, positive, differences with Scilab, Stixbox, or other
tools. For a full set of motivations, please read :

https://gitlab.com/scilab/forge/distfun/
   
Features
--------

For each distribution x, we provide five functions :
 * distfun_xcdf : x CDF
 * distfun_xinv : x Inverse CDF
 * distfun_xpdf : x PDF
 * distfun_xrnd : x random numbers
 * distfun_xstat : x mean and variance

Distributions available :
 * Beta (with x=beta)
 * Binomial (with x=bino)
 * Chi-Squared (with x=chi2)
 * Extreme Value (with x=ev)
 * Exponential (with x=exp)
 * F (with x=f)
 * Gamma (with x=gam)
 * Geometric (with x=geo)
 * Histogram (with x=histo)
 * Hypergeometric (with x=hyge)
 * Kolmogorov-Smirnov (with x=ks)
 * LogNormal (with x=logn)
 * LogUniform (with x=logu)
 * Multinomial (with x=mn)
 * Multivariate Normal (with x=mvn)
 * Negative Binomial (with x=nbin)
 * Noncentral F (with x=ncf)
 * Noncentral T (with x=nct)
 * Noncentral Chi-Squared (with x=ncx2)
 * Normal (with x=norm)
 * Poisson (with x=poi)
 * T (with x=t)
 * Truncated Normal (with x=tnorm)
 * Uniform Discrete (with x=unid)
 * Uniform (with x=unif)
 * Weibull (with x=wbl)

Tutorial
 * dispfun_tutorial : A tutorial of the Distfun toolbox.
 * dispfun_plots : A collection of distribution function plots.

Support
 * distfun_betainc : Regularized Incomplete Beta function
 * distfun_erfcinv : Inverse erfc function
 * distfun_gammainc : Regularized incomplete Gamma function
 * distfun_genericpdf : Compute the PDF from the CDF.
 * distfun_getpath : Returns path of current module
 * distfun_histocreate : Creates an histogram
 * distfun_inthisto : Discrete histogram
 * distfun_permrnd : Random permutation
 * distfun_plotintcdf :  Plots an integer CDF
 * distfun_verboseset : Set verbose mode.

Weibull fitting
 * distfun_wblfit : Weibull parameter estimates
 * distfun_wblfitmm : Weibull parameter estimates with method of moments
 * distfun_wbllike : Weibull negative log-likelihood
 * distfun_wblplot : Weibull plot

Other fitting functions
 * distfun_uniffitmm : Uniform parameter estimates with method of moments
 * distfun_betafitmm : Beta parameter estimates with method of moments
 * distfun_gamfitmm : Gamma parameter estimates with method of moments

Random Number Generator
 * rng_overview : An overview of the Random Number Generators of the Distfun
toolbox.
 * distfun_genget : Get the current random number generator
 * distfun_genset : Set the current random number generator
 * distfun_seedget : Get the current state of the current random number
generator
 * distfun_seedset : Set the current state of the current random number
generator
 * distfun_streamget : Get the current stream
 * distfun_streaminit : Initializes the current stream
 * distfun_streamset : Set the current stream

Multivariate vectors
 * distfun_vectorrnd : Random vectors.
            
Files (2)
[1.68 MB]
Source code archive

[2.14 MB]
Windows 64-bit binary for Scilab 2025.1.x

News (0)
Comments (0)
Leave a comment
You must register and log in before leaving a comment.
Login with GitLab
Email notifications
Send me email when this toolbox has changes, new files or a new release.
You must register and log in before setting up notifications.